
Vol. 43 No. 4 IPSJ Journal Apr. 2002

Regular Paper

An Efficient Self-reconfiguration Algorithm for Degradable

Processor Arrays

Masaru Fukushi† and Susumu Horiguchi†

This paper considers the issue of reconfiguring degradable processor arrays implemented in
VLSI/WSI (Wafer Scale Integration). As well as the efficiency of the reconfiguration algo-
rithms, it has become necessary to develop a built-in self-reconfiguration mechanism which
can automatically reconfigure a faulty processor array. However, so far, self-reconfiguration
algorithms have not been proposed for degradable processor arrays. In this paper, we propose
an efficient self-reconfiguration algorithm for degradable processor arrays based on simple
schemes of column bypass and row rerouting. The proposed row rerouting scheme allows
flexible inter-connections of neighboring processors since there is no limitation on the maxi-
mum distance. Furthermore, the rerouting scheme is performed in parallel using information
from neighboring processors, and this property makes a hardware implementation of the pro-
posed algorithm much easier. The performance of the proposed algorithm is compared with
previous studies and indicates that although the maximum physical distance is longer, the
proposed algorithm achieves better results in terms of harvest, degradation, and time com-
plexity. Finally, the hardware implementation of the proposed algorithm is also shown to
achieve self-reconfigurable systems.

1. Introduction

Massively parallel systems consisting of hun-
dreds or thousands of processing elements
(PEs) are expected to provide the capability
for high performance computing. Recent ad-
vances in VLSI and WSI (Wafer Scale Integra-
tion) technologies allow the massively parallel
systems to be implemented on a chip or a sili-
con wafer, consequently, high performance and
small sizes of systems can be realized.
A mesh-connected processor array (mesh ar-

ray) is a type of massively parallel system and
is expected to be used as an architecture for
various tasks such as image processing, signal
processing, and so on. Since the mesh array
has regular and simple structures, it is quite
suitable for VLSI/WSI implementations. How-
ever, one of the major issues in designing such
massively parallel systems is an efficient recon-
figuration strategy to avoid defects/faults on a
system.
There are two approaches to reconfiguring

mesh arrays, namely the redundancy approach
and the degradation approach. In the redun-
dancy approach, some PEs are dedicated as
spares to replace faulty PEs. The reconfigura-
tion problem is to find an assignment of spare
PEs to all faulty PEs, so a fault-free array

† School of Information Science, Japan Advanced In-
stitute of Science and Technology

whose size is fixed is obtained. For this ap-
proach, many reconfiguration algorithms have
been proposed to date 1)∼12). On the other
hand, in the degradation approach, no PE is
dedicated as spare. All PEs are treated in a
uniform way and a fault-free array whose size
is flexible is derived from a faulty array. Usually
the problem is to derive a fault-free array of the
maximum size under the constraint of the min-
imum dimension which is dependent on appli-
cations. This approach differs essentially from
the redundancy approach in the reconfiguration
strategies and the size of resultant arrays. In
the redundancy approach, if all faulty PEs can-
not be replaced, the wafer is regarded as faulty
and will be discarded. In this sense, the degra-
dation approach can contribute to enhance the
yields where fault-free arrays of a fixed size are
not strictly required. However, compared to the
redundancy approach, little research has been
reported on the reconfiguration problem of the
degradation approach.
Kuo, et al. 13) studied the reconfiguration

problems for degradable mesh arrays under
three switching and routing constraints, namely
(i) row and column bypass, (ii) row (col-
umn) bypass and column (row) rerouting and
(iii) row and column rerouting, and proposed
some heuristic algorithms for these problems.
Low, et al. proposed efficient heuristic algo-
rithms for the second and the third problems
in Refs. 14) and 15) respectively by employing

844



Vol. 43 No. 4 An Efficient Self-reconfiguration Algorithm for Degradable Processor Arrays 845

greedy rerouting. As well as the efficiency of the
reconfiguration algorithms, it has become nec-
essary to develop built-in self-reconfiguration
mechanisms which can automatically reconfig-
ure a faulty processor array 5),9),16). However,
so far, self-reconfiguration algorithms have not
been proposed for degradable processor arrays.
In this paper, we propose an efficient self-

reconfiguration algorithm for degradable pro-
cessor arrays based on the second problem of
column bypass and row rerouting, and show a
hardware implementation using FPGA (Field
Programmable Gate Array). The proposed
row rerouting scheme allows flexible inter-
connections of neighboring PEs since there is no
limitation on the maximum distance. Further-
more, the rerouting scheme is performed in par-
allel using information from neighboring PEs,
and this property makes a hardware implemen-
tation of the proposed algorithm much easier.
The rest of this paper is organized as fol-

lows: Section 2 describes the architecture of a
degradable mesh array. Section 3 presents the
proposed reconfiguration algorithm for the col-
umn bypass and row rerouting problem, and
the reconfiguration performances are compared
with a previous algorithm in Section 4. Sec-
tion 5 briefly mentions a possibility of apply-
ing the proposed algorithm for the reconfigu-
ration problem of row and column rerouting.
The hardware implementation of the proposed
algorithm is shown in Section 6. Section 7 is
devoted to the conclusions.

2. Degradable Mesh Array

2.1 Architecture
In order to avoid faulty PEs, additional hard-

ware such as switches and redundant inter-
connections are generally incorporated in mesh
arrays. Figure 1 shows the architecture of a
degradable mesh array which has M rows and
N columns of PEs and one vertical track be-
tween every two consecutive columns. A switch
is allocated at each intersection point between
tracks and links in order to change the inter-
connection of adjacent PEs. Each switch has
four functions as shown in Fig. 1 and the EW
function is the initial function for all switches.
With respect to the location of the switches and
tracks, this architecture is the same structure as
presented in Refs. 13) and 14).
For convenience of explanation, addresses for

all PEs and switches are defined as follows.
Definition 1 All PEs and switches have

Fig. 1 Degradable mesh architecture.

