AL 2 3717l (R RIG34E 1) 2 [A 2 599

2Y -1

Views in Object-Oriented Programming

T. Ohira and T. Kamimura
IBM Research, Tokyo Research Laboratory,
9-19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan

Abstract

COB(C with OBjects) is an object-oriented extension of
C developed at IBM Research, Tokyo Research Labora-
tory. Main emphasis of COB is on program organiza-
tion, compile-time type checking, reusability, and good
run-time performance. COB uses classes as the primary
means of organization and as the basic unit of object-
oriented prograrmming. One of the unique features COB
introduces is the notion of class views. The programmer
can use views to control the visibility of class informa-
tion and an appropriate balance between run-time per-
formance and the need for recompilation. This paper
" explains the notion of class views of COB in detail.

1.Classes

COB uses classes as the primary means of organization
and encapsulation. Classes are the basic unit of object-
oriented programming. They can also be used as mod-
ules in a standard sense to enéapsulate data and related
operations.

The following example displays the form of a class
definition. A class defines a data type; instances of the
data type are objects. A class definition is divided into
three sections: a common section, an instance section
and an implementation section. The common and in-
stance sections have private and public parts.

class stack {
common: :
private:
int stack_num=0;
void error(char *message);
public:
int number_of_stacks(void);
instance::
private:
char element[100];
int top;
public:
void inrit(voeid);
void push(char x);
char pop(void);

implementation:
void error(char *message)
{printf("Ys\n" ,message);exit(1);}

};

The common and instance sections contain data and
function declarations and definitions as their members.
The implementation section contains definitions of func-
tions declared but not defined in the previous sections.
The common members are shared by all objects of the
class; the instance members are created separately for
each object. Private members can be accessed only from
the inside of the class, i.e. from the bodies of mem-
ber functions; public members of the class are accessible
from anywhere In a program.

Variables of class stack can be declared as follows:
“class stack x, *p;”, where x is a variable of class
stack and p is a pointer variable to an object of class
stack. One can reference instance members by qualify-
ing them with the object, for example “x.push(?4?)",
and “p->pop()”. Omne can reference common members
using their names followed by “@” and the name of the
class. A public common function may be declared as
global; the name of a global function must be unique in
the global scope, unless the function name is overloaded,
so the the function may be referenced without “@” and
the name of the class.

COB supports multiple inheritance; an object of a
subclass inherits the instance members of all its super-
classes, both direct and indirect. Inheritance only affects
the instance section of a class.

The details of classes and multiple inheritance are
explained elsewhere[1,2].

2. Views

When a large program consists of many classes, each
class should have a well-defined interface, and should
be used only in accordance with this interface. It is
not always straightforward to decide what information
about a class should be specified in its interface. On the
one hand, an interface that contains a lot of detail per-

600

mits efficient and convenient access to the class. On the
other hand, an interface that contains too much detail
may have to be changed when the implementation of the
class is changed, in which case the programs that rely on
the interface may have to be changed as well. The proper
level of detail in the interface depends on the priorities
assigned to efficiency, convenience, and modularity.

In principle, the class declaration of a class can be
used as the class interface. There are two problems with
this. First, the compiler uses the class declaration not
only to determine what operations on the class {such as
variable accesses and function calls) are permitted, but
also how the class should be represented. As a result, a
class declaration generally contains too much detail to
serve as an interface. Second, no single class declaration
can contain the right details to serve as an interface
for all possible uses of the class. For this reason, COB
supports class views. v

A view of a class resembles the declaration of that
class, except that it contains only a subset of the public
functions and variables available in the original class. A
view can also specify superclasses that may be a subset
of superclasses defined in the original. A program that
uses a class view as the interface to that class can use
the class only through the functions and variables visible
through the view. As a result, the program does not
need to be changed when the declaration of the class is
changed in a way that does not affect these functions
and variables. A class can have any number of views
and each such view is treated as a type different from the
original class. An object variable or a pointer variable
that accesses an object through the interface given by a
view must be declared to be of that view type. Different
views of the same class as well as the original class are
assignable to each other; hence objects can be assigned

to variables of these types without cast operators.

3. Committed and Delayed Bind-
ings

Views are widely used in databases; their application to
object-oriented languages was suggested by [3]. COB ex-

- tends the notion of views by placing the time of binding
between a view and the original class under programmer
control.

A program that uses a class view may request either
committed or delayed binding. In committed binding,
the compiler uses the actual class declaration to deter-
mine the representation of the class at compile-time; in
delayed binding, the compiler generates code that will
determine the representation of the class at run-time.
This allows the programmer to choose an appropriate
balance between run-time performance and the need for

recompilation. The time of binding does not affect the
semantics of the program using the view.

Committed binding requires information on the orig-
inal class be available in the compilation unit in which
the view is declared and used. This is typically enabled
by creating a header file containing the original declara-
tion and by including the header file into the program
using the view. With committed binding, the compiler is
able to determine the object representation of the class
given by a view.

When the original information is not available in the
compilation unit, the compiler assumes delayed binding.
In this case, the user program must be able to determine
the representation of the class at run-time. This is done
using the view table for the view in question. The view
table contains an address or an offset for each function
and each variable visible through the view. Given a class
declaration and a class view of that class, it is possible
to construct the view table for that view. This process
is called view compilation. View compilation is typically
performed by compiling a header file containing both an
original class declaration and a view declaration.

These two bindings have essentially the same seman-
tics; a program using delayed binding produces the same
result if the binding is changed to committed binding.
With delayed binding, however, it is not possible to cre-
ate an object in the stack, nor to introduce its subclasses.
These restrictions are necessary as the representation is
not determined at compile time in delayed binding. Ob-
jects of the class given by a view can still be created in
the heap in this case.

Committed binding has an advantage in that access
to members of objects of the class is as efficient as using
the original class, while it is disadvantageous as a change
on the original class declaration will make recompilation
of the user program of its views necessary. On the other
hand, delayed binding is slightly slower and use of views
is restricted, but a change on class declaration will not
affect the program using its views if views remain the

same. It simply needs recompilation of view tables.

References

[1] Kamimura, T., et al., An Overview of COB, JSSST
WOOC ’88, March, 1988.

[2] Kamimura, T., Object-Oriented Eztensions of Pro-
cedurl Languages. Joho-Shori, vol.29, no.4, pp310-
317, 1988.

[3] Hailpern, B. and Nguyen V., A Model for Object-
based Inheritance, IBM Reserach Report RC12481,
January, 1987.

