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1. Introduction

In this paper the algorithm for identifying symmetry
of a 3D object represented by its octree is described
and a symmetry degree, i.e. the measure of object sym-
metry, is introduced. An object can be at an arbitrary
position and with arbitrary orientation within the octree
space and all types of symmetry, bilateral, axial and
point symmetry can be identified.

2. The algorithm outline

Several methods for detecting symmetry of planar
images have been reported (see [3] for one approach
and related bibliography) but they do not seem easily
extendible to the 3D case. If an object is given by its
octree, and if it is centered and conveniently oriented
in the octree space, the symmetry detection is straight-
forward (extension of [1]), but this rarely happens in
practice. To overcome this problem, object transforma-
tion invariant to its position and orientation is neces-
sary. The “principal axes transformation” has this
property, it is easy to compute [2], and it facilitates
symmetry identification because of the following facts
from elementary mechanics [7]:

Theorem I: Any plane of symmetry of a body is per-
pendicular to a principal axis.

Theorem 2: Any axis of symmetry of a body is a
principal axis.

Since these theorems provide sufficient but not nec-
essary conditions for symmetry, we must perform ex-
plicit symmetry check on the transformed octree.

An octree can be defined as a hierarchical data
structure which represents the space occupied by an
object as a juxtaposition of cubes obtained by recur-
sive, regular decomposition of the 3D space (Fig. 1) us-
ing a certain “leaf criterion” as a stopping rule (see [3,
6] for detailed survey). The simplest criterion is to
maximize the depth of decomposition introducing the
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octree resolution. Octree cubes are then classified as
BLACK and WHITE (representing presence and ab-
sence of the object, respectively), and GRAY or mixed
octree nodes.

It is assumed that for a given object its octree repre-
sentation is available (for octree construction tech-
niques, refer to [4, 6]). Now we formulate our algo-
rithm as follows:

Step 1: Compute the mass, centroid and inertia
matrix for the object given by its octree. Solve the
eigenvalue problem for the inertia matrix and
compute its eigenvalues and eigenvectors. The
latter represent the principal axes of the object.
Step 2: Align the octree from the original coordi-
nate system to the new one, using the centroid as
the origin and the principal axes as the new coor-
dinate axes, and build, so called, a “principal
octree”.

Step 3: Examine appropriate octree nodes and
check for bilateral, axial or point symmetry.
Compute the corresponding symmetry degree.

In the sequel, these steps will be further elaborated:

2.1. Object’s mass, centroid and inertia matrix can be
expressed by the means of its moments, and in the
case of octree they can be easily computed since its
building. elements are only cubes (of different size).
Refer to [2, 7] for concrete formulae. Here we only
note that since an inertia matrix is symmetric, its
eigenvalues are real, and corresponding eigenvectors
are orthogonal.

2.2. Octree alignment to the new coordinate system is
done in two steps: (1) computing the transformation
matrix for translation to the centroid and 3D rotation;
and (2) octree transformation. For step (2) we imple-
ment the method from [8]. It introduces, so called,
quantization error which is unavoidable because of the
nature of the octree. In order to reduce this error we
use higher resolution for the output octree (e.g. if the
output octree resolution is restricted to r=7, since for
higher values the number of nodes will increase too
much, the input resolution has to be 5 or 6).

"2.3. The measure of symmetry is expressed by the size

of the symmetric subset, i.e. symmetry degree (sd) is
defined as the ratio of the masses of the symmetric
subset and the whole object. According to the type of
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symmetry we are checking for, four subtrees are ex-
tracted and traversed. For each of their BLACK nodes
we try to locate its symmetric “brother” using symme-
try mapping tables. For example, for locating symmet-
ric nodes with respect to the z-axis (Fig. 1), we extract
subtrees 0,1,4,5 and use the table bellow:

d 0 I 2 3 4 5 6 7
sd) 3 2 1 0 7 6 5 4

Actually we simultaneously traverse pairs of sym-
metric subtrees (e.g. 0 and 3, 1 and 2 etc.) and when-
ever we turn in direction d on one subtree, we proceed
in direction s(d) on the other one. As the result the
time complexity of this step is equal to the octree tra-
versal time. This method is simpler-and faster than [1]
where “classes of symmetry” are used.

Furthermore the uniqueness of the eigenvalues can
be used as a hint in deciding for which of 7 possible
types of symmetry (with respect to 3 planes, 3 axes and
the origin) to check first. This relationship can be sum-
marized in the following way:

a) all 3 eigenvalues equal — point symmetry;

b) 2 eigenvalues equal — axial symmetry with re-
spect to the axis corresponding to the unique eigen-
value; ‘

c) all eigenvalues unique — bilateral and point sym-
metry.

3. Results

In Fig. 2, one test object is shown before and after
the transformation together with the program report.
Both bilateral and point symmetry are identified. The
object is represented by the octree with resolution r=3
on the input, and r=6 on the output. For this synthetic
object without noise, the symmetry degrees equal 1
which means that quantization error is “well distrib-

# 1072 nodes after compaction
bilateral symmelry:

plane normal (0.707107, 0.7067107, 1.000000),

uted” in space. However in the presence of noise, a
certain threshold value (th) has to be chosen, and sym-
metry is claimed if sd > th.

Since for steps 1 and 3 octree traversal is done, their
time complexity is O(N), where N is the number of
nodes in the input octree. Thus, average execution time
of our algorithm equals the time necessary for step 2,
which is reported [8] to be O(rN), where r is the reso-
lution of the output octree.

4. Conclusion

The algorithm for symmetry. identification of a 3D
object represented by its octree is given, and some of
its aspects are discussed. It can be easily adjusted for
2D images represented by quadtrees.
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plane normal (1.000000, -1.000000, 0.000000), sd=1.000000

point symmetry, sd=1.000000

all coordinates with respect to original centroid (8.000000, 8.000000, 12.000000)

Figure 2:

Program report and
a test object before
(left) and after (right)
the transformation.
Projections in both
frames: perspective
(left) and orthogra-
phic (top to bottom)
along z, yand x
axes.




