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A New Gait Optimization Approach Based on Genetic Algorithm

for Walking Biped Robots and a Neural Network Implementation

Genci Capi,†1 Yasuo Nasu,†2 Leonard Barolli,†3

Kazuhisa Mitobe,†2 Mitsuhiro Yamano†2 and Kenro Takeda†4

In this paper, a Genetic Algorithm gait synthesis method for biped robots is proposed. The
gait synthesis during walking is analyzed based on minimum consumed energy and minimum
torque change. Except gait synthesis optimization, we also consider the stability, minimum
torque change cost function, and the real time implementation. The stability is verified
through the Zero Moment Point concept. For the real time implementation, a Radial Basis
Function Neural Network, that is taught based upon Genetic Algorithm results, is considered.
In this paper, we present the Neural Network results where the input variable is the step
length. Simulation results and experiments show that proposed method has a good perfor-
mance.

1. Introduction

The humanoid robot shape is very similar
with that of humans. For this reason, they
can substitute humans in home works, such
as helping disabled persons, working in haz-
ardous environments, etc. Autonomous hu-
manoid robots are well fitted in these working
places. But, they are inevitably restricted to
a limited amount of energy supply. It would
therefore be advantageous to consider the min-
imum energy consumption, when cyclic move-
ments like walking are involved.

From the viewpoint of energy consumption,
one factor that has a great influence is the gait
synthesis. In most of the previous papers re-
lated to biped robots 1),2), the angle trajecto-
ries of the leg part are prescribed based on data
taken from humans. The upper body motion is
calculated in order to have the Zero Moment
Point (ZMP ) inside the sole region. Some ef-
forts have been placed to analyze the effect of
gait synthesis on consumed energy. In Refs. 3),
4), the minimum consumed energy gait synthe-
sis during walking is discussed. The body mass
is considered concentrated on the hip of biped
robot 3). In Ref. 4), the body link is restricted
to the vertical position, the body forward ve-
locity is considered to be constant and the tip
motion of swing leg is constrained to follow si-
nusoidal functions. The effect of walking veloc-
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ity and step length on the consumed energy is
discussed in Ref. 5), by using a variational tech-
nique to minimize the cost function. However,
in all these approaches related to optimal gait
of biped robots, the stability and real time im-
plementation are not considered.

In this paper, we present a Genetic Algo-
rithm (GA) gait synthesis method for biped
robots during walking based on Consumed En-
ergy (CE) and Torque Change (TC). GA has
been known to be robust for search and op-
timization problems 6). It has been used to
solve difficult problems with objective functions
that do not possess properties such as conti-
nuity, differentiability, etc. When solving for
optimal gaits, some constrains must be consid-
ered. GA, in difference from other optimiza-
tion methods, makes easy handling the con-
straints by using the penalty function vector,
which transforms a constrained problem to an
unconstrained one. In our work, the most im-
portant constraint is the stability, which is ver-
ified through the ZMP concept. In this pa-
per, by comparing our method with Refs. 3),
4), we show that stability must be considered
during the optimal gait generation. Simulations
and experiments with the “Bonten-Maru I” hu-
manoid robot show that GA generates a stable
and smooth motion.

For real time implementation of their work, in
Ref. 3), the authors suggest creating a database
of pre-computed optimal gaits. This can gen-
erate the angle trajectories only for the step
lengths and step times, which are included in
the database. In order to cover the whole in-
terval of pre-computed optimal gaits, we con-
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sider teaching a Radial Basis Function Neural
Network (RBFNN) based on the GA results.
We also tried back-propagation and perceptron
Neural Networks, but the RBFNN gave the best
results and the mean square error (mse) was
minimal. The RBFNN gives good results for
the approximation problems. It is capable of
implementing arbitrary nonlinear transforma-
tions of the input space. When applied to su-
pervised learning with linear models (that is
if the basis functions are fixed in position and
size), the weights can be derived optimally by
solving a set of equations. This is a lot faster
than training the network. In Ref. 7), the real
time implementation for going up-stairs is con-
sidered. While, in this paper, the RBFNN re-
sults for walking are presented, where the input
variable of RBFNN is the step length. Simula-
tions show good results generated by RBFNN
in a very short time.

