
Vol. 43 No. 11 IPSJ Journal Nov. 2002

Regular Paper

Reusable Mobile Agents for Managing Networks

Ichiro Satoh†

Mobile agents can migrate among nodes to perform a set of management tasks at each of
the visited nodes. Existing mobile agent-based network management systems often assume
that their mobile agents are designed to work in particular networks to raise the efficiency of
agent migration among multiple nodes. Unfortunately, such mobile agents cannot be reused
in different networks. This paper proposes a framework where a mobile agent for network
management is composed of two kinds of software components, a itinerary part and a be-
havioral logic part. Both components are implemented as mobile agents. The former is a
carrier designed for particular networks, and it can efficiently navigate other mobile agents
among nodes in its target network. The latter defines management tasks performed at each
node independently of any local network. This framework allows a mobile agent for network
management to be reused in various networks without being modified. A prototype imple-
mentation of this framework and its application were built on a Java-based mobile agent
system.

1. Introduction

Mobile agent technology provides a solution
to the flexible management of telecommunica-
tion systems. Mobile agents can locally observe
and control equipments at each node by mi-
grating among the nodes. Mobile agent-based
network management has several advantages in
comparison with traditional approaches, such
as the client/server one. For example, they can
reduce network traffic and easily support dis-
connected operation. Moreover, the dynamic
deployment and configuration of new or exist-
ing functionalities into a network system are ex-
tremely important tasks especially as they po-
tentially allow outdated systems to be updated
in an efficient manner. Adopting the mobile
agent technology eliminates the need for the
administrator to constantly monitor many net-
work management activities, e.g., installation
and upgrading of software and periodic audit-
ing of the network. There have been several
attempts to apply this technology to network
management tasks.
However, there have been serious problems

associated with the development of mobile
agent-based applications, in addition to secu-
rity problems. Such applications are required to
migrate their agents among all specified nodes
efficiently to perform their own tasks at each
of the visited nodes, because the itinerary of
an agent greatly affects its achievement and ef-

† National Institute of Informatics/Japan Science and
Technology Corporation

ficiency. However, it is often difficult to dy-
namically generate an efficient itinerary among
multiple nodes, without having any knowledge
of the network. Even if a smart agent can cre-
ate an efficient itinerary based on its previous
processing and the current environment, such
an agent is not always be appropriate, because
both the cost of discovering such an itinerary
and the size of its program tend to be large.
Therefore, most existing mobile agent-based

applications explicitly and implicitly assume
that their mobile agents are statically designed
for their target networks for greater efficiency
of agent migration over the networks. However,
an agent optimized for particular networks can-
not be reused in other networks. This results
in an inevitable trade-off between the perfor-
mance and reusability of a mobile agent. Fur-
thermore, this problem becomes more serious
when mobile agents are used for network man-
agement. This is because network management
systems must often handle networks that may
have some malfunctions and whose topology
may not be exactly unknown. Consequently, it
is almost impossible for each mobile agent to ef-
ficiently migrate among nodes in such networks.
This is one of the reasons why there have not
been many attempts to use mobile agent tech-
nology in the domain of network management,
although the technology can be used in this do-
main.
This paper addresses several problems, in-

cluding the problem of a trade-off between the
performance and reusability of a mobile agent
in the development of mobile agent-based net-

3448

Vol. 43 No. 11 Reusable Mobile Agents for Managing Networks 3449

work management systems and proposes a new
framework for building mobile agent-based net-
work management systems in order to solve
these problems. The framework allows us
to build efficient and scalable mobile agents
for network management without losing their
reusability. Like other mobile agent-based net-
work management systems, the framework uses
mobile agents to implement network manage-
ment functionalities, but it allows each mo-
bile agent to be designed independently of any
network and dynamically change its itinerary
without modifying its application-specific be-
haviors. That is, when a mobile agent arrives
at an unknown sub-network, it can dynami-
cally obtain an itinerary statically designed for
the visited sub-network and thus can efficiently
migrate among the nodes on the sub-network.
The current implementation of the framework
is built on a Java-based mobile agent system,
called MobileSpaces13), which is unique among
existing systems because it hierarchically orga-
nizes multiple mobile agents.
This paper is organized as follows: Section 2

discusses the advantages of mobile agent-based
network management and the actual problems
associated with it. Section 3 presents the basic
ideas of the framework described in this paper.
Section 4 presents the design and implemen-
tation of the framework. Section 5 describes
practical applications of the framework and dis-
cusses its usefulness. Section 6 reviews some
related works, and Section 7 makes some con-
cluding remarks.

