1288

17 P LB 57 22 55 38 [l (R AI64 47 /il 1) & E R &

Semiautomatic Software Documentation Generator

SM-3

Yasushi Kambayashi, Yoshitake Mishima

Mitsubishi Research Institute

Introduction

Semiautomatic Software Documentation
Generator(SSDG) extracts some design
information of a software and interface
information of each function in the softwre from
existing source progrms by using mechanical
parsing.

The importnce of software documentation is
appreciated. For the most cases of software
development contracts, the software
documentation is required as a mjor part of
supply goods. On the other hand, the real world
programmers are driven by irrational dead-lines
and kept busy with coding and debugging.

SSDG is developped with hope to mitigate the
documentation burden of programmers. We
choose the C programming language for the
target language for programs from which
informations extracted, because the C language is
the most frequently used language in our
environment. But this choice is arbitrary and our
method is able to applied for any other languages.

SSDG tenders three stages to prepare software
documentation. First is to define forms used in
the documentation. Second is to extract
specification information from existing source
programs and prepare document file. And the
third is to merge these files and print them.

The Form Generator *P
£ £ Formd
The form used for ¢i.nes: frame "¥si6”:
software documentation
is vary from each other.
A software contractor

‘We propose a set of grammars which defines a set
of forms used for the software documentation, e.g.
the form for common variables, the form for
function definition and the form for the
relationship between functions.

A form is described through drawing
rectangles and lines on the A4 size sheet.
Character strings can be stated in rectangles for
the purpose of literal constants, i.e the title of
form or titles for filling area. A rectangle is also
able to be specified as an invisible area, so that
one can put character strings at arbitrary position
on the sheet without any rectangles or lines.

Figure 1 illustrates a form description. A form
definition file is consisted of this kind of
descriptions so that one file has arbitrary number
of forms,then a form definition file can be
considered as a form database. Each rectangle
has a name and can be the filling area so that
document printing facility of SSDG can make
correspondence between forms and filling data in
the corresponding document file which has the
extracted specification information by the name.

This description is parsed and transformed
into a stream of the troff commands. The reason
why we choose the troff as the basis is that is
widely available in the UNIX environment and it
clearly separates the source text and formats.

box31: box height:12 width:87 at:upperleft "BeEkitsg”;

box32: box height:12 width:87 at:upperRight;

box33: box invisible height:12 width:40 with:toplLeft at:box32 topLeft "¥sO (®E&) ";
tbox34: box invisible height:8 width:40 with:leftCentre at:box33 rightCentre;

box34a:box invisible height:6 width:34 with:topLeft at:box31 bottomlLeft " (SPUSHLER) "

has ten cliants, then, has
to prepare ten kinds of

box34b:box height:20 width:174 with: topLeft at:box31 bottomLeft;
tbox35: box invisible height:14 width:174 with: topLeft at:box34a bottomLeft;

box35a:box invisible height:6 width:20 with:topLeft at:box35 bottomLeft " (i) "

them . Therefore, the
documentation

thox36: box invisible height:50 width:174 with:topLeft at:box35a bottomLeft;
box37: box height:12 width: 36 with:topLeft at:box36 bottomLeft ™ (¥—#&) "

box38: box height:12 width: 36 with:topLeft at:box37 topRight ™ (&) ";

generator must be able
to produce documents
with arbitrary formats.

box39: box height:12 width:102 with:topLeft at:box38 topRight " ¢ =) ";
1box40: box height:90 width: 36 with:topLeft at:box37 bottomLeft;

Figurel: An example of the form description

1289

The Specification Generator

The specification generator extracts software
specification information from source program
files. The acquired informations are (1) common
variables , (2) function definitions, i.e. the name
of function, the calling format, names and data
types of arguments, return value and names of
called functions. They are stored in the document
file, so that a user can edit the extracted
information by using conventional editor and this
document file. We expect a programmer put some
information which SSDG could not extract from
the source program mechanically. This is because
we call our generator “semiautomatic.” The
printing facility merges this document file and
the form definition file into complete document at
the later time,

‘We expect no particular style in the program
code or any restriction on the source program to
extract specification information. Since SSDG is
expected to be applied to existing software, any
tiny restrictions or special style will be major
obstacles for utilization. Therefore, as long as a

‘program is written syntactically correct,
specification information is to be acquired
correctly. The only limitation one can regards is
the position of the comment for each function.
This is extracted as the function explanation, and
expected to be stated immediately before the
function definition. Describing the comment to
explain the function of the function is, however,
the convention widely exploited, and considered
not to be serious problem. To relax this
restriction, the specification generator must have
some design knowledge to extract some useful
information from arbitrary stated comments in
the source program. To put such knowledge
would be another burden to programmers. Our
purpose is lighten burdens of programmers as
much as possible but put nothing to him/her.

The way to format the extracted information
into a software documentation is able to be
specified by the user as stated before so that same
information can be prepared into several different
formats and is done at the printing time. For
example, from the source program as shown in
Figure 2 , SSDG produces documentation shown
in Figure 3 automatically.

Conclusion

Since the specification information extracted
from existing source program forms the
documentation file, and it can be edited by using
conventional editor, SSDG’s way is said to be
flexible. Form generator is not very easy to use
now. We intend to utilize the J-STAR
workstation to prepare form definition files.

*
*

/

* TC~HABERTAISLFAL - FOIS5L *

* MBOTAU A AIZIX S ML, HRE LTS3, *

* Octobre 24, 1988 *
* *
- */
#inchude ¢stdioh>

#include “fdefh”

FRE *1p; /% 274N RLUF w/

char * Srcaname; /% 7740 x/

char currentCh=""; /% BEOL~7 /DI XRFEDKF R #/
char FneBuf{[Maxfne] ; I MET >/

nt fineNumber =0; 1% MAAAIITTIR »/

nt linePosition =0; /% PERMRSOXFOMA */

int beginColum; /* RERRPOL -7/ OUR */

char thisid [Maxid], nextid[Maxid] ; /% RERVRD—8E */
char thisNum[Maxid], nextNum{Maxk}; /% RERVAORTF */

int thisSym; /% RERIZPOLVRIL %/
char comdLineMaxiine]: /% $hixs 77 */

char commentString [Maxiine]; 1% XL ERET R */

main (arge, argv)

it arge;
{ chae #argv(];
extern
extern char # optarg; / #to get
exterm int optind, opterr;
char * srcname;
FLE #*fopen();

Figure 2: An example source program

BT — FIRE I

(774)L%)
te

FILE *fp; /1% 2740 - RLV2 %/
char * srcname; /% 27ANG */
char currentCh =, . ; /¥ RENDI -7 VDI XFROKF %
char lineButf [Maxiine); /% IRFEIT */
int lineNumber =0; /% BLAAATLIITIR */
int linePosition = 0; /* MEMBPOXFOME */
int beginColum; /% MENEPOI -2 OGE */
char thisid [Maxid], nextid[Maxid}; / *

thisNum{ Maxid] , nextNum[

ROL 1S | mge) men
FUBLIER)
main (argc, argv)

(#4#e)
* JCHMRBERTOISLFAL - 75754
MEOERICENrMLD X b g (B LIZEE NS,

Octobre 24, 1988

(F-z1) | (BiKg) (8 °A)
a e /_\

‘cha* argv
Figure 3: An example of generated document

Reference
Current Topics of Software Techniques in Journal
of Mitubishi Research Institute, Nol5, 1988