Fig. 2 Internal PE structure and its states.

row and column indices and those in the i-th
row and j-th column are denoted as PE[i, j]
(1 ≤ i ≤ M, 1 ≤ j ≤ N) and SW[i, j]
(1 ≤ i ≤ M, 1 ≤ j ≤ N − 1), respectively.
An internal structure of the PE is illustrated

in Fig. 2 where four switches are allocated to
four links. Since each switch in Fig. 2 has
only two functions (connect to either PE link
or bypass link), the hardware structure of the
switch is simpler than that of Fig. 1. All PEs
with internal switches have three states, Use,
Pass Vertically (PassV ) and Pass Horizontally
(PassH ). The PassV and PassH states corre-
spond to bypassing the PEs vertically and hor-
izontally respectively. It is assumed that each
PE[i, j] has a Built-In-Self-Test (BIST) circuit
to detect its own faults, though the hardware
circuit is out of the scope of this paper. The
output of the BIST is defined as follows to de-
scribe our reconfiguration algorithm.

Definition 2 The output of the BIST in
PE[i, j] is defined as fault [i, j] which has a value
of either 0 (fault-free) or 1 (faulty).
In our architecture, only PEs which include

their BIST circuits are assumed to be faulty and
all switches, links and tracks are assumed to be
fault-free. Moreover the circuits required to im-
plement the reconfiguration algorithm are also
assumed to be fault-free. Such a fault model is
assumed widely 3)∼15) and can be justified for



846 IPSJ Journal Apr. 2002

the following reason. The switches, tracks and
links use much less hardware compared to the
PE, thus their probabilities of being faulty are
much lower.

2.2 Reconfiguration Problem
A physical array is an array after fabrication

which includes some faulty PEs, and a logical
array is a fault-free array after reconfiguration.
Rows and columns included in a physical (logi-
cal) array are called physical (logical) rows and
physical (logical) columns, respectively. The re-
configuration problem for degradable mesh ar-
rays is formalized as follows.

For a given M × N physical array and
integer r and c, find an m × n logical
array under the constraint of m ≥ r
and n ≥ c.

Generally, row (column) bypass schemes or
row (column) rerouting schemes are employed
to avoid faulty PEs. In the bypass scheme,
one row (column) is removed from a physi-
cal array and adjacent two rows (columns) of
the bypassed row (column) are directly con-
nected as shown in Fig. 3 (a). The states of
PEs in bypassed columns are changed to PassH,
hence this scheme requires no external switch
to avoid faulty PEs. In the rerouting scheme,
a faulty PE is removed from an array in such a
way that inter-connections of neighboring fault-
free PEs are rerouted in order not to connect
with the faulty PE using external switches and
tracks. Figure 3 (b) shows an example of row
rerouting in which the PE[i, j] is connected with
PE[i+1, j+1] to avoid faulty PE[i, j+1]. The
states of faulty PEs are changed to PassV.
Here, maximum row distance is defined to be

the largest possible difference between the row
indices of two connected fault-free PEs in a log-
ical row. To be defined more precisely, it cor-
responds to the maximum number of |i − i′|
between two logically connected PE[i, j] and
PE[i′, j′] on the same logical row. In a typical

(a) Column bypass. (b) Row rerouting.

Fig. 3 Column bypass and row rerouting.

row rerouting scheme, if T tracks are placed be-
tween every two consecutive columns, the maxi-
mum row distance is T and PE[i, j] can connect
with either PE[i− T, j + 1], · · ·, PE[i, j + 1] · · ·
or PE[i+ 1, j + 1].
It is obvious that row and column rerouting

schemes are more flexible. However, the recon-
figuration problem turns out to be very difficult
since rerouting in both row and column direc-
tions are considered simultaneously. The algo-
rithms proposed for the row and column rerout-
ing problem 13)∼15) are still based on the idea of
bypass and rerouting schemes. That is why we
also concentrate on the column bypass and row
rerouting scheme in developing our algorithm.

3. Column Bypass and Row Rerouting

3.1 New Rerouting Scheme
Our proposed reconfiguration algorithm de-

scribed later is based on a column bypass and
a row rerouting scheme. An efficient rerout-
ing scheme is employed in the proposed algo-
rithm to realize more flexible inter-connections
and it allows the maximum row distance to be
more than one. Figure 4 shows the differ-
ence between a typical row rerouting scheme
and the proposed new row rerouting scheme.
In Fig. 4 (a), PE[i, j] cannot connect to both
PE[i−2, j−1] and PE[i−2, j+1] due to the lim-
itation of the maximum row distance. In this
case both PE[i − 2, j − 1] and PE[i − 2, j + 1]
cannot be used in a logical array since they have
no valid inter-connections. On the other hand,
the new rerouting scheme allows such prohib-
ited inter-connections as shown in Fig. 4 (a).
In Fig. 4 (b), PE[i, j] can connect with both
PE[i − 2, j − 1] and PE[i − 2, j + 1] using the
switch function NS, and those PEs can be
included in a logical array. However, both
PE[i− 1, j − 1] and PE[i− 1, j +1] become un-
used PEs since a track cannot be used for two

(a) Typical scheme. (b) Proposed scheme.

Fig. 4 Row rerouting schemes.



