TE IR IR 2 2 5 37 [(R RI634F- 14 1)) & F K&

107

DESIGN OF AN OBJECT BASED MULTIPROCESSOR SYSTEM

3N -6

S. Watari, L. Nagamatsu, I. Morishita

Department of Engineering, University of Tokyo

1. INTRODUCTION

This paper gives an outlook of the design of a
parallel object-based system, with special con-
siderations on the communication aspects,
regarding both computational model and imple-
mentation architecture. .

The system primitives are designed to be suf-
ficiently general to allow experiments with
several kinds of object based languages. Con-
cerning objects granularity, our purpose is to
start experimenting with relatively small objects
(medium-sized C programs), and then gradually
improve the architecture design for giving sup-
port to finer grain objects.

From the architecture standpoint, our targets
are tightly-coupled multiprocessors. As detailed
in SECTION 4, we have given special support
for synchronization between objects, introducing
a special hardware for managing a global object
table. :

2. OBJECTS AND ACTIVITIES

The central concepts of the system are objects
and activities. An object abstracts a particular
aspect (either a concrete "thing" or a concept)
of the real world. It is the unit of modularity in
the system and encapsulates both the data
representation and the behavioural representa-
tion (i.e., procedures, functions, etc. that act
upon the data). An activity abstracts the
actions taken by an object in the system, i.e., an
activity is the system representation of the
dynamic behaviour of the object.

The concept of activities has helped us to
understand (and also to implement) paralellism.
Each activation of an object, be it sequential or
parallel, is represented by an activity. Therefore,
a typical object can have many activities associ-
ated with each concurrent (potentially parallel)
execution.

Problems in parallel execution of objects
arise when we allow objects that change their
internal state to be shared among other objects.
With regard to the state of the object, the sys-
tem supports two kinds of objects: history sensi-
tive objects, whose internal state depends on the
activation - and non history sensitive objects -
whose internal state does not change between
successive activations.

Non history sensitive objects can be shared
without restrictions. It can be activated any
time, by any object (once the activating object
possess the necessary rights).

History sensitive objects must be synchronized
their activations if their internal state is to be
kept consistent. Regarding mechanisms for con-
trolling activations, the system supports two
kinds of history-sensitive objects: atomic objects
and quasi-atomic objects. Atomic objects do not
allow simultaneous activations. Their entrance
are serialized, and at any time, there is at most
one activity representing its execution. Quasi-
atomic objects allow simultaneous activations,
but only in particular points of their execution.
The name is boorowed from the concept of
quasi-concurrency, and the mechanism of control
required to synchronize quasi-atomic objects
closely ressembles monitors, a way how mutual
exclusion and synchronization on quasi-
concurrent processes are implemented.

3. INTER-OBJECT COMMUNICATION

Objects are activated by sending them messages.
In our system implementation, rather than con-
sidering synchronization signals as single-slot
messages, we have decomposed the message
passing mechanism into two parts: the synchron-
ization part and the data transfer part. The
same mechanism handles both pure synchroniza-
tion signals (as those utilized in a monitor for

condition variables) and the synchronization for
activation of/return from objects.

The synchronizing primitives provided by the
system are wait and signal. They are capable of
implementing both semaphore operations as well
as monitor’s operations on condition variables.
For supporting special types of activations and
returns, they allows for multiple signals (broad-
casting) and multiple waits. The basic function
of wait is to temporarily stop execution of an
activity. Signal can either be the synchronization
part of an activate message or utilized to restart
(awake) a stopped activity.

With regard to synchronization, the system
provides for two kinds of activations, namely
synchronous and assynchronous. Assynchronous
invocation is performed with a primitive opera-
tion with a syntax like this:

108

activate(target object, entry method, ...)

When a further result is needed, the invoking
activity executes an accept primitive with an
argument specifying the event condition associ-
ated to the result. The invoked object executes a
return primitive for sending back the required
result.

Synchronous activation always require a
return message from the invoked activity. It is
supported by a call primitive, which is quite the
same as performing the two assynchronous prim-
itives, activate and accept, in sequence.

4. PROTOTYPE ARCHITECRURE

The main distinctive characteristic of the proto-
type system is the adoption of a micropro-
grammed Central Event Synchronizer (CES)
linked to each computer module by a common
bus (EBus, for Event Bus). The CES holds a
centralized global object table. Each computer
module has a relatively autonomous processing
capacity, with a processor element and a local
memory for holding object’s code and data.

Though there are arguments against central-
izing a heavy-used feature such as the global
object table, there are some motivations for
doing so.

In an environment where objects are sup-
posed to be created and deleted dynamically, at
every time, there are needs for managing the
name (i.e., the precise location of the object) in
a centralized way. The approach we have
adopted is to try to reduce the centralized part
to a minimum and give architectural support for
avoiding traffic congestion. The central table
and the Ebus serve the only purpose of handling
synchronization between objects. Data transfer,
the other aspect of inter-object communication,
is carried out through a second transportation
medium, eventually slower than EBus.

5. CURRENT STATUS OF THE PROJECT

- The prototype system is being implemented on a
multiprocessor system with three MC68020s.
The CES is an extension of the unit developed in
an earlier project [KOTOKU87]
[NAGAMATSUS87] with additional capabilities
for handling a global object table and
parameterized inter-computer module signals.

An emulation system is being coded on a
SUN workstation running UNIX. Both systems
are being coded in G++4, a GNU version of C++

SYSTEM CONFIGURATION

Central Event Synchronizer

General Object
Queue Table
A A

Controtler

Event-Bus

7

l__J:

Local
PE o> Memaory
CUHF;UTER
MODULE DATA TRANSFER
MEDIUM
[STROUSTRUP86]. The same language,

extended with concurrency features, is planned
to be implemented on the system.

REFERENCES

[KOTOKU87]
Kotoku, T., The Design and Implementa-
tion of a Synchronization Management Unit
for Multiprocessors (in Japanese), Depart-
ment of Mathematical Engineering and
Information Physics, University of Tokyo,
Master Thesis, 1987.

INAGAMATSUS8T]
Nagamatsu L., Kotoku, T., Watari, S., and
Iwao, M., Event and Process Management
Hardware on a Multiprocessor Environment
(in Japanese), Proc. JIPS 35'th National
Conference, 1987.

[STROUSTRUPS6]
Stroustrup, B., The C++ Programming
Language, Addison Wesley, 1986.

