
Vol. 43 No. 2 IPSJ Journal Feb. 2002

Regular Paper

Building a Collaborative Web Environment for Supporting End Users

Yoshinori Aoki†

This paper describes methods for developing a Web-based collaborative environment for
call center agents supporting end users by using real-time Web browser sharing techniques.
The collaborative functions should be available for end users without any preparation on the
client side. This is because it is unacceptable for end users, especially novice users, if the
system requires the users to download and install software on their client PCs in order to use
the collaborative functions when they run into problems on the Web site. On the other hand,
it is important for Web site developers to separate content design and collaborative-function
development. If they are not separated, content designers have to create collaboration-aware
content, and existing content cannot be reused with the collaborative functions. This paper
discusses three approaches for developing real-time browser sharing systems, and shows why
the proxy-based approach is the best to meet the above requirements. Collaboration tools,
such as telepointers and annotations, can help an end user communicate with a call center
agent. However, if the layouts of the same page are different among the shared browsers,
coordinate-based telepointers and annotations will not be displayed at appropriate positions.
This paper also explains methods for synchronizing Web page layout.

1. Introduction

Many services, such as Internet auctions and
online banking, are provided as Web-based ser-
vices. Users access such services by using Web
browsers. Users often have to go through awk-
ward steps to use the services or fill out com-
plicated Web forms to apply for the services.
Hence, some of the users abandon their pur-
chases midway, or even change service providers
to find more user-friendly services. In such
cases, the Web sites are losing business oppor-
tunities. Therefore, it is very important for
Web-based service providers to build a user-
supportive Web site.
This paper explains a system that supports

an end user’s operations using a Web browser
by synchronizing the user’s browser with a call
center agent’s browser as shown in Fig. 1. This
system allows end users to collaboratively work
on a shared browser when they cannot com-
plete their tasks by themselves or have some
questions about the content.
Microsoft’s NetMeeting and Lotus’s Same-

time are commercial products that allow users
to share desktop applications with remote
users. They capture the screen as an image and
send it to the other users. The advantages of
this approach are: (1) Users can share any desk-
top applications, and (2) Users can share their
applications even though they are not installed

† IBM Research, Tokyo Research Laboratory

on the partners’ client machines. They natu-
rally allow users to share their Web browsers,
too. However, their performance is inadequate
over the Internet because they exchange large
volumes of data.
Another approach is exchanging events be-

tween applications that are running on each
client. The advantage of this method is its high
performance, because the amount of data ac-
tually exchanged is very small. Some real-time
browser sharing techniques have already been
proposed 5),16),23),38). However, they have the
following problems:
(1) Users have to install collaboration-aware

browsers 15),16) or plug-ins 23),26),27),33) in
their clients in advance. Therefore they
cannot seamlessly start using the collab-

Fig. 1 Application scenario.

530

Vol. 43 No. 2 Building a Collaborative Web Environment for Supporting End Users 531

orative functions when the need arises.
(2) Content designers have to develop

collaboration-aware content in a special
manner 5). Therefore content designers
have to be familiar with the collaborative
functions. In addition, existing content is
not reusable in such systems.

(3) When browsers’ font configurations and
other settings are different among the
shared browsers, Web pages are dis-
played with different layouts 20). There-
fore, it becomes impossible to show
coordinate-based telepointers and anno-
tations in appropriate positions.

This paper describes a novel technique for
synchronizing Web browsers that solves the
above problems.
The rest of this paper is organized as follows.

The next section explains the requirements for
the application shown in Fig. 1. The follow-
ing section explains related work and classifies
the approaches into three categories. This pa-
per then explains the details of our system and
presents my conclusions.

2. Requirements

This section describes the requirements for
building the Web-based collaborative environ-
ment shown in Fig. 1. In Fig. 1, the call center
agent is supporting the end user by looking at
the same Web page on the shared browser. The
agent and end user may both be working behind
firewalls. The following are the requirements
for the application.
• No special installation: Collaborative
functions should work with normal Web
browsers without any plug-ins. Some of the
previously proposed systems require end
users to install collaboration-aware Web
browsers 15),16) or plug-ins 23),26),27),33) to
provide collaborative functions for Web
browsers. However, such installations
bother end users, especially novice users.
Collaborative functions should be available
without any installations when the need
arises.

• Separating content design and collab-
orative function development: Collab-
orative functions should be separated from
content, so content designers do not need
to be aware of and include the collaborative
functions in the content. The ideal is that
content designers can create content with-
out being conscious of collaborative func-

tions, because content designers and devel-
opers usually work separately. The separa-
tion also allows the system to reuse existing
content.

• Web page layout sharing: If browsers’
default fonts, text sizes, or window sizes
are different, the layouts of the same Web
page will be different among the shared
browsers. This is a problem because some
of the collaboration tools, such as telepoint-
ers and annotations, are based on window
coordinates. Figure 2 shows an example
Web page with some annotations in differ-
ent layouts. Hence, the layouts of the same
Web page should be the same among the
shared browsers.

• Session management: The sessions
shared between browsers should be man-
aged to support (1) dynamic Web pages,
(2) transaction management, and (3) the
SSL (Secure Sockets Layer) protocol 9).
Some Web pages are dynamically gen-
erated by server-side programs such as
servlets 21) or CGI 19) programs. If shared
Web browsers independently access a Web
server, they may receive different Web
pages. In addition, if shared Web browsers
independently submit a shared Web form,
multiple transactions will take place. The
SSL protocol should also be supported for
secure transactions in a session.