Vol. 43 No. 4 An Efficient Self-reconfiguration Algorithm for Degradable Processor Arrays 847

(a) Reconfiguration with
typical scheme.

(b) Reconfiguration with
new scheme.

Fig. 5 Reconfiguration examples with row rerouting
scheme.

distinct inter-connections.
The advantage of the new rerouting scheme

is the efficient utilization of PEs. Figure 5
illustrates examples of reconfiguration with a
typical row rerouting scheme and the proposed
row rerouting scheme. In Fig. 5 (a), at most two
rows are obtained by row rerouting and many
fault-free PEs become unused due to the limi-
tation of maximum row distance. On the other
hand, as in Fig. 5 (b), three rows can be ob-
tained by the new rerouting scheme. The pro-
posed new rerouting scheme is realized by two
procedures of deactivating PEs and changing
switch functions, and they are described as fol-
lows.

3.2 Deactivating PEs
The unused PEs shown in Fig. 4 (b) should be

distinguished from other used PEs and deacti-
vated in the logical array. The objective of this
procedure is to determine which PEs should
be unused and to deactivate them. The PEs
which are suspected of being unused will receive
signals from neighboring PEs. In Fig. 4 (b),
PE[i−1, j], which suspects the existence of such
PEs, transfers signals to both PE[i − 1, j − 1]
and PE[i−1, j+1], then they determine them-
selves whether they should be deactivated or
not. Some variables are defined to describe the
deactivation more precisely.

Definition 3 A variable deact [i, j] is de-
fined in PE[i, j] and has a value of 0 (not deac-
tivated) or 1 (deactivated).

Definition 4 A variable unused [i, j] in
PE[i, j] is defined by ‘fault [i, j] OR deact [i, j]’.

Definition 5 Fin [i, j] and Fout [i, j] are an
input value and an output value of PE[i, j] re-
spectively and defined as follows to calculate
the number of unused PEs in each column.

Procedure Deactivation(C)

step := 0;
for all 1 ≤ i ≤ M and 1 ≤ j ≤ N do

if j ∈ C then
Fout[i, j] := 0;
while step < 2M do
/* count of Fout[i, j] */
Transfer Fout[i, j] to the PE[i+ 1, j];

/* transfer signals */
if unused[i, j] = 1 and Fin[i, j] ≥ 1 then
Transfer signals to PE[i, l(j)] and PE[i, r(j)];

end if

/* decision for deactivation */
if signal from PE[i, r(j)] then

if Fin[i, r(j)]− Fin[i, j] ≥ 1 then
flag r := 1; else flag r := 0;

end if
end if
if signal from PE[i, l(j)] then

if Fin[i, l(j)]− Fin[i, j] ≥ 1 then
flag l := 1; else flag l := 0;

end if
end if
deact[i, j] := flag r OR flag l;
step := step+ 1;

end while

m′ := minj∈C [M − Fout[M, j]];
if deact[i, j] = 1 or i− Fin[i, j] > m′ then
Change state of PE[i, j] to PassV ;

end if
end if

end for
return m′;

Fig. 6 Procedure for deactivating PEs.

Fin [i, j] =




0 (i = 1).∑i−1
k=1 unused [k, j]

(2 ≤ i ≤ M),
(1)

Fout [i, j] = Fin [i, j] + unused [i, j]. (2)

It is clear that the Fout [M, j] represents the to-
tal number of unused PEs in the j-th column.

Definition 6 r(j) and l(j) are defined as
the physical column indices of the logical right
and left columns of the j-th column respec-
tively, where l(j) < j < r(j).
For a given physical array, let C denote the

set of logical column indices. Figure 6 shows
the procedure for deactivating PEs, where three
tasks of ‘count of Fout [i, j]’, ‘transfer signals’
and ‘decision for deactivation’ are performed in
each PE in parallel. These tasks are repeated
just 2M times to determine all unused PEs.

Lemma 1 The Deactivation takes at most
2M time steps to decide all unused PEs, where
M is the number of physical rows.
Proof: Suppose that PEs which are faulty
and transfer signals to adjacent PEs are source



848 IPSJ Journal Apr. 2002

PEs. As can be seen easily, the source PE, i.e.,
PE[i, j] never transfers signals to PEs in the
i′-th row, where 1 ≤ i′ < i. The signals from
source PE[i, j] propagate only in the same phys-
ical row. For example, suppose, source PE[i, j]
transfers signals to PE[i, r(j)] and deactivates
it. Then PE[i, r(j)] begins to transfer signals
to PE[i, r(r(j))] in the next step if Fin[i, r(j)]
is greater than 1. Note that as in Fig. 6, these
tasks are performed step by step.
Now consider the worst case in the i-th row.

If all PE[i′, j] in the j-th column are faulty
(1 ≤ i′ ≤ i), then signals from the source
PE[i, j] may be propagated as far as PE[i, j′] in
the same physical row, where |j′−j| ≤ i−1, and
it takes (i−1) steps. Note that the Fin[i, j] are
also accumulated step by step, so it may take
(i − 1) steps for PE[i, j] to begin to transfer
signals to PE[i, j ± 1]. Thus, it takes at most
(i − 1) + (i − 1) steps for the source PE[i, j]
to decide all PE[i, j′] to be deactivated or not,
where |j′ − j| ≤ i − 1. Even if more than two
source PEs exist in the same physical row, the
above tasks are performed concurrently, hence,
it takes at most (i−1)+(i−1) steps in the i-th
rows to decide all unused PEs.
From the above discussion the mesh array

which has M rows takes at most (M − 1) +
(M − 1) steps to decide all unused PEs, and
the number of steps is less than 2M . ✷

After determining the unused PEs, the states
of unused PEs are changed to PassV. Further-
more, fault-free PEs are also deactivated if they
satisfy the condition i−Fin[M, j] > m′, because
m′ PEs in every column of C are used to con-
struct a logical array.