The paper is organized as follows. Section
2 deals with the gait and body motion. In
Section 3, the problem formulation and pro-
posed method are discussed. Boundary condi-
tions and GA variables are treated in Section 4.
Simulation and experimental results are given
in Section 5. A RBFNN real time implementa-
tion is presented in Section 6. Finally, conclu-
sions are given in Section 7.

2. ZMP and Biped Model

During walking, the humanoid robot arms
will be fixed on the chest. Therefore, it can be
considered as a five-link biped robot in the sag-
gital plane, as shown in Fig. 1. In the figure, mi

and θi are defined as mass and absolute angle of
link i. The biped robot motion is considered to
be composed from a single support phase and
an instantaneous double support phase. The
friction force between the robot’s feet and the
ground is considered to be great enough to pre-
vent sliding. During the single support phase,
the ZMP must be within the sole length, so the
contact between the foot and the ground will re-
main. The ZMP is the point on the walking
ground surface at which the horizontal compo-
nents of the resultant moment generated by ac-
tive forces and moments are equal to zero. In
this paper, we calculate the ZMP position by
considering the link mass concentrated at one
point 2), as follows:

 

 

Fig. 1 Five-link biped robot.

XZMP =
∑5

i=1 mi(z̈i + gz)xi∑5
i=1 mi(¨̄zi + gz)

−
∑5

i=1 miẍizi∑5
i=1 mi(¨̄zi + gz)

, (1)

where mi is the mass of particle i, xi and zi are
the coordinates of the mass particle i with re-
spect to the OXZ coordinate system, ẍi and z̈i

are the accelerations of the mass particle i with
respect to the OXZ coordinate system and gz is
the gravitation acceleration. To have a stable
walking motion, when the swing foot touches
the ground, the ZMP must jump in its sole.
The body link acceleration is considered to re-
alize it. To have an easier relative motion of
the body, the coordinate system from the ankle
joint of supporting leg is moved transitionally
to the waist of the robot (O1X1Z1). Referring
to the new coordinate system, the ZMP posi-
tion is written as:

X̄ZMP =
∑5

i=1mi(¨̄zi+z̈w+gz)x̄i∑5
i=1mi(¨̄zi+z̈w+gz)

−
∑5

i=1mi(¨̄xi+ẍw)(z̄i+zw)∑5
i=1mi(¨̄zi+z̈w+gz)

, (2)

where xw and zw are the coordinates of the
waist with respect to the OXZ coordinate sys-
tem, x̄i and z̄i are the coordinates of mass par-
ticle i with respect to the O1X1Z1 coordinate
system, ¨̄xi and ¨̄zi are the accelerations of mass
particle i with respect to the O1X1Z1 coordi-
nate system.

Based on Eq. (2), if the positions x̄i, z̄i, and
accelerations ¨̄xi, ¨̄zi of the leg part (i = 1, 2,
4, 5), the body angle θ3, and the body angular
velocity θ̇3, are known, then because ¨̄x3 and
¨̄z3 are functions of l3, θ3, θ̇3, θ̈3 , it is easy to
calculate the body angular acceleration based
on the ZMP position. Let (0) and (f) be the
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indexes at the beginning and at the end of the
step, respectively. At the beginning of the step,
θ̈30 causes the ZMP to be in the ZMPjump

position. At the end of the step, the angular
acceleration, θ̈3f , is calculated in order to have
the ZMP at the ZMPf position. Thus, the
difference between θ̈3f and θ̈30 is minimal. Also,
the torque necessary to change the acceleration
of the body link will be minimal.

