W &4 33 (RM61E %) 2F A2 13417
NEUE T SR PE AR B I B S < B T a S X > 2 ‘

4M-1

el 3 [0

(B FHi S > € a — X B S M

ABSTRACT

A simple constraint language is designed
ir2luding equality and basic arithmetic relations.
Constraints can be defined in the language by
the user. An interpretation is given to the
language based on the famous "freeze” control
predicate. The basic idea for construction of the
i terpreter is to define the set of standard
logical connectives “and”, "or”, "nol”, and so on
in lazy evaluation principle by using the Treeze.

INTRODUCT 1ON

Complex structure and constraints form a very
basic framework for designing complex problem
areas like natural language processing. Various
instances of this paradigm can be easily seen in
recent computational linguistics and semantics,
for example.

A brief explanation is given here about how to
extend Prolog to have a more flexible power in
describing structure and constrdint. Qur solution
to the representation part is partial specified
term, which is a kind of extension to the usual
tern. The other solution to the”constraint” part

is "lazy evaluation” based on fréeze(Colmcrauer 82).

Though our main intention is mixed use of both
constraints and structures, we must concentrate
here on how to build such a constraint system'on
top of Prolog.

What is constraint? For our purpdse, we give it a
restricted characterization as follows: 1) [t has
a declarative semantics. 2) Positve and negative
,.onstraint are treated symmetrically., 3)
Interpretation of the constraint is done without
deep backtracking. ’

The proposed constraint sublanguage of an extended
Prolog is so simple and natural, and has a so
clear declarative semantics that it will be a
useful set ol constraints.

It should be noted, however, that "freeze” based
system can not derive the contradiction from such
like conjunction x=y and x#y unless both x and y
become to be ground. This suggest that the ‘
sublanguage would be a middle level seLkof‘
constraints.

FREEZE(BIND_HOQK)

The goal of the form "freeze(X, p(X))” means

that the embedded goal p(X) is suspended while X
is unbound, where X is a variable and p(X) is

an executable goal. It is easy to see that the
predicate can be uscd as the primitive for both
stream and conroutine conroutine programming.

CONSTRAINT INTERPRETATION

"Constr” is the main predicate for constraint

interpretation, For a constraint expression a«,
boolean expressions B, yand &, the mcaning of
of the goal of the form of constr(a,B8,v,8) is
explained as [ollows.

«:a given constrainl expressin,

B8,y,06 :true,fase,undermined.

The operational meaning, on the oterhand, is
explained by listing a portion of top level part
of the actual definition in DEC-10 Prolog.

v=true if a is proved Lo truc.
y=false if a is proved to be fasle.
v =undetermined: otherewise.
Both of 8 and & arc used as control information,

?-constr(l=2, true, _, _) =) (fail)
?-constr(X=1, true,) =) X=1

?-constr(X=1, false, _, _) =) X is still unbound
?-constr(X=1l, _, _, _) =) X is still unbound
9-constr(X\==2, false, U,). =) U = lalse, X = 2
9-constr(1+X=:=Y, , ,), ¥Y=4 =) X =3, Y = 4
?-constr(1+X=\=Y), X=3, ¥=4 =) (fail)

B

A PORTION OF TIE DEFINITION.

constr(X,P,Q,R):-bound(R),!.
constr(X,P,Q,R):-unbound(X),!, X=P, X=Q.
constr(true,P,Q,R):-!,P=true,Q=true.
constr(false,P,Q,R):-!,P=true,Q=false.
constr(not(A),P,Q,R):-!,

not(V,P),

not(4,Q),

constr(A,V,U,R).
constr((4,B),P,Q,R):~!,

and(X,Y,P),

and(Z,U,Q),

constr(A,X,Z,R),

constr(B,Y,U,R).
constr(and(A,B),P,Q,R):-!, % Sequential "and”

Constraint Programming based on Lazy Boolean Predicates

Kuniaki ‘Mukai

Institute for New Generation Computer Teéhnology

1348

and(X,Y,P),

and(Z,U.Q):

constr(A,X,Z,R),

freeze(Z, constr(B,Y,U,R)).
constr(assign(X,Y), P, Q, R):-1,

assign(X,Y,Q,R),

P=Q.
constr(X=Y,P,Q,R):-!, equal(X,Y,P,Q,R).
constr(X\==Y,P,Q,R):~!,constr(not(X=Y),P,Q,R).
constr(X=:=Y,P,Q,R):~-!,

and(P1,P2,P),

and(Q1,42,Q),

exp(X,T,P1,QL,R),

exp(Y,T,P2,Q2,R).
constr(X, P, Q, R):- %user defined

defcon(X, Y),

constr(Y, P, Q, R).