3.3 Changing switch functions
All PEs which do not have valid inter-

connections have been deactivated in the pre-
vious procedure, and m′ fault-free PEs re-
main in every column of C. In this proce-
dure, the inter-connections of remaining PEs
are rerouted by changing switch functions us-
ing a simple rule. One of the important fea-
tures of the proposed algorithm is that each
switch can change its own function automat-
ically using the states of neighboring PEs.
Therefore all switches are changed in parallel
within one step. Figure 7 shows a proposed
rule to change all switch functions in which
only unused [i, j], unused [i, r(j)], Fin[i, j] and
Fin[i, r(j)] are used to decide the desired func-
tion of SW[i, j]. Again, we depict the same re-
configuration example as in Fig. 5 (b) to show

Procedure Change Switch Functions(C)

for all 1 ≤ i ≤ M and 1 ≤ j ≤ N − 1 do
if j ∈ C then

l := unused[i, j];
r := unused[i, r(j)];

if l = 1 and r = 1 then
Function of SW[i, j] := NS; · · · (1)

else if Fin[i, j] > Fin[i, r(j)] then
Function of SW[i, j] := NW ; · · · (2)

else if Fin[i, j] < Fin[i, r(j)] then
Function of SW[i, j] := NE; · · · (3)

else if Fin[i, j] = Fin[i, r(j)] then
if l = 0 and r = 0 then
Function of SW[i, j] := EW ; · · · (4)

else if l = 1 and r = 0 then
Function of SW[i, j] := NW ; · · · (5)

else if l = 0 and r = 1 then
Function of SW[i, j] := NE; · · · (6)

end if
end if

end if
end for

Fig. 7 A rule for changing switch functions.

Fig. 8 An example of changing switch functions.

an example of changing switch functions with
this rule. In Fig. 8 the value on each PE[i, j]
corresponds to that of Fin[i, j] and the number
under each SW[i, j] corresponds to the number
within parenthesis shown in Fig. 7. For exam-
ple, the value 5 subscribed in the upper left
switch in Fig. 8 means that the switch func-
tion was changed according to condition (5) in
Fig. 7.

Lemma 2 Suppose that m′ available PEs
in the u-th column are labeled as u1, u2, · · · , um′

in order of physical row index. In two adjacent
logical columns, u and v, ui can be connected
to vi (1 ≤ i ≤ m′) using the proposed rule
in Fig. 7, and there are no contradictions such
that each PE has a valid inter-connection and
any two inter-connections never intersect with
each other.
Proof: First, an inter-connection of u1 and v1



Vol. 43 No. 4 An Efficient Self-reconfiguration Algorithm for Degradable Processor Arrays 849

is considered. Suppose that u1 = PE[iu1, u] and
v1 = PE[iv1, v], where iu1 and iv1 indicate the
physical row indices of u1 and v1, respectively.
There are three cases between iu1 and iv1; (i)
iu1 and iv1 are equal, (ii) iu1 is smaller than
iv1, (iii) iu1 is greater than iv1. In case (i), it is
clear that u1 and v1 are connected according to
condition (4) in Fig. 7, because Fin[iu1, u] and
Fin[iv1, v] are equal. In case (ii), the function
of SW[iu1, u] is determined to be NE according
to condition (6), since v1 is the first fault-free
PE in column v. The function of SW[iv1, u] is
determined to be NE according to condition
(3), since Fin[iv, v] is greater than Fin[iu, u]. If
(iv1 − iu1) is equal to 1, u1 is connected to v1

obviously. Even if (iv1 − iu1) is greater than 1,
u1 is connected to v1 for the following reason.
Since all PE[i, v] (1 ≤ i < iv1) are faulty or de-
activated, all PE[i′, u] (iu1 + 1 ≤ i′ < iv1) will
be deactivated even if they are fault-free. Then
the function of SW[i′, u], which are placed be-
side PE[i′, u], are changed to be NS according
to condition (1), consequently, SW[iu1, u] and
SW[iv1, u] are connected. Thus u1 and v1 are
also connected when (iv1 − iu1) is greater than
1. The proof in case (iii) is omitted since this
case is symmetrical with case (ii). From the
above, it is shown that u1 and v1 are connected
to each other.
Secondly, an inter-connection of u2 and v2

is considered. Suppose that physical row in-
dices of u2 and v2 are iu2 and iv2, respectively.
By considering the relationship among iu1, iv1,
iu2 and iv2 in above each case of (i), (ii) and
(iii) respectively, the same discussions are valid
for u2 and v2 as for u1 and v1, therefore it is
proved easily that u2 and v2 are connected to
each other and the connection never intersects
with that of u1 and v1.
The whole procedure above can be applied

sequentially in following rows. ✷

Theorem 1 A logical mesh array of size
m′ × n′ is constructed by Deactivation and
Changing Switch Functions, where m′ is ob-
tained from the Deactivation and n′ is equal
to the number of columns of C.
Proof: As mentioned in the previous sub-
section, all n′ columns included in C have m′
fault-free PEs after Deactivation. According
to Lemma 2, the m′ PEs have valid inter-
connections between adjacent columns, hence
m′ rows are constructed correctly. ✷

Note that each label i of ui and vi (1 ≤ i ≤
m′) in Lemma 2 corresponds to a logical row

index, and can be calculated by i−Fin[i, j] (j ∈
C).