3. Problem Formulation and Proposed
Method

3.1 Problem Formulation
The problem consists of finding the joint an-

gle trajectories, to connect the first and last
posture of biped robot for which the CE or
TC is minimal. It can be assumed that the
energy to control the position of robot is pro-
portional to the integration of square of torque
with respect to time. Because the joints of ma-
nipulator are driven by torque, then the unit
of torque, Nm, is equal to the unit of energy,
joule. So, the cost function, J , can be defined
as the following expression:

J=
1
2
(
∫ tf

0

τT τdt+∆τ2
jump∆t+

∫ tf

0

Cdt)(3)

where: tf is the step time, τ is the torque vec-
tor, and ∆τjump and ∆t are the addition torque
applied to the body link to cause the ZMP to
jump and its duration time, and C is the con-
straint function, given as follows:

C =
{

0 if the constraints are satisfied,
ci if the constraints are not satisfied,

c denotes the penalty function vector.
We consider the following constraints for our

system.
• The motion to be stable or the ZMP to be

within the sole length.
• The distance between the hip and ankle

joint of swing leg must not be longer then
the length of extended leg.

• The swing foot must not touch the ground
prematurely.

The results generated for minimum CE cost
function, are compared with the angle trajec-
tories that minimize the rate of change of the
torque 8). The cost function is as follows:

Jtorque change =
1
2
(
∫ tf

0

(
dτ

dt
)T (

dτ

dt
)dt)

+
1
2
((

∆τjump

∆t
)2+

∫ tf

0

Cdt).(4)

3.2 Proposed Method
The proposed method is based on the GA.

Therefore, in following, a brief introduction of
GA is given. The GA is a search algorithm
based on the mechanics of natural selection and
population genetics. The search mechanism is
based on the interaction between individuals
and the natural environment. GA comprises a
set of individuals (the population) and a set of
biologically inspired operators (the genetic op-
erators). The individuals have genes, which are
the potential solutions for the problem. The
genetic operators are crossover and mutation.
GA generates a sequence of populations by us-
ing genetic operators among individuals. Only
the most suited individuals in a population can
survive and generate offspring, thus transmit-
ting their biological heredity to the new gener-
ation. The main steps of GA are:
( 1 ) Supply a population P0 of N individuals

and respective function values;
( 2 ) i← 1;
( 3 ) P ′

i ← selection function (Pi−1);
( 4 ) Pi ← reproduction function (P ′

i );
( 5 ) Evaluate (Pi);
( 6 ) i← i+ 1;
( 7 ) Repeat step 3 until termination;
( 8 ) Print out the best solution.

The block diagram of proposed method is
presented in Fig. 2. Based on initial conditions
and range of searching variables, an initial pop-
ulation is generated. Every angle trajectory is

      
      

   

 

  
 

 

   
  
  

 

 

Fig. 2 Block diagram of the proposed method.
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presented as a polynomial of time. Its degree is
determined based on the number of angle tra-
jectory constraints and the coefficients are cal-
culated to satisfy these constraints. The torque
vector is calculated from the inverse dynamics
of five-link biped robot 9) as follows:

J(θ)θ̈ +X(θ)θ̇2 + Y θ̇ + Z(θ) = τ (5)

where J (θ) = [5 × 5] is the mass matrix, X
(θ) = [5 × 5] is the matrix of centrifugal coef-
ficients, Y = [5 × 5] is the matrix of Coriolis
coefficients, Z (θ) = [5 × 1] is the vector of
gravity terms, τ = [5 × 1] is the generalized
torque vector, and θ, θ̇, θ̈ are [5 × 1] vectors of
joint angles, joint angular velocities and joint
angular accelerations, respectively.

According to Eqs. (3) and (4), the cost func-
tion is calculated for minimum CE and mini-
mum TC, respectively. The value of cost func-
tion is attached to every individual of the pop-
ulation. GA moves from generation to genera-
tion, selecting parents and producing offspring
until the termination criterion (maximum num-
ber of generations GNmax) is met. Based on
GA results, the gait synthesis is generated for
minimum CE and minimum TC, respectively.