LAZY BOOLEAN PREDICATES

This secion is a technical core of the paper.
Basic idea is explained with the following simple
example: and(X, Y, Z):-Z= {Y&Z)

?9- and(X, Y, Z), Z = true.
=) X = true, Y = true, Z = true
?- and(X, Y, false). =)X and Y are undelermined.

Note that in this case there is an ambiguity in
the possible values of (X, Y) from the Boolean
logical law. The following are sample definitions
of these lazy Boolean predicates.

not(X,Y):~
frecze(X,pv(F,if(X,¥Y=false,Y=true))),
freeze(Y,pv(F,if(Y,X=false,X=true))).

and(X,Y,Z):-
freeze(X,pv(F,if(X,Y=2,2=false))),
freeze(Y,pv(F,if(Y,X=12,2=false))),
freeze(Z,pv(F,if(Z,(X=true,Y=true),
andx(X,Y)))).
andx(X,Y):-
freeze(X,if (X, Y=false)),
freeze(Y,if(Y, X=false)).

if(true,X=Y,_):-1,X=Y.
if(_,_,X=Y):=X=Y,

pv(F,_):~bound(F),!.
pv(1,X=Y):-X=Y,

LAZY EQUALITY

The special case of the form constr(X=Y, Z, U, V)
is reduced to equal(X, Y, Z, ‘U, V). The following
is its procedural interpretation: 1) Check
equality between X 'and Y in lazy way,

The result(true/false) will be returned to U, 2)
When "true” is given to Z, X and Y are unified
immediately. X and Y should be different from
each other if "false” is given to Z. 3) Whenever V
is bound, there is no need to continue this
checking.

?- equal(X,Y,false,A,B), X=1,Y=4,
=) X=1,Y =4, A = false, B = _91

ASSIGNMENT

The predicate called ssignment is internal
predicates for restricted uses. Argument passing
is a main intention of its use. It lookes like an
extension of the assignment in the programming
languages FORTRAN, for instance. The unification
works both ways as follows: unify(f(X,1), f(2,Y))
=) X=2, ¥Y=1. On thec oter hand, assignment works
only a specified way: assign(f(X,1), F(2,Y)) =)
Y=1 (X: unbound) Restricton:Each variable is not
allowed to occur more than once in the sccond
argument: the form "assign(f(A,g(B)), F(Z,4))" is
not allowed.

SEQUENTIAL CONTROL

We of ten need some sequential controls for
constraint evaluation. For example, Let us
consider the following definition of the
"member”.

member(X, (X[_1).
member(X, (_1Y)):-nember(X, Y).

We can deline. a constraint version, say it
" ” o ¥ . . .
mem”, of the predicate in our language as follows:

defcon(men(X,Y),
and(assign(Y, (H|T1)), (X=H#: mem(X, T)))).

The body of this definition tells, by using the
sequential "and”, that "parameter passing” must
be prior to the evaluation of the body.

?- cénstr(mem(X.[YlZJ). true, A, _), Y%I,IZ=[U, BJ,
X=2,B=3. =) U =2, A = true, X=2,B=3,Y=1,
7 = (2,3)

9- constr(men(X,(Y|Z)), lalse, A), Y=1, Z=(U, B),
X=2,B=3, =) X = 2, B = 3,Y = 1

REFERENCE

(Colmerauer 1982) A. Colmerauer: Prolog 1II:
Reference Manual and Theoretical Model, Internal

" Report, Groupe Intelligence Artificielle,

Universite d’ Aix-Marseille 11, 1982.