2. Background

To manage a network system, we sometimes
need to locally observe and control components
on multiple nodes in the system. Existing net-
work management systems essentially use the
client/server mechanism for their functionali-
ties. Such systems often suffer from poor scala-
bility due to an increase in the amount of com-
munication and the number of failures in nodes
and channels. In contrast, mobile agent tech-
nology can be used for a variety of network
management functions. Discussion on the ad-
vantages of mobile agents in network manage-
ment can be found in Refs. 4), 8). However,
in addition to the trade-off problem mentioned
in the previous section, there have been sev-
eral other problems with obtaining these ad-
vantages.
Reduction in network traffic and infor-

mation retrieval: Network nodes, including
gateways, databases, and sensors, often record
a large amount of data. In the traditional ap-
proach all the data recorded in remote nodes
must be frequently transmitted to a central
management systems. In contrast, since the
transmission of a mobile agent to data sources
creates less traffic than the transmission of the
data, mobile agent technology substantially re-
duces the network bandwidth for the collec-
tion and filtering of data from remote networks.
However, to take this advantage of this feature,
each mobile agent must be small, so it is usu-
ally designed for particular networks and tasks.
This is because even if a general-purpose and
adaptive mobile agent could be constructed, it
may not work well, because the execution cost
of such a sophisticated agent could be very high.
On-demand distribution of software: In
the client/server approach, static multiple
servers require duplication of functionality at
every node, which often has only limited re-
sources, such as CPU power and memory. In
contrast, a mobile agent resides only on one
node at a time while other nodes do not run an
agent if they do not need to. Such an agent car-
ries a management function to the node. There-
fore, it is not always necessary for every node to
have software for network management. How-
ever, if an agent does not know all the nodes to
which it must distribute software, it is difficult
for the agent to detect and reach all the nodes
on the fly.
Automation and fault tolerance: Each mo-
bile agent is a self-contained and autonomous
entity, so it can be controlled in a decentralized
manner and perform its management tasks in-
dependently of its source node. Consequently,
the technology can relieve the administrator
from the need to continuously monitor some
network management activities. Furthermore,
mobile agents can survive if moved closer to
resources, or away from partially failed nodes.
However, this often requires the central man-
ager to have knowledge about the network, be-
cause it is difficult for each agent to visit all the
required nodes and move away from malfunc-
tioning nodes to another node.
Direct manipulation: A mobile agent is lo-
cally executed on the node it is visiting, and it
can easily discover the types and functions of
devices on this node to directly control the de-
vices. This is helpful in network management,
in particular in detecting and removing device

3450 IPSJ Journal Nov. 2002

failures. However, we cannot take full advan-
tage of this feature because of a security mech-
anisms. Although there has been a lot of ef-
forts to solve the security problems of mobile
agent technology, most existing security mech-
anisms cannot be used for mobile agents in net-
work management, because they are designed
to restrict low-level procedure calls while such
agents often need to directly access low-level re-
sources.

3. Approach

The goal of this paper is to provide a frame-
work for building and operating mobile agents
capable of autonomously traveling among nodes
on multiple sub-networks to perform their man-
agement tasks at each node they visit.
To solve the above mentioned problems,

the framework introduces two types of mobile
agents: task agents and navigator agents, as
shown in Fig. 1. The idea was inspired by a
tour bus going around the sights of a town. A
task agent corresponds to a tourist, who takes
a tour-bus to visit sights in an unfamiliar town.
A navigator agent corresponds to a tour-bus
guide, who guides several tourists among the
places of the town.

step 1

Sub-network

Task Agent

Agent Pool Node C Node B

Node A

step 2
carry

carry

Agent Pool

Sub-network

Node A

Navigator
Agent

Task Agent

Node C Node B

Navigator Agent

Fig. 1 Navigator agents and task agents.