4. Boundary Conditions and GA Vari-
ables

To have a continuous periodic motion, the
biped robot posture is considered to be the
same at the beginning and at the end of the
step. Therefore, the following relations must
be satisfied:

θ10 = θ5f , θ20 = θ4f , θ1f = θ50, θ2f = θ40,

θ30 = θ3f . (6)

In order to find the best posture at the begin-
ning of the step, the optimum values of θ10, θ20
and θ30 must be determined by GA. For a given
step length, it is easy to calculate θ40 and θ50,
based on the biped robot inverse kinematics.
When referring to Fig. 1, it is clear that links 1,
2, 4 at the beginning of the step and links 2, 4,
5 at the end of the step, change the direction of
rotation. Therefore, we can write:

θ̇10 = θ̇20 = θ̇40 = θ̇2f = θ̇4f = θ̇5f =0. (7)

The angular velocity of link 1 at the end of the
step and link 5 at the beginning of the step is
considered to be the same. This can be written
in the form θ̇1f = θ̇50. In order to find the best
value of angular velocity, we consider it as one

variable of GA, because the rotation direction
of these links does not change. GA will deter-
mine the optimal value of the body link angular
velocity, which is considered to be the same at
the beginning and at the end of the step. The
following relations are considered for the angu-
lar acceleration:

θ̈10 = θ̈5f , θ̈20 = θ̈4f , θ̈1f = θ̈50, θ̈2f = θ̈40.(8)

In this way, during the instantaneous double
support phase, we don’t need to apply an extra
torque to change the link angular accelerations.
To find the upper body angle trajectory, an in-
termediate angle, θ3p, and its passing time, t3,
are considered as GA variables. To determine
the angle trajectories of swing leg, the coordi-
nates of an intermediate point, P (xp, zp), and
their passing time, tp, are also considered as GA
variables. The searching area for this point is
shown in Fig. 1. Based on the number of con-
straints, the degree of time polynomial for θ1,
θ2, θ3, θ4 and θ5 are 3, 3, 7, 6 and 6, respec-
tively.

5. Simulation Results

In the simulations, we use the parameters of
the “Bonten-Maru I” humanoid robot, which
is developed in our laboratory. The robot is
shown in Fig. 3 and the parameter values are
presented in Table 1. The “Bonten-Maru I” is
1.2 m high, each leg has 6 degrees of freedom
and is composed by three segments: upper leg,

Fig. 3 “Bonten-Maru I”.
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Table 1 “Bonten-Maru I” parameters.

Body Lower Uper Lower Leg
Leg Leg + Foot

Mass [kg] 12 2.93 3.89 4.09
Inertia [kg m2] 0.19 0.014 0.002 0.017
Length [m] 0.3 0.2 0.204 0.284
CoM Dist. [m] 0.3 0.09 0.1 0.136

Table 2 Functions and parameters of GA.

Function Name Parameters
Arithmetic Crossover 2
Heuristic Crossover [2 3]
Simple Crossover 2
Uniform Mutation 4
Non-Uniform Mutation [4 GNmax 3]
Multi-Non-Uniform Mutation [6 GNmax 5]
Boundary Mutation 4
Normalized Geometric Selection 0.08

   

   

Fig. 4 Cost function J vs. generations.

lower leg and the foot. The foot length is 0.18
m. A DC servomotor actuates each joint. The
control platform is based on Common Object
Request Broker Architecture (CORBA), which
allows an easy updating and addition of new
modules.

For optimization of the cost function, a real-
value GA was employed in conjunction with
the selection, mutation and crossover opera-
tors 10). Many experiments comparing the real
value and binary GA have shown that the real
value GA generates better results in terms of so-
lution quality and CPU time. To ensure a good
result of the optimization problem, the best GA
parameters are determined by extensive simula-
tions that we have performed, as shown in Ta-
ble 2. The maximum number of generations
is used as termination function. GA converges
within 40 generations (see Fig. 4). In Fig. 5
is presented the convergence of GA for differ-
ent population sizes. The step length and step
time have been 0.42 m and 1.2 s, respectively.