3. Approaches

Many real-time Web browser sharing tech-
niques have been proposed, and have classified
these approaches into the following three cate-
gories:
(1) Client-based approaches.
(2) Server-based approaches.
(3) Proxy-based approaches.
We have adopted the proxy-based approach.

The following sections explain the three ap-
proaches in detail and why I chose the proxy-
based approach.

3.1 Client-based Approach
In the client-based approach, collaborative

functions are implemented in client-side soft-
ware, and users have to install it in advance.
An advantage of this approach is that the exist-
ing content can be used with the collaborative
tools, because the collaborative functions are
isolated in the client-side software. The main
disadvantage is that users have to install the
software in advance, which prevents end users

532 IPSJ Journal Feb. 2002

Fig. 2 Shared Web page with different font configurations.

from using the collaborative functions sponta-
neously.
GroupWeb 16) and GroupSpace 15) are sys-

tems implemented using this approach (Group-
Space is actually a mix of the client- and server-
based approaches). Original Web browsers were
developed to provide the collaborative functions
in these systems. Many toolkits 26),31) have
been developed, and developers can reduce the
cost of developing collaboration-aware applica-
tions by using such toolkits. However, it is
very costly to develop original Web browsers
that fully support recent standards such as
HTML, HTTP, XML, JavaScript, Java, SSL,
etc. Therefore, another client-based approach
has been proposed, which adds collaborative
functions to existing Web browsers without
any modifications by installing plug-ins in the
clients 23),26),27),33). To realize the collabora-
tive functions, the plug-ins control the browsers
via IPC (Inter-Process Communication) calls
such as DDE 30) in Windows. Sakairi, et al.
proposed a toolkit with which developers can
add multi-user functionalities to an existing
single-user application 32). WebShare 33) is im-
plemented with the toolkit, and is an add-on
module that enables existing browsers to pro-
vide synchronous-browsing capability. Another
disadvantage of this approach is that it is im-
possible to capture events in accord with the
application semantics and control the applica-
tion properly if the application does not provide

an interface for the plug-ins.
3.2 Server-based Approach
In the server-based approach, collaborative

functions are tightly integrated into the con-
tent. The chief advantage of this approach
is that existing browsers are already suitable,
because the collaborative functions are imple-
mented on the server side. However, content de-
signers have to create collaboration-aware con-
tent, and hence they are required to have not
only artistic design skills but also programming
skills. In addition, it is impossible to reuse ex-
isting collaboration-unaware content.
Artefact 5) is implemented using the server-

based approach. Artefact is an environment
for developing CORBA-based 39) collaborative
Web applications. In Artefact, the content it-
self is written in ADL, a special XML-like lan-
guage. The content written in ADL is trans-
formed to HTML documents by server-side ap-
plications. Users can issue events for the server-
side CORBA applications by clicking hyper-
links or by submitting forms from their Web
browsers. GroupSpace (introduced in the pre-
vious section) extends the HTML format by
adding two tags with which we can add col-
laborative functions to an HTML document 15).
Therefore GroupSpace can also be categorized
as using a server-based approach.

3.3 Proxy-based Approach
In the proxy-based approach, the collabora-

tive functions are embedded into the content

Vol. 43 No. 2 Building a Collaborative Web Environment for Supporting End Users 533

while passing through a proxy server, and the
proxy server supports the requested collabo-
rative functions. This approach is similar to
the server-based approach in that collaborative
functions are embedded in the content. How-
ever, while collaborative functions are tightly
integrated into the content in the server-based
approach, they are automatically inserted in
the proxy-based approach. This means that
there need be little dependency between the col-
laborative functions and the content, and there-
fore the content designer can create the content
without being conscious of the collaborative
functions, and existing collaboration-unaware
content is reusable with minimum effort. In
addition, users can use existing Web browsers
without any modifications or plug-ins, because
collaborative functions are dynamically embed-
ded into the content. I adopted the proxy-based
approach because of these advantages.
WBI 3),4) provides a framework with which

developers can build new functions on a conven-
tional proxy server. Hence it allows developers
to reduce the cost of developing a customized
proxy server.
Several proxy-based systems have been pro-

posed 6),22). In CoWeb 22), the proxy server re-
places all input fields of an HTML form by Java
applets that provide collaborative input capa-
bility. However, CoWeb does not support gen-
eral Web pages except for HTML forms. In ad-
dition, some HTML forms include JavaScript
code, typically calculations of a total price
or input value validation, and they may not
work correctly if the input fields are replaced
by Java applets. In Ref. 6), a Java applet
is inserted into an HTML document, and the
Java applet exchanges the URL of the page
with other browsers to display the same Web
page. However, the collaborative functions are
not adequate to support end users on a Web
browser, because though users can see the same
Web page they cannot share the form input,
scrolling, Web-page layout, and window oper-
ations. In addition, this system also does not
support telepointers nor annotations.
Many Java-applet-based systems have been

proposed to realize collaborative environments
using Web browsers 7),10),11),24),25),28),29),34),36).
These systems try to realize shared workspaces
using Java applets, and their view of Web
page sharing is limited to URL synchronization.
This is because Java applets lack the capabili-
ties required to control Web browsers. Java ap-

plets can only identify the URL of the Web page
in which the Java applet is embedded or load a
Web page into the frame where the Java applet
is embedded 8). On the other hand, our system
tries to use Web pages as shared workspaces.
The proxy of our system embeds not only Java
applets but also JavaScript programs. The Java
applets provide only communication capabili-
ties and the collaborative functions are basi-
cally implemented in JavaScript. This is be-
cause JavaScript can access the objects, such as
images and link objects, in a Web page via the
DOM (Document Object Model) 37) interface,
which provides methods for capturing events on
a Web page and for directly controlling the ob-
jects in the page. Therefore our system provides
not only URL synchronization, but also syn-
chronization of form input, scrolling, and win-
dow operations. In addition, our system also
supports telepointers and annotation functions.