Sub-network A Navigator

Agent A

Task Agent Agent Pool
Node 1 Node 3

Node 2

Navigator

Agent A'

Sub-network B Navigator

Agent B

Agent Pool Node 1 Node 3

Node 2

Navigator

Agent B' Node 4

Source Node

Sub-network

migration

Fig. 2 Agent Pools.

• The Navigator agent does not have any
application-specific tasks. Instead, it car-
ries task agents and is designed for a par-
ticular sub-network. It must be familiar
with the topology of its target sub-network.
Thus, it can efficiently guide one or more
task agents to their multiple destinations
in the sub-network.

• The Task agent is an application-specific
agent that performs its management task
at each of the nodes it visits. It can travel
from sub-network to sub-network, but may
be unfamiliar with the sub-networks it vis-
its.

When a task agent arrives at an unknown
sub-network, it enters an idle navigator agent
that knows the current network well. Then, the
selected navigator agent carries the visiting task
agent to the nodes that the task agent wants to
visit. Each navigator agent is defined and man-
aged by its network and can explicitly limit the
nodes to which it can carry task agents.
This framework also provides a mechanism

for allowing a task agent to select a navi-
gator agent suitable for the current network.
The mechanism, called Agent Pool, stores idle
agents in a manner similar to that in a bus-
terminal or a taxi stand, as shown in Fig. 2.
Each sub-network has multiple agent places for
storing navigator agents specific to the sub-
network and each navigator agent is designed
to return to its place soon after achieving its
navigation task to wait for the next task. Each
task agent is responsible for traveling among
the agent pools of its destination sub-networks,
where each navigator agent is responsible for
navigating its inner agents among the nodes in
its sub-network. Therefore, to travel among
some of the nodes on a sub-network, a task
agent migrates to the agent pool at the sub-
network and asks a navigator agent stored in

Vol. 43 No. 11 Reusable Mobile Agents for Managing Networks 3451

the pool to carry it among the nodes.
We should explain why our hierarchical agent

model is needed in the development of network
management. There may be other approaches
in addition to our approach. One of the ap-
proaches is to build an omniscient agent, which
can travel over all of the sub-networks, but
the size and execution cost of such an agent
tends to be large as mentioned previously. An-
other approach is to dynamically incorporate
an application-specific agent with a knowledge
component for determining and managing the
itinerary of the agent. However, such an agent
is not self-contained and may not be able to
migrate over a network under its own control.
Also, the distribution of knowledge of the sub-
network must be limited to the sub-network for
reasons of security.
Our framework introduces such a knowledge

component as a navigator agent, which is a con-
tainer comprised of more than one task agent.
To visit nodes on a sub-network, task agents
must be carried by a navigator agent that
is authorized by the sub-network and has its
own itinerary. Therefore, each task agent does
not have to be modified and can remain au-
tonomous and self-contained, even while it is
contained in a navigator agent traveling over
the sub-network. Since the knowledge of the
topology of the sub-network is kept inside the
navigator agent, the task agent does not access
to and cannot have such knowledge, unlike the
two approaches discussed above. When a net-
work management task consists of multiple mo-
bile agents, a navigator agent can carry these
agents as a whole. Moreover, all nodes do not
have the capability of authenticating their visit-
ing arbitrary agents. Since each agent pool can
authenticate its visiting task agents on behalf of
its sub-network before the task agents are con-
tained and carried by a navigator agent, each
node can thus accept only authorized navigator
agents.

4. Design and Implementation

Before describing the framework presented in
this paper, we describe the MobileSpaces mo-
bile agent system that provides the infrastruc-
ture for this framework. Based on this system,
we then explain how we envisage the construc-
tion of task and navigator agents.
4.1 MobileSpaces: A Hierarchical Mo-

bile Agent System
This framework consists of navigator agents,

migration

Step 1

Step 2

Agent B

Agent A

Agent C

Agent B

Agent A

Agent C

Computer A Computer B

Computer A Computer B

Fig. 3 Agent hierarchy and inter-agent migration.