Fig. 5 Cost function J for different population sizes.

Fig. 6 Average of the cost function J vs. generations.

Table 3 Variable space and GA results.

GA Variables Limits CE TC
θ10 −0.3 ～ 0.0 −0.122 −0.0004
θ20 −0.7 ～ −0.3 −0.455 −0.57
θ30 0.0 ～ 0.3 0.1074 0.370

θ̇1f 0 ～ 2 0.523 0.3995

θ̇30 −1 ～ 1 −0.031 −0.11

θ̇3p −0.1 ～ 0.2 0.0840 0.370
t3 0.2 ～ 0.8 0.5186 0.7612
xp −0.2 ～ 0.2 −0.135 −0.132
yp 0.01 ～ 0.04 0.0163 0.017
tp 0.0 ～ 1.0 0.441 0.432

We see that for population size larger then 80,
the solution quality doesn’t change. The aver-
age of cost function J against the number of
generations is shown in Fig. 6. The 33-th gen-
eration has the lowest value, which agrees with
Fig. 4 and Fig. 5 results.

Based on the “Bonten-Maru I” parameters,
the step length can vary up to 0.5 m. If the step
length is smaller than 0.36 m, the ZMP can
smoothly pass from one foot to the other during
the instantaneous double support phase. The
problem becomes more complex when the step
length is larger then 0.36 m because the ZMP
must jump to the new supporting foot. In the
following, the optimal motion for step length
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Fig. 7 GA results for minimum CE.

 

 

 

 

  
 

   
   

   
  

 

 

  

  
  

   
  

 

 
 

  

 

 

(a) (b) (c)

Fig. 8 GA results for minimum TC.

0.42 m and step time 1.2 s is analyzed. The GA
results are shown in Table 3. The joint angle
trajectories (θi), torque vector (τi) and optimal
motions are shown in Fig. 7 and Fig. 8, for
minimum CE and minimum TC, respectively.
As can be seen from Fig. 7(a) and Fig. 8(a), the
boundary conditions are satisfied. Comparing
Fig. 7(b) and Fig. 8(b), the torques change more
smoothly when minimum TC is used as a cost
function. The biped robot posture is straighter,
similar to human walking, when minimum CE
is used as cost function (Fig. 7(c) and Fig. 8(c)).
The swing foot does not touch the ground pre-
maturely, and the ZMP is always inside the
sole length, as presented in Fig. 9. At the end
of the step, the ZMP is at the position ZMPf ,
as shown in Fig. 1. At the beginning of the
step, the ZMP is not exactly at the position
ZMPjump because the foot’s mass is not ne-
glected. It should be noted that the mass of
lower leg is different when it is in supporting
leg or swing leg. The values of J cost func-

 

  

 

           
                                                 
    

 

 

Fig. 9 ZMP trajectories.

tion, calculated by Eq. (3) for minimum CE and
minimum TC gait synthesis, are presented in
Fig. 10. The minimum CE gait synthesis re-
duces the energy by about 30 % compared with
minimum TC.

In Fig. 11 is presented a video capture of
experiments with “Bonten-Maru I” humanoid
robot. GA generates the optimal gait during
walking. We see during the experiments that
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Fig. 10 Values of cost function J.

Fig. 11 Video capture of walking motion.

the optimal motion is very smooth. The walk-
ing is stable and the impact of the foot with
the ground is very soft. The energy required
for one meter walking against the step length is
presented in Fig. 12 for several walking veloci-
ties. In this case, the cost function is divided by
step length. One result, which comes out from
this figure, is that, as the walking velocity gets
higher, the optimal step length gets larger; the
curves become more tended and don’t intersect
with each other. The energy required when the
biped is moving slowly with a large step length
is high. This makes the curves of slow veloci-
ties to intersect with the others. This suggests
that low walking velocity doesn’t mean low CE.
In addition to walking velocity, the step length
must be also considered. In Fig. 13 is presented
the variation of cost function J versus the step
time for the step lengths 0.3 m, 0.4 m and 0.5
m. It shows that each step length is optimal at
one particular walking velocity.