3.4 Contribution
This section summarizes the problems in the

previous studies, and explains the contribution
of this paper.
The main disadvantage of the client-based

approaches is that such systems force end users
to install software in advance and prevent end
users from using the collaborative functions
spontaneously. The main disadvantage of the
server-based approaches is that content de-
signers have to create collaboration-aware con-
tent in special manners because the content
and the collaborative functions are tightly inte-
grated. The advantage of the proxy-based ap-
proach is that such systems can solve the above
two major problems. On the other hand, the
main problem of existing proxy-based systems
is poor functionalities for browser synchroniza-
tion. This is because they are based on Java
applets, and the Java applets lack the capabili-
ties for detecting operations on Web pages and
controlling the Web browsers.
The main contribution of this paper is a novel

method for event detection and browser con-
trol by combining JavaScript and Java. With
this method, our system realizes comprehen-
sive browser synchronization capabilities with-
out losing the advantages of the proxy-based
approach including (1) end users need not in-
stall any software in advance, and (2) content
design and collaborative function development
are completely separated. Our system supports
synchronization for not only URLs, but also
form inputs, scrolling, and window operations.

534 IPSJ Journal Feb. 2002

Fig. 3 System architecture.

In addition, our system also provides collabo-
ration tools including telepointers, image anno-
tations, text annotations, and ink annotations
directly attached to Web pages. The SSL pro-
tocol support, intranet user support, and Web-
page-layout-sharing technique are also contri-
butions of this research.

4. Collaborative Environment on the
Web

This section describes our general solution
for building collaborative environments for Web
users.

4.1 Architecture
Figure 3 shows the architecture of our sys-

tem. In Fig. 3, two Web browsers are running
on Nodes A and B, sharing one application, and
both users can access the collaborative func-
tions using their control panels, and see the Web
pages in their content windows.
Our system consists of three components.

One is a proxy server and the others are client-
side programs called the document controller
and the node manager. The proxy server in-
cludes the embedding engine and the session
manager. The embedding engine inserts the
document controller into an HTML document,
and the session manager provides session and

security management. Each node runs a node
manager that communicates with the session
manager to support that node’s participation
in the shared session. Every HTML document
(or frame of a compound document) has a doc-
ument controller embedded in it to control the
display of that document.
When a user takes an action on a Web page,

the document controller detects the event, and
notifies the node manager. For example, when
the user inputs a value into a text field on a
Web form, then the document controller detects
that the value has been changed and sends to
the node manager that information, including
the frame id, form id, input-field id, and in-
put value. The node manager then sends this
to the session manager, and the session man-
ager distributes it to the other node managers.
Each node manager executes an event to syn-
chronize its own browser by using the methods
provided by the document controller. The doc-
ument controller synchronizes its own browser
using JavaScript methods. For example, when
a value “Japan” was input into a text field on
Node A, the browser on Node B can be synchro-
nized by using the following JavaScript call.

document.forms[0].elements[2].value=“Japan”;

Vol. 43 No. 2 Building a Collaborative Web Environment for Supporting End Users 535

With the control panel, a user can select be-
tween normal operation mode, in which the user
can browse as usual, and annotation mode, in
which the user can attach annotations to Web
pages. When the user changes the mode, the
control panel notifies the document controller
of the mode change. The user can also close
the collaborative session with the control panel.
When the user closes the session, the node man-
ager notifies the session manager and the ses-
sion manager distributes the status change to
any other node managers in the session.
Both the control panel and content window

are browser windows, and the node manager
and the document controller are implemented
in Java and JavaScript, and executed in the
Web browsers. The node manager has to be
downloaded directly from the proxy server to
communicate with the session manager under
the Java security model 8). Users do not have
to install any software to use the collabora-
tive functions, because all the client-side com-
ponents are downloadable.
When a Web page is requested, the proxy

server obtains the Web page from the Web
server, parses the HTTP response, and embeds
a document controller into the HTML docu-
ment. The document controller is embedded
into every HTML document. When a Web
page consists of multiple frames, every frame
has to contain a document controller. After an
HTML document is downloaded, the document
controller is activated, parses the HTML doc-
ument, and sets up event handlers for the ap-
propriate objects in the page. The document
controller then detects events via the DOM in-
terface, and controls its HTML document by
using the DOM interface. The document con-
troller consists of one JavaScript file and one
Java applet, and must be embedded at the end
of an HTML document by using SCRIPT and
APPLET tags. The best place is just before the
end tag of the body tag, “〈/BODY〉.” This is
because if the document controller is embedded
at the beginning of an HTML document, the
document controller starts parsing the HTML
document before it has finished loading the
HTML document. This may cause failures in
setting up the event handlers. An alterna-
tive method is calling the event-handler-set-up
method as an onload event call. Details of the
event detection and the program insertion in
the embedding engine appear in Refs. 1), 2).

