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1. Introduction

Scheduling problems are both classic and new. They are
classic since they were recognized many years ago as a challenge,
especially in the field of manufacturing. They are new in that
their environments have changed in two important aspects: (1)
the newly emerging concept of flexible manufacturing systems
(FMS) that require complex decision-making has introduced
more complexity into scheduling problems, and (2) to cope with
this complexity, it has become essential to use highly advanced
computer systems.

A scheduling problem is characterized by two difficulties.
One is combinatorial explosion: an n-machine, m-job problem
has (m!y* possible schedules, so that without elaborate and in-
telligent methods, a prohibitively large number of cases must be
checked. The other is the diversity of conflicting constraints: a
problem is usually constrained by due date, cost limits, pro-
duction levels, machines, order characteristics, resources, and
other factors.

Scheduling problems have been extensively studied by a
technique called Operations Research (OR). OR is an analytical
method for obtaining an optimal solution by modelling. Re-
cently, many complex problems have been investigated by using
Artificial Intelligence (Al) techniques, since it is very difficult to
address them by using analytical methods and conventional
computer technologies. One important success in the field of
Al is Expert Systems (ES), also known as Knowledge-Based
Systems. ES exploit human experts’ knowledge represented in
the knowledge base.

The purpose of the present paper is to propose a new ap-
proach to scheduling problems that uses a rule-based system
with deterministic algorithms in an engine. In section 2, an ac-
tual scheduling problem for steel-making processes is described.
In section 3, a basic Al approach and analytical solutions are
presented. In section 4, a rule-based system with Dynamic
Programming and Linear Programming engines is proposed.

2. Scheduling Problem in Steel-Making Processes

2.1 Steel-Making Processes

There are three major manufacturing processes: iron-
making, steel-making, and rolling. Our target process is steel-
making, which consists of converters, refining devices, and
continuous casters.

2.2 Constraints

Typical constraints for the steel-making process are as fol-
lows:
1. Fixed sequence of process stages
2. No process overlaps
3. Continuous processing
4. Waiting time limitation

2.3 Objective Functions

The following criteria are related to the quality of the sched-
ule:
1. Waiting time minimization
2. Total lots maximization

3. Approaches

3.1 Basic AI Approach

Our Al approach to making a schedule that satisfies the
above constraints is not to get an optimal solution, but to get a
feasible solution efficiently. The reason for this is that there
could be several objective functions for determining optimality,
and that a combinatorial explosion might prevent a schedule
from being obtained in a reasonable time. We introduced a co-
operative scheduling method, in which the system efficiently
generates a candidate schedule by a subscheduling and merging
method, and the user evaluates and modifies the candidate
schedule by interactive refinement. Figure 1 shows the flow of
cooperative scheduling. More details can be found in [1].

( Subscheduling

Figure 1 Scheduling Flow

We start off with an almost-good order of subschedules.
However, the solution is infeasible, because some of the oper-
ations are overlapping. The system helps the user to make a
global decision by maintaining the local constraints, that is, the
system generates possible schedules, each of which is then
checked by the user against his evaluation criteria, such as total
waiting time, to test whether it is satisfactory or not. If not, the
system revises the schedule, the user checks it again, and so on.
There is no guarantee that a solution has short waiting times.
Evaluation of the total schedule is left to the user.
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3.2 Analytical Solution

The following two programmings provide a method of
computing an analytical solution. We would like to minimize
the max. of waiting times as well as to find a feasible solution.

3.2.1 Dynamic Programming

A subschedule, which consists of three or four lots, and looks
like one in Figure 2. We suppose that a pair of subschedules
that are separated by two subschedules are independent.

) ) converter
1 ' \
! \ 1
1 \ 1 fini
refining
i

t i 1

! ¢ Vo caster

= Y L

Figure 2 Subschedule

First, the following notation is introduced.

Notation
m: Number of subschedules
S, = Set of k subschedules
T, : Time penod [0, T}] in which the first (m — k) subschedules
should be scheduled
=T, —-T,T,=0
RS T Prescr 13 Gm—k=2) Gmnmstemts Gni) :
Minmax of waiting times of the last k( € S,)subschedules
starting with subschedule p,,_,,, ,when (m — k) subschedules
in a period [0, 7] are optimally scheduled and when the
the (m — k — 2)th, )n — k — D)th, and (m — k)th
subschedules are ¢,,_;_3, ¢n-x-1» and gq,,_,, respectively.
fs"('_slu T Gni=20 Dk~ 13 i) ©
Minmax of fS;, T, Pkt 1+ Immk=2 In—k=1» Im— &)
over all possible subschedules of p,. x4,
wi{(T, a, b, ¢) : i waiting times when a, b, and ¢ subschedules
are scheduled in a time span T’

The recursive equation of a dynamic programming formu-
lation is given by

3
S St Toos dm—kc—20 Gm—k—1 Im—1)
_ Minmax

Pm—k+1€Sk
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k=1,..,m—3)
Prior to the application of the recursive equation, we can
compute wi(T, a, b, ¢) for
mx (m—1) x (m—2)
permutations of subschedules.

At stage k, there are (™
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number of equations at stage é‘ is

mx(m—l)x(m—-2)x(m;3>.

) different S, ’s. Thus, the

The total number of equations is
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3.2.2 Linear Programming

When we are given three subschedules in a time span T, we
must have a method of finding the best assignment of those
subschedules. This can be done by linear programming.

The objective function:
Minmax {wi}
i
Subject to:

Inequalities of non-overlapping conditions

The objective function does not seem to be linear. However,
by letting Z = maxw’, we can convert the problem to a linear
programming prdblem with an objective function Min Z and
additional constraints w* < Z .

4. Rule-Based System with DP and LP Engines

As we saw in section 3.2, we can obtain an optimal solution
by the use of dynamic programming and linear programming,
at the cost of a tremendous amount of computation time. In
practice, however, we may not be able to reach an optimal sol-
ution because of the severe limitation of computation speed.

We here propose “a rule-based system with DP and LP en-
gines for solving a scheduling problem.” The architecture of this
rule-based system is depicted in Figure 3.
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Figure 3 Architecture of the Proposed Rule-Based System

Heuristic rules can be used to exclude a number of unnecessary
and insignificant cases from consideration. Especially, rules
specific to the application area must be utilized. Dynamic pro-
gramming shell with powerful library routine of linear program-
ming gives the best solution from cases considered.
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