3.4 Bypassing a column
It is reported in Ref. 5) that bypassing is

an efficient strategy for clustered fault model
where a large number of faults concentrate on
parts of a wafer. The problem is how to deter-
mine which column should be bypassed. Ob-
viously, the column which has the maximum
number of faulty PEs should be bypassed with
high priority, since more unavailable PEs are
removed from the array. To represent the num-
ber of faulty PEs, the following variables are
defined.

Definition 7 Both fin[i, j] and fout[i, j] are
defined by replacing unused [i, j] in equations
(1) and (2) of Definition 5 by fault [i, j] respec-
tively.
The procedure Bypass a Column is described

in Fig. 9. In this procedure, a search from left-
most to rightmost columns is executed twice
in order to bypass one column. In the first
search, the maximum value of fout[M, j] is ob-
tained (denoted by fmax in Fig. 9) and in the
second search one column is bypassed. In order
to bypass a column in the area where the most
faulty PEs are clustered, not only fout[M, j]
but also a[j] is taken into consideration as
in Fig. 9, if there are more than two columns

Procedure Bypass a Column(C)

fmax = amax := 0;
if j ∈ C then

for all 1 ≤ j ≤ N do
a[j] := fout[M, l(j)] + fout[M, j] + fout[M, r(j)];

(if columns l(j) or r(j) exist)
end for

/* obtain maximum number of fout[M, j] */
for j=1 to N do

if (fout[M, j] > fmax) or (fout[M, j] = fmax

and a[j] > amax) then
fmax := fout[M, j];
amax := a[j];

end if
end for

/* bypass a column */
for j=1 to N do

if fout[M, j] = fmax and a[j] = amax then
for all 1 ≤ i ≤ M do
State of PE[i, j] := PassH;
Function of SW[i, j] := EW ;

end for
C := C − {j};
fmax := −1;

end if
end for

end if

Fig. 9 Procedure for bypassing one column.



850 IPSJ Journal Apr. 2002

Algorithm DBC(M,N, r, c)

C (set of indices of logical columns) := {1, · · · , N};
B (set of indices of bypassed columns) := φ;
m = n := 0;

for col = N to c do
row := Deactivation(C);
if row × col > m× n then

m := row;
n := col;
add all indices of bypassed columns to B;

end if
Bypass a Column(C);
col := col − 1;

end for

if m > r and n > c then
C := {1, · · · , N}; (Initialize array)
Bypass all columns included in B;
C := C −B;
Deactivation(C);
Change Switch Functions(C);
Return ‘Logical array of size m× n found’;

else
Return ‘reconfiguration failed’;

end if

Fig. 10 The algorithm DBC.

whose fout[M, j]s are equal to fmax.
3.5 Proposed Reconfiguration Algo-

rithm
A reconfiguration algorithm for degradable

mesh arrays consisting of the procedures De-
activation, Change Switch Functions, and By-
pass a Column is shown in Fig. 10. The pro-
posed algorithm is characterized by two proce-
dures, bypassing columns and changing switch
functions automatically, hence it is named
Degradation algorithm based on Bypass and
Change (DBC). Firstly, in this algorithm all
N columns of a physical array are included in
a logical array, and the maximum number of
rows (denoted by row in Fig. 10) is obtained by
Deactivation. At this point, according to The-
orem 1, a logical array of size row × N can be
obtained and becomes a candidate for the final
logical array. Then, after bypassing a column
by procedure Bypass a Column, the row is re-
newed by Deactivation and a logical array of
size row × (N − 1) is provably obtained. If the
size is larger than the previous one, this array
becomes the new candidate for the final logical
array. These procedures are repeatedly applied
until (N − c) columns are bypassed.

4. Performance Comparisons

To evaluate the efficiency of DBC syntheti-
cally, we employ four figures of merit; harvest,
degradation, time complexity, and the maxi-

Table 1 Comparison of harvest and degradation
between DBC and MAXCOR.

MAXCOR DBC
physical PE harvest degrada- harvest degrada-
array yield (%) tion (%) (%) tion (%)
16× 16 0.95 87.63 15.87 88.75 15.74
16× 16 0.90 83.34 25.23 84.08 24.45
16× 16 0.85 78.74 32.95 80.45 31.49
16× 16 0.80 73.24 41.36 76.70 38.60
16× 16 0.75 67.66 49.26 73.32 45.01
32× 32 0.95 89.75 14.72 90.06 14.42
32× 32 0.90 83.58 24.74 84.87 23.59
32× 32 0.85 77.05 34.54 80.16 31.89
32× 32 0.80 70.23 43.82 75.94 39.26
32× 32 0.75 62.72 52.96 72.07 45.94

mum physical distance, which are in relation
of tradeoff, in general. So far, there has been
no better algorithm for column bypass and row
rerouting than MAXCOR 14), therefore we com-
pare those of DBC with those of MAXCOR. In
each comparison, we assume the case that an
m×n logical array is obtained from an M ×N
physical array under the constraint of m ≥ r
and n ≥ c.

4.1 Harvest and Degradation
Algorithm DBC has been implemented in C

and simulated using large numbers of randomly
generated datasets. Here we introduce the def-
initions of harvest and degradation, which are
commonly used to evaluate the efficiency of al-
gorithms in the degradation approach 13)∼15).

harvest = Nlogical

Nfault-free
× 100%,

degradation = Nphysical−Nlogical

Nphysical
× 100%,

where Nphysical , Nlogical and Nfault-free corre-
spond to the number of PEs in a physical ar-
ray, the number of PEs in a logical array, and
the number of fault-free PEs in a physical ar-
ray, respectively. The harvest represents how
effective the fault-free PEs are utilized in con-
structing a logical array from a physical array
and the degradation measures the degree of po-
tential performance loss due to a smaller logical
array than the physical array.