4.2 Session Manager
A user has to establish a session to start col-

laboration by loading the node manager in a
Web browser. After the node manager is acti-
vated, it communicates with the session man-
ager to find partners. In the application shown
in Fig. 1, a proxy server will be managed by the
call center, and the session manager finds an
available agent to help the user. The session
manager maintains the session with the partic-
ipating node managers running on the shared
browsers. The session manager provides the fol-
lowing functions:
(1) Dynamic Web page support.
(2) Transaction management.
Many Web servers dynamically generate

Web pages using server-side programs such as
servlets and CGI programs. If the shared
browsers independently request Web pages
from such a Web server, the browsers may re-
ceive different Web pages even though they re-
quest the same URL, because each browser is
uniquely identified by the Web server. In addi-
tion, when a user submits a shared form, mul-
tiple transactions will take place, because all
the shared browsers will submit their forms.
Master-slave browsing can avoid such problems.
In master-slave browsing, only one user acts
as the master and the rest of the users act as
slaves. When a master or a slave clicks a link or
submits a form, the session manager distributes
the event to all the shared browsers and each of
the browsers executes the event and then sends
an HTTP request to the session manager. How-
ever, the session manager relays only the mas-
ter’s HTTP request to the Web server though it
accepts the HTTP requests from all the shared
browsers. After receiving the HTTP response
from the Web server, the session manager dis-
tributes the HTTP response not only to the
master browser but also to the slave browsers.
In this way, the session manager provides dy-
namic Web page support and transaction man-
agement.

4.3 SSL Protocol Support
The SSL protocol is used to encrypt HTTP

requests and responses when a browser and a
Web server exchange confidential data such as
user names and credit card numbers. The SSL
sessions are usually established between the
browser and the Web server. However, in naive
master-slave browsing of a secure site, the fol-
lowing problems occur, because of the data en-
cryption between browsers and the Web server.

536 IPSJ Journal Feb. 2002

Fig. 4 SSL protocol support.

(1) The proxy server cannot examine or ma-
nipulate the encrypted data. Hence, the
proxy server cannot insert a document
controller into the HTML document.

(2) The session manager relays only the mas-
ter’s HTTP requests to the Web server.
Hence, the HTTP requests and responses
are encrypted for the master browser. It
means the slave browsers cannot decrypt
the HTTP responses, even if the session
manager sent the HTTP responses not
only to the master browser but also to
the slave browsers.

To solve the above problems, the proxy server
has to decrypt the HTTP responses received
from the Web server, insert a document con-
troller into the HTML document, and then en-
crypt the modified HTTP responses for each
browser again. As shown in Fig. 4, indepen-
dent SSL sessions have to be established be-
tween the proxy server and the Web server, and
between the proxy server and the browsers.

4.4 Proxy Configuration
The proxy server plays the central role in our

system, and strongly affects the application sce-
nario. This section discusses the proxy config-
uration.

4.4.1 Problems
In the application shown in Fig. 1, both the

end user and the call center agent are in differ-
ent intranets. Figure 5 shows the proxy con-
figuration in such case. There are the following
two problems in the proxy configuration shown
in Fig. 5.
(1) Intranet support.
(2) SSL protocol support.
In Fig. 5, each proxy server prevents its in-

tranet user from directly accessing Web servers

Fig. 5 Proxy server.

outside the intranet. The user has to access
the Web servers via the proxy server. In this
situation, the normal proxy servers as shown in
Fig. 5 do not work for collaboration with the
other intranet users. This is because intranet
users have to use their own proxies, and hence
they cannot establish a collaborative session by
sharing a proxy server that includes the session
manager.
As mentioned in Section 4.3, independent

SSL sessions have to be established to support
the SSL protocol, because the proxy server has
to modify the HTML documents to embed doc-
ument controllers. However, in Fig. 5, HTTP
connections are established directly between
browsers and an actual Web server. Hence,
the browsers will try to establish SSL sessions
directly between the browsers and the Web
server. This means that the proxy server can-
not insert a document controller into the HTML
document, because the data is encrypted be-
tween them. Therefore, the proxy servers can-
not support the SSL protocol in the way re-
quired here.

4.4.2 Solution
Our solution for the problems described in

the previous section is to implement the proxy
server as a reverse proxy server.
Reverse proxy servers are generally used for

load balancing, caching, and redirection. The
number of HTTP connections is the major dif-
ference between a normal proxy server and a
reverse proxy server. In a normal proxy server,
a Web server is a destination address of an
HTTP request sent by a browser. The nor-

Vol. 43 No. 2 Building a Collaborative Web Environment for Supporting End Users 537

Fig. 6 Reverse proxy server.

mal proxy server just fetches the HTTP request
and relays it to the Web server. Hence, there
is one HTTP connection between the browser
and the Web server. On the other hand, in a
reverse proxy server, the reverse proxy server
is a destination address of an HTTP request
sent by a browser. The reverse proxy server
creates a new HTTP request and sends it to
a Web server. The Web server is a destina-
tion address of the new HTTP request sent by
the reverse proxy server. Hence, there are two
HTTP connections, one between the browser
and the reverse proxy server, and another be-
tween the reverse proxy server and the Web
server. This is because a reverse proxy server
acts as the Web servers’ proxy, and works like
a Web server. The reverse proxy server accepts
HTTP requests as though it were a Web server
and sends the HTTP responses to browsers af-
ter getting the Web pages from backend Web
servers. Hence, Web browsers regard a reverse
proxy server as a Web server.