task agents, and agent pools. These agents are
implemented as mobile agents in MobileSpaces.
Hierarchical Mobile Agents in Mo-
bileSpaces
Mobile agents in MobileSpaces are pro-

grammable entities like other mobile agents.
They are capable of conserving their state while
on the move and their itineraries can include
multiple network nodes. Furthermore, Mo-
bileSpaces provides each mobile agent with two
novel concepts: agent hierarchy and inter-agent
migration. The former means that another mo-
bile agent can be contained within one mobile
agent. The latter means that each mobile agent
can migrate to other mobile agents as a whole,
with all its inner agents, as long as the destina-
tion agent accepts it. Therefore, an agent can
contain other mobile agents inside it as shown
in Fig. 3.
Each agent has direct control of all its inner

agents and thus can instruct them to move to
other locations and can destroy them. In con-
trast, each agent has no direct control over its
container agents. Instead, each agent can have
a set of service methods, which can be accessed
by its containers. Each agent has a globally
unique name and can have more than one active
thread under the control of the runtime system.
MobileSpaces Runtime System
Each runtime system is a platform for execut-

ing and migrating agents. It is built on a Java
virtual machine, and mobile agents are Java ob-
jects. Each runtime system can subordinate all
the agents inside it, and the system maintains
the life-cycle state of the agents. When the life-
cycle state of an agent is changed, for example,
at creation, termination, or migration, the core
system issues certain events to invoke certain
methods in the agent and the agents it con-
tains. The runtime system provides a mecha-
nism for marshaling and unmarshaling agents.☆

☆ The current implementation of the system uses the
Java object serialization package provided by JDK
to marshal and unmarshal agents. The package does

3452 IPSJ Journal Nov. 2002

When an agent is marshaled, the runtime sys-
tem propagates certain events to the agent and
its inner agents that are still running to instruct
them to stop. It also can automatically stop
and serialize them after a given time period.
The runtime system can transfer agents to the
destination computer over TCP/IP connection.
4.2 Navigator Agent
Each navigator agent is a container of one or

more task agents and is responsible for guiding
them to hosts in the network it covers. That
is, it travels with its inner agents in accordance
with its itinerary, which is statically or algo-
rithmically determined, or dynamically based
on the agent’s previous computations and the
current environment. This framework provides
abstract classes in the Java language and navi-
gator agents can be defined by extending these
classes. A typical navigator agent has a routing
mechanism for managing its own routing table,
which consists of all the nodes on its target net-
work, and can dynamically add and remove el-
ements from the table. After it has achieved
its navigation task, the navigator agent goes
back to the agent pool of the sub-network that
it covers, and advertises the list of reachable
nodes to the pool. It then waits for the arrival
of other task agents. The interaction between
a navigator agent and the task agents inside it
is based on event-based communication intro-
duced in the Abstract Window Toolkit of JDK
1.1. A navigator agent invokes certain methods
of its task agents, whenever it arrives at one
of the destinations. The navigator agent exe-
cutes its built-in method, go(AgentURL url),
in order to migrate itself and its task agents
to the next destination specified as url, after
they have performed their tasks. Each naviga-
tor agent can explicitly limit the length of the
execution period of its incoming task agents af-
ter arriving at each destination. When the time
limit of a task agent inside it expires, it auto-
matically terminates the task agent.
public class NavigatorAgent extends Agent {
// advertising its possible destinations
void register(HostSet h)
throws IllegalAccessException ... { ... }

// getting the address of the current host
AgentURL getURL(){ .. }
// moving to the host specified as url
void go(AgentURL url)

not support capturing the stack frames or a pro-
gram counter of threads. Consequently, our system
cannot serialize the execution states of any thread
objects.

throws NoSuchHostException ... { ... }
// sending an event to all its inner agents
void dispatchEvent(AgentEvent e)
throws NoSuchEventException..{..}