Table 1 shows the harvest and degradation
for physical arrays of size 16 × 16 and 32 × 32
when the minimum size of a logical array is 1×1.
This size means that both algorithms never fail
to reconfigure unless all PEs are faulty. The
harvest and degradation in Table 1 are the av-
erage of 10000 simulation results. Note that
MAXCOR stops reconfiguring if the obtained
logical array is larger than r × c. Therefore
MAXCOR is modified to find a logical array of



Vol. 43 No. 4 An Efficient Self-reconfiguration Algorithm for Degradable Processor Arrays 851

the maximum size in order to compare fairly.
It is clear from Table 1 that DBC consistently

outperforms MAXCOR in terms of the percent-
age of harvest and degradation for both sizes of
physical arrays. The difference is particularly
noticeable under conditions of low PE yield.

4.2 Time complexity
The time complexity of DBC is O((N −

c)(t1 + t2)), where t1 is the time required
to perform Deactivation and t2 is the time
required by Bypass a Column. The times
of other processes, including the procedure
Change Switch Functions, are neglected since
they take at most a small number of steps. It
is easy to see that t1 is O(M) and t2 is O(N).
Note that fout[M, j] in Fig. 9 can be accumu-
lated when Fout[M, j] is accumulated in Fig. 6.
Then the time complexity of the proposed DBC
is O((N − c)(M +N)).
On the other hand, the time complexity of

MAXCOR is O((N − c)F ), where F is the
number of fault-free PEs 14). Taking into ac-
count the fact that F is close to M × N , the
time complexity of DBC is much smaller than
MAXCOR.

4.3 Maximum Physical Distance
The maximum physical distance between log-

ically adjacent PEs decides the maximum sig-
nal latency of reconfigured arrays. The physical
distance between logically adjacent PE[i, j] and
PE[i′, j′] is defined to be |i − i′|+ |j − j′|. The
maximum row distance of DBC under the as-
sumed case is (M −m), therefore the maximum
physical distance of DBC is (M − m) + (N −
n + 1) when PE[i, j] and PE[i + (M − m), j +
(N − n + 1)] are connected logically.
On the other hand, the maximum row dis-

tance is limited to 1 in MAXCOR. The worst
case is that PE[i, j] and PE[i+1, j+(N−n+1)],
or PE[i, j] and PE[i+ (M − m+ 1), j] are con-
nected logically. Then the maximum physical
distance is max[(N − n + 2), (M − m + 1)].
Hence, the maximum physical distance of DBC
is almost double compared to that of MAXCOR
in regular arrays.

4.4 Comparison with Row and Col-
umn Rerouting Scheme

As mentioned earlier, the reconfiguration
with row and column rerouting schemes is a
very difficult problem in the degradation ap-
proach, and efficient algorithms have not been
proposed yet. The methodology of divide and
conquer is employed commonly 13)∼15) to ap-
ply the algorithm for column bypass and row

Table 2 Comparison of harvest and degradation
between DBC and RCRoute.

RCRoute DBC
physical PE harvest degrada- harvest degrada-
array yield (%) tion (%) (%) tion (%)
16× 16 0.95 90.44 14.15 90.45 14.14
16× 16 0.90 85.80 22.90 86.05 22.68
16× 16 0.85 82.08 30.10 82.65 29.62
16× 16 0.80 78.04 37.51 79.24 36.55
16× 16 0.75 74.51 44.11 76.02 42.98
32× 32 0.95 90.83 13.69 91.03 13.50
32× 32 0.90 85.32 23.18 86.20 22.39
32× 32 0.85 79.80 32.20 81.75 30.54
32× 32 0.80 74.44 40.47 77.77 37.80
32× 32 0.75 69.34 47.99 73.80 44.65

rerouting to the reconfiguration problem of row
and column rerouting. In this method, a re-
configuration algorithm based on bypass and
rerouting schemes is applied twice in both row
and column directions. Then the largest array
which is obtained by these two algorithms is
taken as the final logical array. Note that even
if these two algorithms are applied, rerouting in
both row and column directions are not consid-
ered simultaneously.
Low 15) proposed a new scheme which enables

fault-free PEs in bypassed rows (columns) to re-
place adjacent faulty PEs under the constraint
where the maximum row (column) distance is
one. The algorithm RCRoute 15) is the com-
bination of this scheme and MAXCOR, where
a divide and conquer method is also employed.
The performance of DBC is compared with that
of RCRoute under the following two assump-
tions as in Refs. 13)∼15). (i) Switches and a
track are also placed between every two adja-
cent rows. (ii) The methodology of divide and
conquer is also employed in DBC.

Table 2 shows the harvest and degradation
in the same fashion as Table 1. From Table 2,
DBC shows higher percentages of harvest and
lower percentages of degradation than those of
RCRoute. Thus it is shown that DBC can
also be applied as an efficient strategy for the
row and column rerouting problem. Note that
the time complexity and the maximum physi-
cal distance of RCRoute is almost the same as
MAXCOR.

5. Self-reconfigurable Mesh Array on
FPGA

To show the possibility of achieving self-
reconfigurable systems, which is an important
feature for massively parallel systems, we give
a hardware implementation of the proposed



852 IPSJ Journal Apr. 2002

Fig. 11 Switch circuit.