Figure 6 shows how the reverse proxy server
works in our system, and the followings explain
why the reverse proxy server can solve the prob-
lems.
(1) Intranet support: The reverse proxy

server is accessible for users of different
intranets as shown in Fig. 6. This is be-
cause browsers regard a reverse proxy as
a Web server, so even if there is a proxy
server between a browser and the reverse
proxy server, the browser can reach the

Fig. 7 Public and private reverse proxies.

reverse proxy server in the same way as
for normal Web accesses. Therefore the
reverse proxy allows users to establish a
collaborative environment with users of
other intranets.

(2) SSL protocol support: When a re-
verse proxy server is used, the browsers
will try to establish the SSL sessions be-
tween the browsers and the reverse proxy
server as shown in Fig. 6. This is be-
cause HTTP connections are established
between the reverse proxy server and the
browsers. The reverse proxy server can
then establish another SSL session be-
tween the reverse proxy server and the
actual Web server. After establishing
the SSL sessions, HTTP requests and re-
sponses can be sent via the secure ses-
sions.

4.4.3 Usability of Reverse Proxies
All end users have to do to use a proxy server

is configure their browsers to make all requests
through the proxy server. On the other hand,
how users work with a reverse proxy server de-
pends on the proxy configuration.
When we provide user-support services that

are available for any Web site on the In-
ternet, the proxy server has to be located
on the Internet. End users can visit any
Web sites via the proxy server. We call this
a public reverse proxy. Figure 7 (a) illus-
trates an example of accessing a Web server
“www.abc.com” via a public reverse proxy
“proxy.com.” Users have to visit all Web sites
via the reverse proxy in order to remain in
the collaborative environment. In the exam-
ple, the client sends an HTTP request to the
reverse proxy. The URL of the HTTP request
is “http://proxy.com/www.abc.com/,” and the
first half indicates the name of the reverse

538 IPSJ Journal Feb. 2002

proxy, and the latter half indicates the URL
of the Web page that the user actually try-
ing to see. After receiving the HTTP request,
the reverse proxy extracts the URL of the ac-
tual Web page, and sends a new HTTP request
to the Web server to receive the actual Web
page. Therefore users are not allowed to load a
Web page by using their bookmarks or by di-
rectly typing a URL in the address bar of their
browsers. One implementation approach is for
users to log on from the start page of the re-
verse proxy, and then input a URL in the form
provided by the reverse proxy. Because of this,
end users should be aware of the mechanisms
involved in order to use this system with a pub-
lic reverse proxy and the use of a public reverse
proxy is very complex.
When a Web site provides user-support ser-

vices only for its own content, the reverse proxy
is better as its Web server. The reverse proxy
works only for the Web site; hence users can-
not establish a collaborative environment with
other Web sites. We call this a private reverse
proxy, as shown in Fig. 7 (b). In Fig. 7 (b), the
reverse proxy “www.abc.com” acts as a Web
server for the domain “abc.com.” The actual
content is stored or generated in the other Web
servers such as “shop.abc.com” within the in-
tranet. Therefore, end users do not have to
be aware of the existence of the Web servers
behind the reverse proxy, and the usability of
a private reverse proxy is much better than a
public reverse proxy.

4.4.4 SSL Protocol in Reverse Proxies
When the SSL protocol is used, the browser

establishes an SSL session with the reverse
proxy as shown in Fig. 4. In the SSL session,
the browser receives the Web server’s certificate
issued by a CA (Certification Authority) and
allows the end user to look at the certificate 12).
In Fig. 7 (a), the end user can only look at the
certificate of “proxy.com,” even though the ac-
tual content is from “www.abc.com.” There-
fore, end users cannot be sure what Web site
is providing the actual content when they are
using a public reverse proxy. On the other
hand, a private reverse proxy allows end users
to look at the certificate of its domain. In
Fig. 7 (b), the user can look at the certificate
of “www.abc.com.”
When the user uses a private reverse proxy,

it is not necessary to establish an SSL session
between the reverse proxy and the Web server,
because the session is inside the intranet. The

SSL protocol, especially the encryption mod-
ule, usually makes heavy demands on CPU re-
sources, and therefore the performance of the
private reverse proxy is better than the public
reverse proxy.

4.4.5 Summary of the Discussion
By implementing a proxy server, including

the session manager and the embedding engine,
as a reverse proxy server, we can support both
different intranet users and the SSL protocol.
The reverse proxy server can be classified into

public and private reverse proxies. The private
reverse proxy is much better than the public
reverse proxy from the viewpoints of usability
and also the SSL protocol support.

4.5 Collaboration Tools
Our system provides the following features

to communicate with other users. Figure 2 (a)
shows examples of these collaboration tools.
• Telepointer: A telepointer is displayed on
a Web page by using an IMG tag. When
the mouse pointer moves on the Web page,
the document controller detects the move-
ment and sends it to the other nodes via the
session manager. The document controllers
on the other nodes move the telepointer by
using a JavaScript method.

• Image annotation: When a user attaches
an image to a Web page, the document con-
troller dynamically creates a new layer for
the image on the Web page.

• Text annotation: A user can position
text on aWeb page as shown in Fig. 2. First
the user can create a new colored panel
within a layer in a text-annotation mode,
and then a text field will be created in the
layer. The user then can directly write text
in the text field.

• Ink annotation: When a user moves a
mouse pointer on a Web page in the ink an-
notation mode, small colored layers will be
created along the path of the mouse move-
ment.