....
}

4.3 Task Agent
Each task agent is a mobile agent that de-

fines its management tasks at each of the nodes
in accordance with its management criterion. It
travels among the agent pools of its target sub-
networks. When arriving at an agent pool, a
task agent gives the pool a list of the names or
types of the nodes at which it needs to perform
its tasks by invoking the setNodes() method
and then the pool recommends to the agent a
suitable navigator that fits the description on
the list or conditions. To hook events invoked
by its container agent and the runtime system,
each task agent can have one or more listener
objects. One of the most basic listener inter-
faces, TaskAgentEventListener, is shown as
follows:
interface TaskAgentEventListener

extends AgentEventListener {
// after creation at url
void create(AgentURL url);
// before termination
void destroy();
// before serialization
void serialize();
// after deserialization
void deserialize();
// after arrived at one of the destinations
void arrive(AgentURL from);
// before moving to one of the destinations
void leave(AgentURL to);
// before traveling among the destinations
void departure(AgentURL to);
// after traveling among the destinations
void finish();
....

}

When a task agent arrives at an agent pool,
it is allocated to a navigator agent by the pool
and then the departure method defined in the
task agent is invoked with the first destination.
Upon arrival at a node, the navigator agent in-
vokes the arrive method of its task agent to
instruct it to do something during a given time
period at the node. After receiving a certain
event from all the task agents or after the period
has elapsed, the navigator agent invokes the
leavemethod with the address of the next node
and then moves itself and its task agents to the
destination according to its itinerary. After it
has traveled among all the required nodes, the
navigator agent invokes its finishmethod. For

Vol. 43 No. 11 Reusable Mobile Agents for Managing Networks 3453

reasons of security, all agents must be authenti-
cated by the agent pool of the sub-network and
then carried by a navigator agent managed by
the agent pool of the sub-network, since a sub-
network may explicitly prohibit any task agent
from visiting its nodes. Therefore, a task agent
alone cannot migrate to the nodes, even if it has
been authenticated and knows the addresses of
its target nodes in the sub-network. This ap-
pears to imply that each task agent needs to
know the location of the agent pools of its tar-
get sub-networks, but in fact the framework
can provide task agents that have no knowledge
about the location of an agent pools because
navigator agents can carry them among the to
agent pools.
4.4 Agent Pool
When a task agent arrives at a sub-network,

if it knows the topology of the sub-network, it
travels over the sub-network according to its
own itinerary. Otherwise it migrates itself to an
agent pool of the sub-network to find a suitable
navigator agent. Each agent pool is a station-
ary container of several navigator agents and
is responsible for managing one or more sub-
networks. It maintains inside itself a repository
of idle navigators standing by for a chance to
navigate. When it receives a request from a
visiting task agent via the setNodes method,
it detects one of the most suitable navigator
agents from the repository. The selection mech-
anism of the current implementation compares
the reachable nodes of all the navigators stored
in the pool and the list of the nodes that the
task agent must visit. That is, each agent pool
selects a navigator agent whose reachable nodes
include the nodes that the task agent must visit.
If more than one navigator agent that satisfies
the conditions, the pool selects the navigator
with the fewest reachable nodes. This frame-
work provides Java-based abstract classes that
allow us to easily define advanced agents by ex-
tending the classes.
4.5 Current Status
The system is implemented as a collection

of mobile agents on MobileSpaces and it can
be run on any computer with a JDK 1.2-
compatible Java runtime system that can mi-
grate agents over a network using a TCP-based
agent migration protocol. The current imple-
mentation of this framework was not built for
performance, but a basic agent migration ex-
periment was done using four computers (Pen-
tium III-600 MHz with Windows2000 and JDK

Table 1 Performance of agent migration.

Agent Migration Latency (ms)
Single agent (two computerss) 24
Navigator agent (two computers) 30
Navigator agent (four computers) 90