DBC.
5.1 Circuit Design
Each component such as switch, PE, and con-

troller is designed in VHDL using design tool
“MAX+PlusII 9.6 (ALTERA)”. Figure 11 il-
lustrates a switching circuit that consists of four
multiplexers and one controller. The rule in
Fig. 7 is implemented in this controller to deter-
mine switch function automatically. According
to the determined function, actual connections
of all ports are established by using multiplex-
ers. For example, if the controller determines
the switch function EW , then the value 00 is
input to all multiplexers to connect the east and
west port with each other.
Each PE is designed to execute only the func-

tions required to perform DBC, though the de-
tailed circuit is omitted here. Each PE[i, j] con-
sists of four internal switches, an accumulator
for Fout[i, j], a signal generator to deactivate
PE[i, r(j)] and PE[i, l(j)], a decision maker cir-
cuit driving PE deactivation, flip-flops to hold
fault [i, j], unused [i, j], and data selectors. By
these circuits, procedure Deactivation is per-
formed automatically synchronized to the sys-
tem clock. The data selectors have the fol-
lowing important function when the PE is by-
passed. Suppose that the PE[i, j] is bypassed
and both PE[i, l(j)] and PE[i, r(j)] are con-
nected to each other. In this case, PE[i, l(j)]
requires the information in PE[i, r(j)] instead
of that in PE[i, j] to perform both Deacti-
vation and Change Switch Functions correctly,
and PE[i, r(j)] also requires the information in
PE[i, l(j)]. The information held in PE[i, r(j)]
such as unused [i, r(j)], Fin[i, r(j)], and the sig-
nal wire for transferring the deactivation signal
will be supplied to PE[i, l(j)] by the selectors.
To control the DBC and column bypass, main

controller and bypass controllers are designed
as in Fig. 12. The main controller in Fig. 12

Fig. 12 Controller for DBC and column bypass.

controls DBC, though the detailed circuits are
omitted here, and a bypass controller is allo-
cated at the bottom of each column to perform
column bypass. Flip-flop 1 in Fig. 12 configures
a token ring by connecting to other controllers
in order to provide tokens. Only one column
which gets the token can perform the processes
of column bypass. The values fmax and amax

are input from the previous l(j)-th column to
this j-th column and they are compared with
Fout[i, j] and a[j] respectively. According to
the conditions in the bypassing algorithm, a
new fmax and amax are selected using multi-
plexers and they are output to the next r(j)-
th column. They are input finally to flip-flops
in the main controller. The signal “mode” in
Fig. 12 denotes the first search (mode = “Low”)
or the second search (mode = “High”) as pre-
sented in sub-section 3.4. In the second search,
if Fout[i, j] and a[j] equals to fmax and amax

respectively, the column which is not bypassed
yet is selected for bypass. Once the column is
bypassed, flip-flop 2 shown in Fig. 12 continues
to output “High” and inputs fmax and amax

will pass through the column.
5.2 Hardware Implementation
Using the components presented in the pre-

vious sub-section, a prototype system of self-
reconfigurable mesh array of size 6×6 is imple-
mented in FPGA boards, MEB200-A250 and
MU200-EA10 (Mitsubishi Electronic Micro-
computer Application Software Co. LTD.). The



Vol. 43 No. 4 An Efficient Self-reconfiguration Algorithm for Degradable Processor Arrays 853

former, which has EPF10K250AGC599-3 de-
vice (ALTERA), is for the system and the latter
is for the data I/O. In this implementation, we
assume that each PE link is 2-bits wide, namely
1-bit input and 1-bit output. Some fault pat-
terns are also embedded into PEs and we check
all I/O ports, switch states, and PE states.
With these checks, we observed the expected re-
sults according to the embedded fault patterns
and verified that the proposed DBC can be im-
plemented on FPGA where the clock frequency
is 20MHz. Since the frequency is the maximum
output of the FPGA board, our system seems
to work with higher clock frequencies.
The hardware cost for one switch, one PE,

the controller in Fig. 12 and a 6 × 6 self-
reconfigurable mesh array shows 27LCs (Logic
Cells), 34 LCs, 402 LCs, and 2,395 LCs, respec-
tively. Since 1LC corresponds to about 20
gates, entire cost for the 6 × 6 array is about
47,900 gates. Note that this estimate is very
rough because 20 gates are not always imple-
mented in 1LC. They will become much sim-
pler if they are implemented in customized IC.

6. Conclusion

The reconfiguration process to avoid faulty
PEs is one of the most important issues for
designing massively parallel systems in VLSI/
WSI. In this paper, we proposed an effi-
cient self-reconfiguration algorithm for degrad-
able mesh arrays based on a column bypass
scheme and a row rerouting scheme. The pro-
posed algorithm named DBC allows maximum
row distance to be more than one in single track
architectures, and it realizes an efficient utiliza-
tion of PEs. Furthermore, the rerouting scheme
is performed in parallel using information from
neighboring PEs, and this property makes the
hardware implementation of the proposed al-
gorithm much easier. The performance of the
proposed algorithm is compared with previous
studies and indicates that although the maxi-
mum physical distance is longer than previous
studies due to the flexible rerouting, the pro-
posed algorithm achieves better results in terms
of harvest, degradation, and time complexity.
Finally, we showed the hardware implementa-
tion of the proposed algorithm using FPGA and
confirmed its correct behavior.
Future work is to investigate the possibility of

developing more efficient reconfiguration algo-
rithms such that both row and column rerout-
ing are performed simultaneously.

Acknowledgments This research was sup-
ported in part by Grant-in-Aid for Scientific Re-
search No.11558032, Ministry of Education and
Science of Japan.