These functions are implemented in Java-
Script by using Dynamic HTML functions 13).
Many toolkits and frameworks have been de-
scribed for developing Java-applet-based collab-
orative applications 7),10),11),24),25),28),29),34),36).
It is also possible to implement other collabora-
tion tools, such as a shared chalkboard and chat
functions, by using such toolkits or frameworks.

4.6 Web Page Layout Sharing
The layout information in the HTML docu-

ment is not the only constraint on the display

Vol. 43 No. 2 Building a Collaborative Web Environment for Supporting End Users 539

of Web pages. Browsers also use local state in-
formation like font configurations and window
sizes that affects the display. There are two
methods for sharing pages in an environment
in which page layouts can be changed accord-
ing to the window size and font configurations:
(1) Strict layout sharing.
(2) Relaxed layout sharing.
The following sections explain the above two

methods and the method actually used in our
system.

4.6.1 Strict Layout Sharing
In a strict layout sharing system, the page

layouts are completely synchronized, and users
see the same page in the same layout. It is
possible to achieve strict layout sharing in Web
browsers by synchronizing the window sizes and
by specifying fonts and text sizes for all ob-
jects in the Web pages by using CSS (Cascad-
ing Style Sheets) 14) in advance. Fonts and text
sizes specified in CSS take precedence over a
browser’s font configurations. Therefore con-
tent designers can strictly specify page layouts
without consideration of the browsers’ font con-
figurations. However, there are some disadvan-
tages in the CSS-based strict layout sharing as
follows.
• Users cannot see Web pages according to
their own font preferences. Different users
naturally prefer different configurations.

• It is extra work for content designers be-
cause they have to specify fonts and text
sizes for all objects in each Web page.

• It is not possible to reuse existing content in
which fonts and text sizes are not specified
in CSS.

4.6.2 Relaxed Layout Sharing
In a relaxed layout sharing system, the page

layouts are not synchronized, and users see the
same page with different layouts. In Group-
Web, a semantic telepointer is implemented as
one of their browser’s functions 17),18). The tele-
pointer indicates the same object even when the
page layouts are different between the shared
browsers. Relaxed layout sharing system like
in GroupWeb can solve the problems described
in Section 4.6.1. However, it is difficult for re-
laxed layout sharing systems to appropriately
display text, images, and ink annotations that
are directly attached to a Web page as shown in
Fig. 2. Such annotation functions are very use-
ful to communicate with other users in a col-
laborative environment. (Tang reported that
annotating text and graphics directly on pages

accounts for 65% of all actions in conventional
collaborative environments 35).)

4.6.3 Dynamic Strict Layout Sharing
on Web Browsers

As described in the previous sections, strict
layout sharing has to be implemented within
Web browsers to support text, image, and ink
annotations on Web pages.
In the application shown in Fig. 1, CSS font

specifications should not be used, avoiding the
problems explained in Section 4.6.1. Our sys-
tem realizes strict layout sharing by dynami-
cally synchronizing the agent’s page layout with
the end user’s page layout. Hence, end users
can see Web pages according to their font pref-
erences.
The agent’s browser can display Web pages

in the same layouts as the end user’s layouts by
using the following steps:
(1) When a master browser (the end user’s

browser) loads a new page, the document
controller embedded in the page extracts
the font and text size information from
all objects in the Web page by using the
DOM interface.

(2) The document controller sends the font
information to the session manager via
the node manager. The session manager
sends it to the node manager of the slave
browser (the agent’s browser).

(3) According to the font information, the
node manager of the slave browser in-
structs the document controller to dy-
namically change fonts and text sizes by
using the DOM interface.

The problem with this method is that the
slave browser cannot immediately display the
Web page in the same layout as the master
browser’s after loading a new page. This is be-
cause the slave browser first displays the Web
page according to its own font configuration,
and after receiving font information from the
master browser, the slave browser dynamically
changes the page layout. In the application
shown in Fig. 1, the issue is not a serious prob-
lem if the agent is aware of it in advance.

4.7 Implementation and Evaluation
The document controller, node controller,

embedding engine, and a part of the session
manager have already been implemented, and
we can establish a collaborative environment
with normal Web browsers. By implementing
and evaluating our prototype systems, we found
several issues as described below.

540 IPSJ Journal Feb. 2002

(1) There are incompatibilities in the Java-
Script between Microsoft Internet Ex-
plorer and Netscape Communicator.
Hence, we have developed separate ver-
sions of the system for the two major
browsers, even though the basic archi-
tectures are the same. Our architecture
theoretically allows us to establish a col-
laborative environment with an Internet
Explorer user and a Netscape Communi-
cator user. However, it is impossible to
synchronize Web page layout, because of
the different implementations of the page
layout rendering engines between the two
browsers. This implies that telepointers
and annotations cannot be displayed in
correct positions in such environments.

(2) We found that too many events are cap-
tured by the document controller and
the performance of the system is harmed
if a document controller sets up event
handlers for all of the objects in the
Web page. We avoided this problem by
tuning up the event-handler-set-up code.
For example, we removed all mouse-move
event handlers from all objects except
body objects. This is because a body
object represents the whole body of a
Web page, hence we can capture coor-
dinates of the mouse pointer from the
body object, wherever on the Web page
the mouse pointer is positioned.

(3) The performance is poor for the ink an-
notation function in the Internet Ex-
plorer, although it works well in Netscape
Communicator. This is because may col-
ored layers are dynamically created along
the path of mouse movement, and the
performance in creating new layers de-
pends on the rendering engine of the
browser.

