I HRAULEE 258 37 (RE HI634E 1% 1) 18 k&

725

Structure Editor Generator aspect of ALISE

3K-7

Yasushi Kambayshi

Mitsubishi Research Institute

Introduction

A Language Independent Structure
Editor(ALISE) is an interactive
programming environment which
supports the generation of structure
editors and development of programs by
using such structure editors.

In this paper, we present the structure
editor generator aspect of ALISE. The
editor generator in ALISE allows a user to
define an editor for his/her own language.
The editing procedure for a grammar is
done using the graphic feature available
in the Smalltalk programming
environment.

The Language Description

In order to instantiate an editor, a
description of the grammar for the
language to be edited must be created.
This is done through constructing a
structured template on a display screen by
choosing basic elements such as parallel
elements, refinement elements, and serial
elements, and typing key words.

The description of the language is also
structured information; it defines the
structure of the grammar of the target
language in the same way the grammar
expressed by the description defines the
structure of programs in the target
language. The description of the language
is described by the notation, which
contains the following basic elements:
parallel elements, refinement elements,
serial elements, and lexical elements.
Therefore the structure editor generator is
itself a structure editor, one which uses
basic elements to edit the grammer for the
target language.

The description of the language’s
syntax consists logically of two levels of
structure. One level provides a
description list, that is a list of the classes
of elements that can replace placeholders.
The classes represent the set of the legal
operators and the set of templates that can
replace placeholders in templates. The
other level provides a description of the
structure of each template. In this editor
generator, both levels are described in a
unified form. The basic description form is
as Figure 1.

(K%oni)——————l’aunnl

Refinemaent

Sarial

Figure 1: The basic description

The key words correspond to the left
hand side of production rule in a context
free grammar. The user specifies the
name of the template and the name of
class descriptions. This name used as the
language command name and in the menu
for programming phase.

Parallel structures represent both
inherent parallelism and flow of control
structures such as the case structure or
the if-then-else structure. Parallel
structures are also used for set notation.
In other words, parallel structure express
any disjunctive structures of a program.

Refinement structures support the
creation of a program by step-wise
refinement. By using this construct, a
single statement can be recursively split
into a sequence of statements. One
advantage of introducing this construct is
that a context-free grammar for the target
language can be defined very clealy.



726

Serial structures are merely used to
point to subsequent templates or
expressions. In other words, serial
structures express conjunctive structures
of a program.

To edit the language description,
ALISE provides a browser called ALISE
browser which is similar to the Smalltalk
standard system browser. The user uses a
pointing device and a pop-up menu to edit
the language description in this browser.

The Class Description

The classes are descriptions of legal
operators which users use to fill in the
placeholders in templates. The structure
editor uses this class information when
the user replaces a placeholder. It thereby
ensures the syntactic correctness of the
user’s replacement. .

Non-terminals are specified by using
angle brackets as shown in Figure 2.

<x§ist) (s%

<{stat> program empty
» »

<\p> <i?

<ident> numbar < > = + - * / string
’

,,,,,,,

IF ASSIGN CASE
) »

Figure 2: The class description

There is a set of primitive base types.
They need not be defined to be used in a
language description. These are “empty”,
“string” and “program”. When using
these base types, a user does not have to
define regular expressions every time
he/she defines a language description.

Structure of the Language

The main task for this editor generator
is the construction of the structure for a
language. This is done through building
the necessary templates for the language.
The user constructs the template he/she
desires from the basic components, the
parallel element, the refinement element,
and the serial element. The meta-

template is the basic description form
which a description of the grammar is
built, using the classes just defined.

On the ALISE browser, the user is
required to select “key word” from the pop-
up menu and to specify the name of it first.
This specified key word becomes to be a
template name then to be stored in ALISE
environment. Then the user chooses one
of the basic elements at a time to construct
a template. When the user selects “key
word”, the cursor appears at the current
node and waits for some text to be typed.
When the user selects “parallel”,
“refinement”, or “serial”, a horizontal line,
oblique line, or vertical line appears
respectively on the workspace. To define a
statement which has an optional field,
such as the CASE statement, the user has
to define two templates, one is for the
mandatory part and other is for the
optional part. Also one class description is
required to ensure legal replacement. The
Figure 3 shows an example of CASE
template. Placeholders are indicated with
angle brackets.

CASE

i<——<canoptlun> [Kp‘_—'"‘““'wﬂlon)

Caxp> <axp>

<statlistd> <statlistd

(c&ptlon)

CEXP empty

Figure 3: CASE template

Conclusion

The basic elements of the editor
generator in ALISE is the essential
elements, and are as powerful and flexible
as BNF for the grammar description.
ALISE’s is much easier to understand
than BNF because of its graphical
representation.

Reference
Notkin, D. The Gandalf Project. Journal of
Systems and Software 5(2), May 1985