References

1) Kung, S.Y., Jean, S.N. and Chang, C.W.:
Fault-Tolerant Array Processors Using Single-
Track Switches, IEEE Trans. Comput., Vol.38,
No.4, pp.501–514 (1989).

2) Jean, S.N., Fu, H.C. and Kung, S.Y.: Yield
Enhancement for WSI Array Processors using
Two-and-Half-Track Switches, Proc.Int’l.Conf.
on Wafer Scale Integration, pp.243–250 (1990).

3) Roychowdhury, V.P., Bruck, J. and Kailath,
T.: Efficient Algorithms for Reconfiguration
in VLSI/WSI Array, IEEE Trans. Comput.,
Vol.39, No.4, pp.480–489 (1990).

4) Varvarigou, T.A., Roychowdhury, V.P. and
Kailath, T.: A Polynomial Time Algorithm for
Reconfiguring Multiple-Track Models, IEEE
Trans. Comput., Vol.42, No.4, pp.385–395
(1993).

5) Numata, I. and Horiguchi, S.: A Self-
Reconfiguration Architecture for Mesh Arrays,
Proc. Int’l. Workshop on Defect and Fault Tol-
erance in VLSI Systems, pp.212–220 (1994).

6) Numata, I. and Horiguchi, S.: Wafer-scale In-
tegration Implementation of Mesh-Connected
Multiprocessor Systems, Syst. and Comput. in
Japan, Vol.26, No.1, pp.1–10 (1995).

7) Takanami, I., Kurata, K. and Watanabe, T.:
A Neural Algorithm for Reconstructing Mesh-
Connected Processor Arrays Using Single-
Track Switches, Proc.Int’l.Conf.on Wafer Scale
Integration, pp.101–110 (1995).

8) Horita, T. and Takanami, I.: A Built-In
Self-Reconstruction Approach for Partitioned
Mesh-Arrays Using Neural Algorithm, IEICE
Trans.Inf.and Syst., Vol.E79-D, No.8, pp.1160–
1167 (1996).

9) Horita, T. and I., T.: An Efficient Method for
Reconfiguring the 1 1

2
Track-Switch Mesh Ar-

ray, IEICE Trans. Inf. and Syst., Vol.E82-D,
No.12, pp.1545–1553 (1999).

10) Horita, T. and I., T.: Fault-Tolerant Proces-
sor Arrays Based on the 1 1

2
-Track Switches

with Flexible Spare Distributions, IEEE Trans.
Comput., Vol.49, No.6, pp.542–552 (2000).

11) Shigei, N., Miyajima, H., Ishizaka, T. and
Murashima, S.: On Methods for Reconfiguring
Processor Arrays, IEICE Trans. Inf. and Syst.,
Vol.E79-D, No.8, pp.1139–1146 (1996).

12) Chen, Y.Y., Upadhyaya, S.J. and Cheng,
C.H.: A Comprehensive Reconfiguration Scheme
for Fault-Tolerant VLSI/WSI Array Proces-
sors, IEEE Trans. Comput., Vol.46, No.12,



854 IPSJ Journal Apr. 2002

pp.1363–1371 (1997).
13) Kou, S.Y. and Chen, I.Y.: Efficient Reconfig-
uration Algorithms for Degradable VLSI/WSI
Arrays, IEEE Trans. Computer-Aided Design,
Vol.11, No.10, pp.1289–1300 (1992).

14) Low, C.P. and Leong, H.W.: On the Recon-
figuration of Degradable VLSI/WSI Arrays,
IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems, Vol.16, No.10,
pp.1213–1221 (1997).

15) Low, C.P.: An Efficient Reconfiguration Al-
gorithm for Degradable VLSI/WSI Arrays,
IEEE Trans. Comput., Vol.49, No.6, pp.553–
559 (2000).

16) Smith, M.D. and Mazumder, P.: Generation of
Minimal Vertex Covers for Row/Column Allo-
cation in Self-Repairable Arrays, IEEE Trans.
Comput., Vol.45, No.1, pp.109–115 (1996).

(Received August 31, 2001)
(Accepted December 18, 2001)

Masaru Fukushi received
the B.S. and M.S. degrees in in-
formation science from Hirosaki
University in 1997 and 1999, re-
spectively. He is currently work-
ing towards the Ph.D. degree at
Graduate School of Information

Science in JAIST (Japan Advanced Institute of
Science and Technology). His research interests
are fault-tolerant systems and multi-processor
systems.

Susumu Horiguchi received
the M.E and D.E degrees from
Tohoku University in 1978 and
1981, respectively. He was a fac-
ulty of Department of Informa-
tion Science at Tohoku Univer-
sity from 1981 to 1992. He was

a visiting scientist of IBM Thomas J. Watson
Research Center from 1986 to 1987 and a visit-
ing professor of The Center for Advanced Stud-
ies at the University of Southwestern Louisiana
and Department of Computer Science, Texas
A&M University summer in 1994 and 1997. He
is currently a Full Professor of the Graduate
School of Information Science at JAIST (Japan
Advanced Institute of Science and Technology).
He has been conducting his research group
as the chair of Multi-Media Integral System
Laboratory at JAIST. He has been involved
in organizing many international workshops,
symposia and conferences sponsored by IEEE,
IEICE and IPS. His research interests have
been mainly concerned with interconnection
networks, parallel computing algorithm, mas-
sively parallel processing, parallel computer ar-
chitecture, VLSI/WSI architecture, and Multi-
Media Integral System. Dr. Horiguchi is a se-
nior member of IEEE Computer Society, and
members of IPS and IASTED.