5. Conclusions

This paper describes some requirements for
building a collaborative environment for sup-
porting Web users by using a real-time browser
sharing technique. I classified the previously
proposed systems into three approaches: (1)
client-based approaches, (2) server-based ap-
proaches, and (3) proxy-based approaches, and
explained the features of each approach. I
also explained why the proxy-based approach is
the best in order to reuse the existing content
and support normal Web browsers without any

modifications or plug-in installations, and our
system is accordingly designed using the proxy-
based approach.
Some proxy-based systems have already

been developed 6),22). Java applets are used
to synchronize the URLs among the shared
browsers 6). However, other operations, such
as form input and scrolling, cannot be shared,
because Java applets cannot detect such op-
erations on Web pages. Our system embeds
not only Java applets but also JavaScript pro-
grams that extract events from objects in a Web
page and directly control the objects by using
the DOM interface. Therefore, our system can
synchronize not only URL transitions but also
form input, scrolling, and window operations.
In addition, our system also provides telepoint-
ers within Web pages, and allows users to di-
rectly attach text, images, and ink annotations
to Web pages.
This paper also discusses proxy configuration.

Reverse proxies are appropriate for supporting
collaborative work through firewalls and with
the SSL protocol. The private reverse proxy
is the best for building a collaborative environ-
ment for call center agents to use in supporting
end users.
When font configurations are different among

the shared browsers, each browser displays Web
pages in different layouts. This paper describes
a method for dynamically synchronizing the
page layout of a call center agent’s browser with
an end user’s browser. The method allows end
users to see Web pages according to their font
preferences.
Our system allows developers to add collab-

orative functions to existing Web applications
with minimal efforts. The system is acceptable
for novice users, because the users do not have
to install any software in their clients in ad-
vance in order to use the collaborative func-
tions. They can use the collaborative function
only when they need help in their browsing. Fu-
ture work will involve supporting not only PC
users but also other devices such as PDAs and
cellular phones.

Acknowledgments The author would like
to thank Dr. Toshio Souya for his implementa-
tion of the embedding engine, and Younosuke
Furui for his implementation of part of the ses-
sion manager.

References

1) Aoki, Y., Ando, F. and Nakajima, A.: Web

Vol. 43 No. 2 Building a Collaborative Web Environment for Supporting End Users 541

Operation Recorder and Player, Proc. Intl.
Conf. on Parallel and Distributed Systems
(IEEE ICPADS2000), pp.501–508 (2000).

2) Aoki, Y., Ando, F. and Nakajima, A.: Cre-
ating Web-based Presentations by Demonstra-
tion, IPSJ Journal, Vol.42, No.2, pp.155–165
(2001).

3) Barrett, R., Maglio, P.P. and Kellem, D.C.:
How to Personalize the Web, Proc. CHI’97,
pp.75–82 (1997).

4) Barrett, R. and Maglio, P.P.: Intermediaries:
New Places for Producing and Manipulating
Web Content, Proc. 7th Intl. World Wide Web
Conf. (1998).

5) Brandenburg, J., Byerly, B., Dobridge, T.,
Lin, J., Rajan, D. and Roscoe, T.: Artefact: A
Framework for Low-overhead Web-based Col-
laborative Systems, Proc. CSCW’98, pp.189–
196 (1998).

6) Cabri, G., Leonardi, L. and Zambonelli, F.:
Supporting Cooperative WWW Browsing: A
Proxy-based Approach, Proc. 7th Euromicro
Workshop on Parallel and Distributed Process-
ing (PDP’99), pp.138–145 (1999).

7) Chabert, A., Grossman, E., Jackson, L.,
Pietrowicz, S. and Seguin, C.: Java Object-
Sharing in HABANERO—A new framework
for collaborative tool development uses any
platform that supports Java, Comm. ACM,
Vol.41, No.6, pp.69–76 (1998).

8) Flanagan, D.: Java in a Nutshell: A Desktop
Quick Reference, O’Reilly & Associates, MA
(1996).

9) Frier, A.O., Karlton, P. and Kocher, P.C.: The
SSL Protocol Version 3.0, Netscape Commu-
nications Corp. (1996). Available at http://
home.netscape.com/eng/ ssl3/draft302.txt.

10) Fuentes, L. and Troya, J.M.: A Java Frame-
work for Web-based Multimedia and Collabo-
rative Applications, IEEE Internet Computing,
pp.55–64 (1999).

11) Gall, U. and Hauck, F.J.: Promondia: A Java-
based Framework for Real-time Group Com-
munication in the Web, Proc. 6th Intl. World
Wide Web Conf. (1997).

12) Garfinkel, S. and Spafford, G.: Web Security &
Commerce, O’Reilly & Associates, MA (1997).

13) Goodman, D.: Dynamic Html: The Definitive
Reference, O’Reilly & Associates, MA (1998).

14) Graham, I.S.: HTML Stylesheet Sourcebook,
John Wiley & Sons, NY (1997).

15) Graham, T.C.N.: GroupSpace: Integrating
Synchronous Groupware and the World Wide
Web, Proc. IFIP TC.13 Intl. Conf. on Human-
Computer Interaction (INTERACT’97),
pp.547–554 (1997).

16) Greenberg, S. and Roseman, M.: GroupWeb:

A WWW Browser as Real Time Groupware,
Companion Proc. CHI ’96, pp.271–272 (1996).

