
Vol. 43 No. 5 IPSJ Journal May 2002

Technical Note

A Method of Static Test Compaction Based on Don’t Care Identification

Kohei Miyase,† Seiji Kajihara†,†† and Sudharkar M. Reddy†††

In this paper, we propose a procedure to compact a test set for a combinational circuit.
Given a test set in which all input values are specified, the procedure first identifies don’t
care inputs of the test set, and next reassigns appropriate values to the don’t cares to achieve
test compaction, where an incompatibility graph is constructed and a vertex coloring problem
solved. The procedure can be applied repeatedly, until further compaction cannot be derived.
Experimental results show effectiveness of the proposed procedure for the ISCAS benchmark
circuits.

1. Introduction

Generating compact test sets is important for
reducing the cost of VLSI testing. Reserch on
test compaction that can obtain a test set has
been done for a long time. Test compaction
methods proposed before were based on the fol-
lowing approaches:
(1) To generate a smaller initial test set

which may contains redundant test vectors,
e.g., dynamic compaction1), maximal com-
paction2), fault ordering based on indepen-
dent fault sets2),3), rotating backtrace2),
fault selection with random pattern fault
simulation4).

(2) To remove redundant test vectors1), e.g.,
static compaction, reverse order fault simu-
lation5), double detection3), redundant vec-
tor elimination6).

(3) To modefy/add some test vectors so
that other test vectors become redundant,
e.g., ROTCO7), essential fault pruning8),
two by one3), essential fault reduction6).

Generating a smaller initial test set using dy-
namic compaction is very time consuming be-
cause many trials of test generation fail. Once
all input values of test vectors were specified,
it is difficult to modify the test vectors with
cost effective manners. While the second ap-
proach in the above such as reverse order fault
simulation can do that, the size of the obtained
test sets is still large if the size of the given
test set is large. The third appoach, such as
the two by one algorithm and essential fault re-

† Department of Computer Sciences and Electronics,
Kyushu Institute of Technology

†† Center for Microelectronics Systems, Kyushu Insti-
tute of Technology

††† Electrical and Computer Engineering Department,
University of Iowa

duction, can bring close to minimum test sets,
but take a large computation time, because the
search space for modified test vectors of these
methods is large.

In this paper, we present a new test com-
paction procedure based on identification and
reassignment of don’t care (X) input values of
a given test set. Given an initial test set in
which input values of test vectors have been
specified to either 0 or 1, we identify X in-
puts of the test vectors as described in Ref. 9).
The procedure we propose is one of the typi-
cal application in Ref. 9). Then, we reassign
appropriate logic values to the X inputs by us-
ing static compaction techniques. In the static
compaction part, we construct an incompati-
bility graph of the test vector with X values,
and solve the coloring problem for the graph.
A solution of the coloring problem implies how
to merge the partially specified test vectors to
achieve static compaction.

2. Definitions

In this work we consider a test set for sin-
gle stuck-at faults of a combinational circuit or
a full-scan sequential circuit. We define some
terminology used in this paper below. Given a
test set T , if any fault detected by test vector
ti in T is detected by at least one test vector
in T -{ti}, ti is called a redundant test vector.
When ti is redundant, fault coverage of T -{ti}
will be the same as that for T .

3. Overview of the Proposed Method

In Fig. 1, we explain the flow of the proposed
test compaction procedure using the state of a
test set during the compaction process. Fig-
ure 1 illustrates how a given test set is changed.
Given a test set in which all input values has
been specified (Fig. 1(a)), we first identify don’t

1290



Vol. 43 No. 5 A Method of Static Test Compaction Based on Don’t Care Identification 1291

t1 11100
t2 10111
t3 10110
t4 00010
t5 11001

t1 X11X0
t2 10X1X
t3 X0110
t4 00X10
t5 1X0X1

t1 X11X0
t2 10110
t3 00X10
t4 1X0X1

t1 11100
t2 10110
t3 00110
t4 10001

t1 11100
t2 10110
t3 00110

Given tests
(a)

Tests with Xs
(b)

Static comp.
(c)

Random fill
(d)

Minimal tests
(e)

Fig. 1 State of test set.

a

b

c

f

g

d

e

Fig. 2 Example circuit.

cares of the test set (Fig. 1(b)). Next we ap-
ply static compaction to the test set with Xs
(Fig. 1(c)), where some compatible test vec-
tors are merged into one test vector. Then we
fill the remaining unspecified values randomly
(Fig. 1(d)). Redundant test vectors are elimi-
nated using double detection fault simulation3)

(Fig. 1(e)).
3.1 Don’t Care Inputs of Test Vectors
Given a test set in which all inputs of test

vectors were specified to either 0 or 1, some pri-
mary input values may be changed to opposite
logic values without losing fault coverage. We
can regard such input values as don’t care (X).
An example is shown using Fig. 2, Table 1 and
Table 2. For the circuit in Fig. 2, suppose that
test set T in Table 1 is generated. Test set T ′
in Table 2 is obtained as a test set with Xs.
Regardless of values of Xs in Table 2, T ′ keeps
100% fault coverage.