1.3) connected with a 100-Mbps Ethernet.
Table 1 shows the basic performance of

agent migration over a network in our ex-
periment to measure the latency in moving
a agent, through two and four computers.
The first result shows the cost of moving an
agent between two computers. The mov-
ing agent is a simple implementation of the
TaskAgentEventListener interface presented
in Section 4 and it corresponds to a null RPC
and the data size is about 2.5 Kbytes (zip-
compressed). The runtime systems on the com-
puters exchange agents with each other through
a simple TCP-based agent migration protocol.
The marshaled agent consists of its serialized
state, its code, and its attributes such as a name
and capability, and it is packed and compressed
into a bit stream that amounts to 1.5 Kbytes.
The latency is the sum of delays in the mar-
shaling of the agent, zip-based compression, the
opening of a TCP connection, transmission, se-
curity verification, decompression, and the un-
marshaling of the agent. The second and third
results show the cost of agent migration using
a simple navigator agent, which has a static
itinerary list of two or four nodes and carries
its inner agents to the nodes sequentially by in-
corporating them inside itself. The overhead of
the hierarchical structure of this framework is
less than ten percent, so the latency costs in
the above table are basically dependent on the
MobileSpaces runtime system. We believe that
the latency of agent migration in this frame-
work is reasonable for a prototype of a mobile
agent-based network management system.

5. Application to Network Manage-
ment

To evaluate the effectiveness of the frame-
work, we developed a network management
system for a GRID-based computational envi-
ronment consisting of three sub-networks and
each of the sub-networks has from four to eight
processor elements distributed geographically.☆

☆ The GRID environment is small in scale because it is
implemented as a testbed for developing middleware
and applications for GRID computing rather than a
computational infrastructure.

3454 IPSJ Journal Nov. 2002

carry

Node C

Node B

Node A

Monitor

Task Agent

Agent Pool

migration to

a navigator agent

Navigator Agent

Monitor Task Agent

carry

carry
carry

Node D

Sub-network

Fig. 4 Mobile agent-based management system.

The purpose of the management system is to
monitor certain network and computational re-
sources at nodes. The system deploys agent
pools at one node of each sub-network and of-
fers several task agents and navigator agents.
For example, a task agent that monitors net-
work traffic loads is designed to perform its task
at each node that it visits as shown in Fig. 4.
Although the system itself is independent of any
network management protocols, we constructed
a task agent that can access SNMP data from
a small stationary agent situated at its visiting
node. The stationary agent allows that visit-
ing task agent to access the MIB of its node
via interagent communication. Since the task
agent can contain codes to perform both in-
formation retrieval and filtering, it can carry
only relevant information. Also, the system has
three other task agents for monitoring compu-
tational resources at the processor nodes. They
are designed to collect information on the use of
CPU, memory, and disks by incorporating per-
formance monitoring systems at the nodes. The
system also provides several navigator agents
having different itineraries. The agents are stat-
ically optimized for the topology of their target
sub-networks so that they can efficiently travel
among the nodes in the sub-networks.
Our early experience with this system sug-

gests that the framework presented in this pa-
per enables each task agent to be built in-
dependently of any sub-network. The task
agents presented in this section contain no spe-
cific knowledge about sub-networks and are de-
signed to perform their management tasks when
their navigator agents invoke certain methods.
Therefore, they can easily and naturally be
reused in different networks. For example, we
applied this framework to another GRID-based
computing system, where sixteen nodes were
connected to a sub-network. The task agents
were carried to nodes on the system by navi-
gator agents provided for the system and per-

formed their tasks at each of the nodes without
modifying the task agents’ programs. Our early
experience has also revealed another advantage
of the framework. The programs of the task
agents are relatively simple because they leave
their itinerary control to their navigator agents.
Actually, the total size of a navigator agent con-
taining one of the task agents is about 4 KB
(zip-compressed) and it is only 20 % greater
than the size of a self-contained task agent that
can control its own itinerary. This is a small in-
crease in size if we take into account the amount
of data such agents can collect from the nodes.
We have obtained a preliminary measurement

of the cost of migrating a navigator agent over
a sub-network of the GRID system.☆ After re-
ceiving a task agent at the agent pool of the sub-
network, the navigator agent travels straightly
around four nodes and then returns to the agent
pool of the sub-network, where the nodes and
the pool are Pentium III-500 MHz computers
connected using a 100-Mbps Ethernet. The
itinerary of the navigator agent is statically de-
fined and corresponds to five hops. The round-
trip time of the agent is about 230 msec and the
cost of detecting a navigator agent in an agent
pool is less than 10 msec.
The system currently offers three types of

navigator agents. Their itineraries are based
on migration patterns described in9),12). Navi-
gator agents of the first type are designed for
traveling sequentially around the destination
nodes to perform tasks at each node. Navi-
gator agent of the second type travel among
nodes in a star-shaped route. That is, they go
back and forth between destination nodes and
a given base node and performs their tasks in
the destination nodes. Navigator agent of the

☆ The system is just a prototype implementation,
hence it is not optimized for efficient agent mi-
gration. Actually, the total cost of network man-
agement depends on application-specific tasks per-
formed at nodes rather than agent migration.