17) Greenberg, S., Gutwin, C. and Roseman, M.:
Semantic Telepointers for Groupware, Proc.
Sixth Australian Conf.on Computer-Human In-
teraction (OzCHI’96), pp.24–27 (1996).

18) Greenberg, S.: Collaborative Interfaces for the
Web, Forsythe, C., Grose, E. and Ratner, J.
(eds.), Human Factors and Web Development,
pp.241–254, LEA Press (1997).

19) Gundavaram, S.: CGI Programming on the
World Wide Web, O’Reilly & Associates, MA
(1996).

20) Gutwin, C. and Greenberg, S.: Design for In-
dividuals, Design for Groups: Tradeoffs Be-
tween Power and Workspace Awareness, Proc.
CSCW’98, pp.207–216 (1998).

21) Hunter, J., Crawford, W. and Ferguson, P.
(eds.): Java Servlet Programming, O’Reilly &
Associates, MA (1998).

22) Jacobs, S., Gebhardt, M., Kethers, S. and
Rzasa, W.: Filling HTML Forms Simultane-
ously: CoWeb—Architecture and Functional-
ity, Proc. 5th WWW Conf. (1996).

23) Kobayashi, M., Shinozaki, M., Sakairi, T.,
Touma, M., Daijavad, S. and Wolf, C.: Collab-
orative Customer Services Using Synchronous
Web Browser Sharing, Proc.CSCW ’98, pp.99–
108 (1998).

24) Lee, J.H., Prakash, A., Jaeger, T. and
Wu, G.: Supporting Multi-user, Multi-applet
Workspaces in CBE, Proc. CSCW’96, pp.344–
353 (1996).

25) Marsic, I. and Dorohonceanu, B.: An Applica-
tion Framework for Synchronous Collaboration
Using Java Beans, Proc. Hawaii Intl. Conf. on
System Sciences (HICSS-32) (1999).

26) McKinley, P.K., Barrios, R.R. and Malenfant,
A.M.: Design and Performance Evaluation of
a Java-based Multimedia Browser Tool, Proc.
19th IEEE Intl.Conf.on Distributed Computing
Systems, pp.314–322 (1999).

27) McKinley, P.K., Malenfant, A.M. and Arango,
J.M.: Pavilion: A Middleware Framework for
Collaborative Web-based Applications, Proc.
ACM Group’99, pp.179–188 (1999).

28) Miura, M. and Tanaka, J.: A Framework
for Event-Driven Demonstration Based on the
Java Toolkit, Proc. APCHI ’98 (Asia Pacific
Computer Human Interactions), pp.331–336
(1998).

29) Moatti, Y., Orell, D., Rochwerger, B., Shuklin,
G. and Wecker, A.: Remote AWT for Java.
Available at http://www.alphaworks.ibm.com/
tech/remoteawtforjava.

30) Netscape Communications Corp.: Netscape’s
DDE Implementation. Available at http://

542 IPSJ Journal Feb. 2002

developer.netscape.com/docs/manuals/
communicator/DDE/index.htm.

31) Roseman, M. and Greenberg, S.: Building
Real Time Groupware with GroupKit, A
Groupware Toolkit, ACM Trans. Computer
Human Interaction, Vol.3, Issue 1, pp.66–106
(1996).

32) Sakairi, T., Shinozaki, M. and Kobayashi, M.:
CollaborationFramework: A Toolkit for Shar-
ing Existing Single-User Applications with-
out Modification, Proc. APCHI’98 (Asia Pa-
cific Computer Human Interactions), pp.183–
188 (1998).

33) Shinozaki, M., Kobayashi, M. and Sakairi, T.:
A Web-based Application Framework of Syn-
chronous Collaboration, Proc. Intl. Conf. on
Computer Communication (1999).

34) Shirmohammadi, S., Oliveira, J.C. and
Georganas, N.D.: Applet-based Telecollabo-
ration: A Network-centric Approach, IEEE
Multimedia Magazine, Vol.5, No.2, pp.64–73
(1998).

35) Tang, J.: Findings from Observational Stud-
ies of Collaborative Work, Intl. Journal of
Man Machine Studies, Vol.34, No.2, pp.143–
160, Academic Press (1991).

36) Trevor, J., Koch, T. and Woetzel, G.:
MetaWeb: Bringing Synchronous Groupware
to the World Wide Web, Proc. ECSCW’97

(1997).
37) W3C (World Wide Web Consortium): Docu-

ment Object Model. Available at http://www.
w-3.org/DOM/.

38) Wolf, C.G., Lee, A., Touma, M. and
Daijavad, S.: A Case Study in the Develop-
ment of Collaborative Customer Care: Con-
cept and Solution, Proc. IFIP TC.13 Intl.
Conf. on Human-Computer Interaction (IN-
TERACT’99), pp.54–61 (1999).

39) Zahavi, R. and Linthicum, D.S.: Enterprise
Application Integration with CORBA Compo-
nent and Web-based Solutions, John Willey &
Sons, NY (1999).

(Received May 23, 2001)
(Accepted November 14, 2001)

Yoshinori Aoki received the
B.E. and M.E. degrees from
Kyushu University, Fukuoka,
Japan, in 1995 and 1997. In
1997, he joined Tokyo Research
Laboratory, IBM Japan, Ltd.
He has worked on Web-based in-

teractive system designs in the laboratory. His
research interests include human-computer in-
teraction, XML, and distributed systems. He is
a member of the ACM and the IEEE.

