1 HR LB o 4 56 38 ] (A FI64 4R 1 1) & [F K &

1563

SU -7

Distributed Garbage Collection for the Parallel Inference Machine: PIEG4

Lu Xu, Kentaro Shimada, Takeshi Shimizu, Hanpei Koike, and Hidehiko Tanaka
Tanaka Lab., Dept. of Electrical Engineering, Univ. of Tokyo*

Abstract

In this paper, we will present an elegant algorithm for
garbage collection of distributed heap memories. Our
method mainly combines reference counting on memory
page with a global Mark-Scan scheme. This algorithm is
very time-efficient, partly real-time and can be implemented
with very little space overhead. The sources of its efficiency
are discrimination of single reference objects, memory al-
location and management according to object lifetime, and
special hardware support for global Mark-Scan GC.

1 Introduction

So far, many methods about distributed garbage col-
lection have been proposed. They are all based on two
schemes : Reference Counting and Mark-Scan. But
they lose either the advantages supplied by Reference
Counting or the advantages supplied by Mark-Scan be-
cause they cannot combine the two schemes efficiently.

In the following, we will show how we implement
reference count, memory allocation and management
according to lifetime efficiently with low overhead in
our system, and combine it with mark-scan method
to ensure the high performance of both efficiency and
real-time property.

Our garbage collector has three stages:

1. The real-time garbage collection based on Paging
Reference Counting,

2. The local garbage collection of goal frame area,

3. The global garbage collection by mark-scan
method.

The third stage has been described in [5], and here
we will only describe the other two stages.

2 The Features of FLENG

Like many other logic parallel languages, FLENG
tends to consume memory at much higher rate than
conventional ones. It is also said that most objects are
referenced only once. For example, goal frames are al-

ways referenced only once. This makes it possible that

we manage memory and do garbage collection much
more efficiently.

*Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

claim form: (type, size)

if (the page of the type is still enough
for this allocation)
then allocate for the object in the page
else 1. to allocate a new page for the type
2. to allocate for the object in the page

if (the type is one kind of SRO)
then to increase the reference count

of the corresponding page

Figure 1: The allocation scheme of OSS

3 Object-Storage System (OSS)

In order to collect the garbages efficiently, we do alloca-
tions according to the lifetimes. We can divide each lo-
cal memory into pages. Therefore, there are two kinds
of allocations in our system. One is page-allocation.
The other one is object-allocation. We keep a refer-
ence count for every page of SRO (Single Reference
Objects) areas.

The committed-choice languages like FLENG are of-
ten said that most objects are referenced only once. We
will assort such objects into several categories accord-
ing to their lifetimes and manage them respectively.

The allocation scheme is shown in Fig.1. '

4 The Real-time GC Based on
Paging Reference Counting

The base of our real-time collector is the consideration
about lifetime. In the papers {2] [3], they concentrate
on how long an object has lived. With the assumption
that an object graduated from many garbage collec-
tions would live for a long time, the efforts are concen-
trated on the newer objects. In our case, we would like
to allocate all objects being of the same lifetime to the
same area, rather than pay attention to how long an
object lives exactly.

According to our OSS, we allocate and manage ob-
jects according to their lifetimes. Therefore, we can
expect most objects in one page are of almost the same
lifetime. In the perfect case, all objects in one page can
be expected to be dereferenced at the same time. This
makes it possible that we treat all objects in one page



1564

dereference form : (type, size)

if (the type is one kind of SRO)
1. to decrease the reference count
of the corresponding page
2. if (the reference count became zero)

then

then to reclaim the page

Figure 2: The real-time garbage collection scheme

as one object. We only have to keep reference count
for pages. We can reclaim a page when its reference
count became to zero.

In order to avoid the problem of premature, we would
propose to keep reference count for the pages of the ob-
jects that the references to them can be determined
statically,. For PIE64, we will only keep reference
counts for the pages of SRO.

As described above, we assort the objects referenced
only once into several categories and keep the refer-
ence count when allocations or deallocations happen
on each page of SRO. When the count of a page is de-
creased to zero, we can reclaim and re-use the page.
The dereference scheme is shown in Fig.2.

5 The Local Garbage Collection of
SRO Areas

There is a problem in the real-time garbage collection.
There may be many pages in which only a small part
of them are still in use, but they cannot be reclaimed
completely. To solve the problem, we introduce the
second stage of garbage collection.

When free pages of a local memory have been ex-
hausted, we start the second stage garbage collection.
It will mark all the accessible objects in SRO areas from
the local roots and compact them into as few pages as
possible.

For PIE64, we will do this garbage collection only for
goal frames. In each local memory of PIE64, there is
two local root queues. One is active goal queue, the
other is suspended goal queues.

When this garbage collector is started, it will mark all
the goal frames accessible from the active goal queue
and the suspended goal queue. This mark phase is
different from the conventional one, because there is
no need of marking all the cells in the goal frames. It
is enough only to mark the first cell of the goal frames.

Secondly, we will do the compaction. All the pages of
goal frames can be seen as consecutive logically, there-
fore we can do compaction only to slide all the goal
frames to as few pages as possible.

Because in each goal frame only the first cell is needed
to be marked and the compaction can be fulfilled with
only one scan, this garbage collection can be fulfilled
much more quickly than the conventional method.

6 The Co-operations for the

Global GC

When global garbage collection is required, the co-
operations between processors are needed. In the mark
phase, the active goal queue, the suspended goal queue,
and the remote mark requirements are treated as local
roots. When mark phase is started,

o the SPARC processor in each IU will mark all
cells of the local roots and writes them into the
queue prepared for the pipeline in UNIRED.

o UNIRED reads the roots from queue and starts
marking according to the scheme described
above. When a remote pointer is found, a

remote-mark-requirement primitive will be sent
to the NIPs.

o when a NIP receives a remote mark requirement
from UNIRED, it will store it in the destination
IU with the help of the corresponding NIP, and
rewrite the original cell.

The compaction phase can be fulfilled in the same way
as described in [1].

7 Conclusion

As described above, we know that the garbage collec-
tor can implemented with a little overhead. We will
evalute the method in the near future.

References

[1] Morris, F.L. A Time- and Space- Efficient
Garbage Compaction Algorithm, Comm. ACM,
Vol. 21, No. 8, (1978) 662-665

[2] Lieberman, H., and Hewitt, C. A Real-Time
Garbage Collector Based on the Lifetimes of Ob-
Jects, Comm. ACM 26, 6 (June 1983), 419-429.

[3] Moon, D.A. Garbage Collection in a Large LISP
System, In: ACM Sysposium on LISP and Func-
tional Programming. (1984) 235-246.

[4] Shimizu, T., Tanaka, H. The Network Interface
Processors for Parallel Inference Machine: PIE6Y
Parallel Processing Symposium Feb. 1989

[5] Xu, L., Shimada, K., Koike, II. and Tanaka, H.
A Study of Garbage Collection for PIE64, Proc.
34th Annual Convention IPS Japan 1987.