Vol. 43 No. 11 Reusable Mobile Agents for Managing Networks 3455

third type generate as many copies of them-
selves as the number of nodes that they must
monitor before migrating to the nodes. After
that, each copy moves to the node and accesses
the resources, and then goes back to the source
node. Each copy reports to the leader agent
among the copies and then disappears. Navi-
gator agents of each type should be selected ac-
cording to the topology of the network and the
requirements of their task agents. They can
cover agent itineraries of typical management
tasks such as monitoring network traffic and
computational resources at the nodes that are
known in advance. Also, we can easily define
other navigator agents whose routes are more
complex by extending the Java classes of the
three type of navigator agents.
Moreover, our experience tells us that our

navigator agents are useful in the resource man-
agement of GRID-based computational envi-
ronments. This is because they can provide
a mechanism for the deployment of computa-
tional tasks at remote nodes in a decentralized
manner. To perform a variety of applications
efficiently, a Grid-based environment must sup-
port multiple policies for task deployment. This
framework allows such policies to be naturally
defined as navigator agents.
5.1 Discussion
The remainder of this section describes how

the framework presented in this paper solves
the problems discussed in Sections 1 and 2.
• Reusability and Performance: This frame-
work enables each navigator agent to be
optimized for particular networks inde-
pendently of any application-specific logic.
Therefore, the agent can efficiently guide
various task agents among nodes in the net-
works. On the other hand, each task agent
has its application-specific tasks, which are
designed to be performed at each of the vis-
ited nodes regardless of the sub-network.
It needs to know the location of the agent
pools of its target sub-networks but does
not have to know the topology of the net-
works. By dynamically changing to a navi-
gator agent suitable for its current network,
a task agent can efficiently migrate among
nodes in various networks to perform its
task, without modifying its own program.

• Simplification of Agents: The framework
enables both navigator and task agents
to be small and simple, because naviga-
tor agents can be designed for particu-

lar networks and thus do not have to of-
fer any adaptive mechanisms for handling
various networks, which would make the
programs of the agents large and com-
plex. On the other hand, task agents leave
their itineraries to corresponding navigator
agents only when they know the location of
the agent pools of their destinations.

• Network-dependent Migration: Since each
navigator agent is optimized for a particu-
lar network, it can statically have knowl-
edge about the networks. After achiev-
ing its current task, it returns to the given
agent pool and stands by for the next nav-
igation without any initialization. Conse-
quently, when it detects changes in the net-
work environment, such as malfunction in
nodes, network disconnection, or network
topology changes, it keeps the changes in
its state and reflect them in its next navi-
gation in a heuristic manner.

• Limitation of Reachable Nodes: Each navi-
gator agent can limit the migration range of
task agents. This is because each navigator
agent can explicitly define its own reach-
able nodes and each node accepts only au-
thorized navigator agents. Consequently,
when a task agent is carried by a naviga-
tor agent whose reachable nodes are lim-
ited, it can travel only among the reachable
nodes of the navigator agent. Moreover,
each agent pool can authenticate its visit-
ing task agents on behalf of its sub-network.
This is helpful in network management sys-
tems whose nodes may have limited CPU
power and memory.