A method to identify X inputs of test vectors
has been presented in 9). In the method, fault
simulation and procedures similar to implica-
tion and justification of ATPG algorithms are
employed with restrictions so that the obtained
test set T ′ covers the original test set T . Static
compaction is the most typical application in
9).

3.2 Incompatibility Graph
After identifying Xs of a given test set, we

apply static compaction for the test set with
partially specified test vectors. An example
of static compaction is shown in Fig. 1(b) and
Fig. 2(c). Since test vector t2 and t3 of Fig. 2(b)
are compatible, they are merged into one test

Table 1 Given test set T .

a b c
t1 1 1 0
t2 1 0 1
t3 0 1 0
t4 0 1 1

Table 2 Obtained test set T ′.
a b c

t1 1 1 X
t2 1 0 1
t3 0 1 0
t4 X 1 1

t1 X11X0
t2 10X1X
t3 X0110
t4 00X10
t5 1X0X1

t1

t2 t3

t4 t5

Fig. 3 Example incompatibility graph.

vector t2 of Fig. 2(c). Note that two test vectors
are called compatible when there exists a test
vector covered by the two test vectors. In de-
ciding how to merge, we model partially speci-
fied test vectors in an incompatibility graph and
solve a coloring problem for the graph.

An incompatibility graph is a graph that rep-
resents relations of unspecified test vectors. A
vertex of the graph represents a test vector. An
edge between two vertices exists if and only if
two test vectors corresponding to the vertices
are incompatible. Figure 3 shows some par-
tially specified test vectors and the incompati-
bility graph for these test vectors. Test vectors
t1 and t2 are incompatible because the second
bits of the test vectors are different. Hence
there is an edge between the vertices corre-
sponding to t1 and t2. On the other hand, test
vectors t2 and t3 are compatible, that is, it is
possible to merge them into test vector 10110.
Hence there is no edge between vertices corre-



1292 IPSJ Journal May 2002

Table 3 Experimental results.

circuits #PIs init 1st iteration 2nd iteration final
#tests #tests #tests #tests #it
DDT COL DDT COL DDT

c432 36 54 48 46 40 40 40 40 2
c499 41 94 64 64 64 64 64 64 2
c880 60 78 54 50 44 43 41 37 5

c1355 41 129 95 95 95 95 95 95 2
c1908 33 150 124 124 123 123 123 123 2
c2670 233 142 101 101 98 97 94 94 3
c3540 50 207 153 153 147 146 142 131 8
c5315 178 186 117 98 92 88 87 84 4
c6288 32 38 29 29 28 28 28 28 2
c7552 207 290 209 184 176 173 171 161 7
s9234 247 480 377 203 200 193 189 158 7

s13207 700 586 481 283 279 273 273 271 4
s15850 611 500 435 181 180 174 173 142 11
s35932 1763 76 60 39 39 35 34 24 6
s38417 1664 1243 947 198 198 196 191 163 13
s38584 1464 854 627 239 239 227 226 193 9

Table 4 Runtime.

circuits 1st iteration 2nd iteration final
DDT IDX COL DDT IDX COL DDT

c432 0.04 0.10 0.01 0.03 0.09 0.01 0.01 0.29
c499 0.05 0.12 0.01 0.01 0.12 0.01 0.01 0.35
c880 0.11 0.24 0.00 0.04 0.20 0.00 0.04 1.25

c1355 0.30 0.57 0.02 0.07 0.56 0.03 0.07 1.68
c1908 0.52 1.13 0.08 0.20 1.12 0.07 0.11 3.28
c2670 0.53 1.99 0.09 0.32 2.19 0.09 0.33 7.97
c3540 2.33 4.45 0.14 1.07 4.31 0.13 1.04 45.09
c5315 2.37 5.63 0.15 0.86 4.71 0.08 0.38 23.84
c6288 3.88 1.80 0.00 2.08 3.04 0.01 1.03 12.02
c7552 5.46 16.17 0.58 2.05 14.22 0.27 1.95 114.12
s9234 10.05 31.78 3.28 2.68 18.23 0.61 2.52 155.27

s13207 18.00 60.35 24.59 5.16 32.27 3.24 1.04 232.43
s15850 12.43 63.51 12.23 2.75 29.72 0.42 2.66 370.51
s35932 17.27 29.75 0.26 2.35 22.09 0.07 4.36 158.34
s38417 125.25 342.36 453.38 5.46 89.00 0.74 5.36 1965.05
s38584 85.19 240.71 102.09 5.13 103.88 1.78 9.52 1229.05

sponding to t2 and t3.
3.3 Vertex Coloring Problem
For the incompatibility graph obtained, we

assign a color to each vertex of the graph such
that any pair of adjacent vertices have different
colors. From a solution of the coloring problem,
we can find that test vector ti represented by
vertex vi can be merged with other test vectors
whose vertex color is the same as of vi. For ex-
ample in Fig. 3, color c1 is assigned to t1, color
c2 is assigned to t2 and t5, and color c3 is as-
signed to t3 and t4. As a result, the given five
test vectors can be reduced to three test vec-
tors. There are some assignments of colors in
general. While the vertex coloring problem is
to find an assignment of the minimum number
of colors, it is very time-consuming to find the
minimum number of colors. In the proposed
method, we assign colors to each vertex in or-

der of the number of edges incident on it.