  

 
 

  

  

Fig. 12 Cost function J vs. the walking velocity.

  
2

Fig. 13 Optimum step time for different step lengths.

Fig. 14 Ref. 3) method optimal motion.

5.1 Performance Evaluation
In the literature, the most recent algorithms

for biped robot optimal gait generation are
those presented in Refs. 3), 4). Here, we com-
pare the results of our method with these two
methods for the same step length and step time,
respectively 0.42 m and 1.2 s. The criteria are:
( 1 ) CE results;
( 2 ) Stability.

In Ref. 3) the mass of body link is considered
located at the hip, so it will be fixed in the ver-
tical position. The optimal walking motion is
presented in Fig. 14. The CE is 4.8 % lower
compared with our optimal motion, as shown
in Fig. 10. But, the calculated ZMP is not in-
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Fig. 15 ZMP trajectories.

Fig. 16 Ref. 4) method optimal motion.

side the sole length, as can be seen in Fig. 15.
This results in an unstable motion. As the step
length becomes larger the calculated ZMP con-
tinues to move further out of the sole length.

In Ref. 4), the body is also fixed in the vertical
position. The ankle joint of the swing leg and
hip motions are produced based on sinusoidal
functions. This motion has the advantage of
soft impact. On the other hand, the irregulari-
ties of terrain must be very small. The optimal
motion for the same foot clearance is presented
in Fig. 16. The calculated ZMP is not inside
the sole length at the beginning of the step (see
Fig. 15. Because of additional constraints, the
CE is larger compared with our optimal motion,
as shown in Fig. 10. One important result here
is that the stability must be considered when
generating the optimal gait.

6. NN Implementation

In contrast to other optimization methods,
GA needs more time to get the optimal solu-
tion. In our simulations, it needs about 10 min-
utes. However, in real time situations, based on
the step length and step time, the angle trajec-
tories must be generated in a very short time.
In order to apply our method in real time, we
considered teaching a RBFNN based on the GA

   

Fig. 17 RBFNN structure.

results. Our method employs the approxima-
tion abilities of a RBFNN 11). When the biped
robot has to walk with a determined velocity
and step length, the RBFNN input variables
would be the step length and step time. The
output variables would be the same as the vari-
ables generated by GA. As we explained in Sec-
tion 6, when the robot is not constrained to
walk with a determined velocity for a given step
length, the optimum velocity is the best from
CE point of view. In this case, the RBFNN out-
put will be the GA variables and the best step
time. The RBFNN input will be only the step
length. In this paper, we present the RBFNN
simulation results, where as RBFNN input vari-
able is used the step length.

6.1 RBFNN
The RBFNN involves three layers with en-

tirely different roles, as shown in Fig. 17. The
input layer connects the network to the environ-
ment. The second layer (hidden layer) applies
a nonlinear transformation from input space to
the hidden space, which is of high dimensional-
ity. We use as nonlinear transfer function the
Gaussian function, which is the most widely
used. The Gaussian function is expressed as
follows:

hi(x) = exp(−‖ xi − ci ‖
σi

), (9)

where: hi is the i-th output of the neuron, xi

is the input vector, ci and σi are the center
and the width of the i-th RBF neuron. The
width of Gaussian function is a positive con-
stant that represents the standard deviation of
the function. The output layer is linear, supply-
ing the response of the network to the activation
pattern (the signal applied to the input layer).
Based on number of nodes in hidden layer, the
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Fig. 18 Relation between cost function J, step
length and step time.

RBFNN are divided in generalized and regular-
ization RBF networks. In our simulations, we
use a regularization RBF network.