4. Procedures

Given a test set, the proposed test com-
paction procedure is as follows.
Step 1: Apply double detection fault simula-

tion3) to the given test set so that the test
set becomes minimal.

Step 2: Identify Xs of test vectors.
Step 3: Apply static compaction, which is re-

duced to the coloring problem, for an in-
compatibility graph of the test set.

Step 4: Fill the remaining Xs with binary val-
ues randomly.

Step 5: Apply double detection fault simula-
tion to the resulting test set so that the test
set becomes minimal.

Step 6: If the test set was compacted at Step
3, then return to Step 2. Otherwise stop.



Vol. 43 No. 5 A Method of Static Test Compaction Based on Don’t Care Identification 1293

5. Experimental Results

We implemented the proposed method on
SUN Ultra 5 workstation using C program-
ming language and applied it to ISCAS’85 and
full-scan version of ISCAS’89 benchmark cir-
cuits. Table 3 and Table 4 show the results
obtained. Note that initial test sets used in
this experiment are the ones generated by a
SOCRATES-based test generator without any
test compaction techniques.

The first three columns of Table 3 give the
circuit name, the number of primary inputs
and test vectors of the initial test set. The
column headed “1st iteration” and “2nd iter-
ation” show results when the proposed proce-
dure was applied once and twice, respectively.
The column headed “final” shows results by it-
eratively applying the procedure until no more
compaction is obtained. The columns headed
“DDT” and “COL” show the the number of test
vectors after double detection and static com-
paction based on soloving the coloring problem,
respectively. The column headed “it” gives the
number of iterations performed. Table 4 gives
CPU time of each process, where the column
headed “IDX” means identification of X inputs,
and the last column headed “final” shows run-
time included iteration processes in Table 3.

The proposed method could reduce the num-
ber of test vectors for every circuit. Especially,
large number of test vectors were removed by
the proposed static compaction method from
test sets for larger circuits such as s38417 and
s38584. We could apply the procedure itera-
tively until further reduction becomes impos-
sible. Table 4 shows many iterations of the
proposed method is time-consuming. Hence we
may stop iterations when we want to do.

6. Conclusions

We proposed a new method of test com-
paction by don’t care identification and reas-

signment. The reassignment was done using
static compaction technique that solves a color-
ing problem for an incompatibility graph. We
iteratively applied the compaction procedure
until further compaction becomes impossible.

References

1) Goel, P. and Rosales, B.C.: Test Generation
and Dynamic Compaction of Tests, Digest of
Papers 1979 Test Conf., pp.189-192 (1979)

2) Pomeranz, I., Reddy, L. and Reddy, S.M.:
COMPACTEST: A Method To Generate Com-
pact Test Sets for Combinational Circuits,
Proc. Int. Test Conf., pp.194-203 (1991).

3) Kajihara, S., Pomeranz, I., Kinoshita, K.
and Reddy S.M.: Cost Effective Generation
of Minimal Test Sets for Stuck at Faults in
Combinational Logic Circuits, IEEE Trans. on
Computer-Aided Design, pp.1496-1504 (1995).

4) Kajihara, S. and Saluja, K.K.: On Test Pat-
tern Compaction Using Random Pattern Fault
Simulation, 11th IEEE International Confer-
ence on VLSI Design, pp.464-469 (1998).

5) Schulz, M., Trischler, E. and Sarfert, T.:
SOCRATES: A Highly Efficient Automatic
Test Pattern Generation System, IEEE Trans.
on CAD., pp.126-137 (1988).

6) Hamzaoglu, I. and Patel, J.H.: Test Set Com-
paction Algorithms for Combinational Cir-
cuits, ICCAD, pp.283-288 (1998).

7) Reddy, L.N., Pomeranz, I. and Reddy, S.M.:
ROTCO: A Reverse Order Test Compaction
Technique, 1992 IEEE EURO-ASIC Confer-
ence, pp.189-194 (1992).

8) Chang, J. -S. and Lin, C. -S.: Test Set
Compaction for Combinational Circuits, IEEE
Trans. on Computer-Aided Design, pp.1370-
1378 (1995).

9) Kajihara, S. and Miyase, K.: On Identifying
Don’t Care Inputs of Test Patterns for Com-
binational Circuits, Int’l Conf. on Computer
Aided Design 2001, pp.364-369 (2001).

(Received September 17, 2001)
(Accepted January 16, 2002)