6.2 RBFNN Results
The input layer of our RBFNN has one neu-

ron and the output layer has 11 neurons. Be-
cause we use a regularization RBF network, the
number of hidden neurons is the same with the
number of training data. To teach the RBFNN,
the step length varies from 0.3 m to 0.5 m and
step time from 0.7 s to 2 s. Relation among the
cost function J, step length and step time is
presented in Fig. 18. Because in our RBFNN,
the centers are the same with training data, de-
termining the best value of the width σ is im-
portant in order to minimize the overall train-
ing error. The goal is to select the width σ
in such way as to minimize the overlapping
of nearest neighbors as well as maximize the
generalization ability. The width selection de-
pends on distance between two neighbor vec-
tors. We consider the width σ the same for all
neurons. In Fig. 19 is shown the mse versus
the width σ. The minimal value of mse is for
σ = 0.95. The GA and RBFNN results for sev-
eral different step lengths, which are different
from the RBFNN training data, are presented
in Fig. 20. The GA and RBFNN results are
very close. The GA and RBFNN angle trajec-
tories, for the step length 0.44 m, are shown in
Fig. 21. The difference between the RBFNN
and GA angle trajectories is very small. The
ZMP trajectories for GA and RBFNN gait are
all the time inside the sole length, as shown in
Fig. 22. The RBFNN time to generate the so-
lution is 50 ms, which is a good time for the
real time implementation. The value of J cost
function for RBFNN gait is only 3.7 % more

Fig. 19 mse vs. width.

  

    

  

Fig. 20 GA and RBFNN results for different step
lengths.

   

               
         

Fig. 21 GA and NN joint angle trajectories.
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Fig. 22 ZMP trajectories.

Fig. 23 Values of J cost function.

compared with GA gait, as shown in Fig. 23.

7. Conclusions

In this paper, a GA based approach for op-
timization of biped robot gait synthesis during
walking is presented. The proposed method can
be applied to generate the angle trajectories for
other tasks performed by biped robots, such as
overcoming obstacles, going down stairs, etc.
By using GA as an optimization tool it is easier
to include constraints and to add new variables
to be optimized. To ensure a stable motion, be-
cause the time of double support phase is very
short, the ZMP jumping is realized by accel-
erating the body link. By using a RBFNN, the
real time implementation of proposed method
is considered. In this paper, we presented the
simulation results when as RBFNN input vari-
able is used the step length. The simulations
and experiments are performed using the pa-
rameters of “Bonten-Maru I” humanoid robot.
Based on the simulation and experimental re-
sults, we conclude:
• each step length is optimal at a particular

velocity;
• the stability must be considered when gen-

erating the optimal gait;

• the biped robot posture is straighter when
minimum CE is used as cost function,
which is similar to human’s walking;

• the energy for CE is reduced 30 % com-
pared with TC cost function;

• the optimal motion is smooth and stable;
• RBFNN gives good results for real time im-

plementation.

References

1) Vukobratovic, M., Borovac, B., Surla, D. and
Stokic, D.: Biped Locomotion, Stability, Control
and Application, Springer-Verlag (1990).

2) Takanishi, A., Ishida, M., Yamazaki Y. and
Kato, I.: A Control Method for Dynamic Biped
Walking Under Unknown External Force, Proc.
IEEE Int. Workshop on Intelligent Robots and
Systems, pp.795–801 (1990).

3) Roussel, L., Canudas-de-Wit, C. and Goswami,
A.: Generation of Energy Optimal Complete
Gait Cycles for Biped Robots, Proc. IEEE Int.
Conf. on Robotics and Automation, pp.2036–
2041 (1998).

4) Silva, F.M. and Machado, J.A.T.: Energy
Analysis During Biped Walking, Proc. IEEE
Int. Conf. on Robotics and Automation, pp.59–
64 (1999).

5) Channon, P.H., Pham, D.T. and Hopkins,
S.H.: A Variational Approach to the Optimiza-
tion of Gait for a Bipedal Robot, Journal of
Mechanical Engineering Science, Vol.210, No.1,
pp.177–186 (1996).

6) Goldberg, D.E.: Genetic Algorithm in Search
Optimization, and Machine Learning, Addison
Wesley (1989).

7) Capi, G., Nasu, Y., Barolli, L., Mitobe, K. and
Takeda, K.: Application of Genetic Algorithms
for Biped Robot Gait Synthesis Optimiza-
tion During Walking and Going up-Stairs, Ad-
vanced Robotics Journal, Vol.15, No.6, pp.675–
694 (2001).

8) Uno, Y., Kawato, M. and Suzuki, R.: Formu-
lation and Control of Optimal Trajectory in
Human Multijoint Arm Movement, Biol. Cy-
bernet., Vol.61, pp.89–101 (1989).

9) Mita, T., Yamaguchi, T., Kashiwase, T. and
Kawase, T.: Realization of High Speed Biped
Using Modern Control Theory, Int. J. Control,
Vol.40, No.1, pp.107-119 (1984).

10) Michalewich, Z.: Genetic Algorithms + Data
Structures = Evaluation Programs, Springer-
Verlag (1994).

11) Haykin, S.: Neural Networks a Comprehensive
Foundation, Prentice Hall International (1999).

(Received February 7, 2001)
(Accepted January 16, 2002)



Vol. 43 No. 4 A New Gait Optimization Approach Based on Genetic Algorithm 1049

Genci Capi received B.E.
and Ph.D. degrees from Poly-
technic University of Tirana and
Yamagata University in 1993
and 2002, respectively. From
December 1993 to September
1998, he worked as a Design

Engineer at Research and Design Institute of
Tirana. From April 2002, he is a Post Doc-
tor Researcher at ATR Human Information Sci-
ence Laboratories. His research interests in-
clude humanoid robots, mobile robots, genetic
algorithms, and neural networks. He is a mem-
ber of ASME and IEEE.

Yasuo Nasu received B.E.
degree in Mechanical Engineer-
ing from Yamagata University
in 1962, and M.E. and D.E. de-
grees in Precision Engineering
from Osaka University in 1964,
and 1976, respectively. From

1965 to 1977 he was a Lecturer, from 1977 to
1984 an Associate Professor and is currently
a Professor at Department of Mechanical Sys-
tems Engineering, Yamagata University. His
research interests include robotics manufactur-
ing, control of walking and humanoid robots,
and adaptive control systems theory. He is a
member of RSJ.

Leonard Barolli received
B.E. and Ph.D. degrees form
Tirana University and Yama-
gata University in 1989 and
1997, respectively. From April
1997 to March 1999, he was a
JSPS Post Doctor Researcher at

Faculty of Engineering, and from April 1999 to
March 2002 a Research Associate at Depart-
ment of Public Policy and Social Studies, Ya-
magata University. From April 2002, he is an
Assistant Professor at Department of Computer
Science, Saitama Institute of Technology (SIT).
His research interests include network traffic
control, intelligent algorithms and agent-based
systems. He is a member of SOFT and IPSJ.

Kazuhisa Mitobe received
B.E. and M.E. degrees in Pre-
cision Engineering from Niigata
University in 1986 and 1988,
respectively, and Ph.D. degree
from Kyoto University in 1996.
From 1990 to 1998, he was a Re-

search Associate and is currently an Associate
Professor at Department of Mechanical Sys-
tems Engineering, Yamagata University. His
research interest includes robotics manufactur-
ing, control of walking robots, and adaptive
control systems theory. He is a member of RSJ.

Mitsuhiro Yamano was
born in 1972. He received the
B.E. in mechatronics and pre-
cision engineering from Tohoku
University in 1995, and M.E.
and Ph.D. degrees in aeronau-
tics and space engineering from

the same university in 1997 and 2000, respec-
tively. He is currently a Research Associate at
Yamagata University. His research interests in-
clude flexible robots and humanoid robots.

Kenro Takeda received B.E.,
M.E. and Ph.D. degrees in In-
formation Engineering from Ya-
magata University in 1994, 1996
and 2001, respectively. He is
now working as programmer at
Tohoku RICOH Company. His

research interests include control of humanoid
robots, parallel and distributed computing, and
neural networks.