6. Related Work

Many mobile agent systems have been de-
veloped over the last few years, for example,
Aglets9) and Telescript17). There have been
several attempts to develop mobile agent-based
network management, for example see Refs. 2),
4), 6), 11), 12). Typically, a mobile agent for
network management must visit multiple hosts
to perform its task, so the itinerary of such an
agent can affect its success and efficiency. How-
ever, most of these studies often assume that
the agents are designed for particular networks,
because it is difficult for the agents to dynami-
cally make their itineraries to visit all the spec-
ified nodes in their target networks, which may
be incomplete or lack any global perspective.
Several studies attempted to build smart mobile

3456 IPSJ Journal Nov. 2002

agents that can dynamically learn the topology
of networks (see, for example Ref. 10)). How-
ever, most of these studies explicitly and im-
plicitly assume to be performed on only sim-
ulated networks. Even if the studies could be
performed in a real system, the costs of gener-
ating efficient routes tend to be large and thus
they are not always suitable in mobile agent-
based network management systems.
Some solutions to this problem have been

found outside the domain of network manage-
ment. For example, ADK7) separates the travel
itinerary of an agent from its behavior by build-
ing a mobile agent from a set of component
categories: navigational components responsi-
ble for the travel itinerary and performer com-
ponents responsible for executing one or more
management tasks at each node. Aglets9) intro-
duces the notion of an itinerary pattern, which
is similar to design patterns in software en-
gineering, to shift the responsibility for navi-
gation from an application-specific agent to a
framework library described in Ref. 1). Both
approaches allow us to design an application-
specific itinerary for an agent independent of
the agent’s logical behavior, but the itinerary
parts must be statically and manually embed-
ded in the agent. Consequently, this agent,
unlike ours, cannot dynamically change its
itinerary and cannot travel beyond its familiar
networks.
We described an approach to building con-

figurable protocols for agent migration in an-
other paper14),15). While that approach cus-
tomizes network processing for agent migra-
tion embedded in a mobile agent runtime sys-
tem, the approach presented in this paper can
change network-dependent routings embedded
in a mobile agent according to the topology
of the current network. Our previous paper16)
presented an early preliminary of this frame-
work, but it did not present relationships be-
tween task agents and navigator agents, includ-
ing the both agents’ programming models and
lack any enough evaluation of the framework.

7. Conclusion and Future Work

This paper presented a new approach to
building mobile agents for network manage-
ment. The key idea is to build a mobile agent
from two subcomponents: a navigator agent
and a task agent. The former is designed for its
target networks and thus can efficiently carry
multiple task agents among hosts in the net-

works. The latter defines a set of management
tasks to be performed at each of the host to be
visited. This framework also provides a mecha-
nism for storing idle navigator agents. When a
task arrives at an unknown network, it finds a
navigator agent for the network and enters the
navigator agent to migrate to nodes in the net-
work. As a result, each task agent can be reused
in different networks. A prototype implemen-
tation of the framework built on a Java-based
mobile agent system, called MobileSpaces, al-
lowed us to experiment with mobile agent-based
network management based on this framework.
We believe that using this framework, we can
easily build mobile agents for network manage-
ment without any limitation on the reusability
of application-specific agents or the agent mi-
gration efficiency.
Finally, we would like to mention some fu-

ture research directions. The framework pre-
sented in this paper is designed to a general-
purpose framework. To prove the utility of the
framework, we need to apply the framework
to various network management systems. The
current implementation relies on a JDK 1.1 se-
curity manager and provides an authentication
mechanism for navigator agents; however many
other security problems are left open for our fu-
ture work. The performance of the current im-
plementation is not yet satisfactory, so further
measurements and optimization are needed.

References

1) Aridor, Y. and Lange, D.B. : Agent Design
Patterns: Elements of Agent Application De-
sign, Proc. Second International Conference on
Autonomous Agents (Agents ’98), pp.108–115,
ACM Press (1998).

2) Bohoris, C., Pavlou, G. and Cruickshank,
H.: Using Mobile Agents for Network Perfor-
mance Management, Proc. IEEE/IFIP Net-
work Operations and Management Symposium
(NOMS’00), pp.637–652, April (2000).

3) Case, J., Fedor, M., Schoffstall, M. and Davin,
J.: A Simple Network Management Protocol
(SNMP), RFC 1157 (1990).

4) Bieszczad, A., Pagurek, B. andWhite, T.: Mo-
bile Agents for Network Management, IEEE
Communications Surveys, Vol.1, No.1 (1998).

5) Foster, I. and Kesselman, C. (Eds.): The Grid:
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Fransisco (1999).

6) Gavalas, D., Greenwood, D., Ghanbari, M.
and O’Mahony, M.: An Infrastructure for Dis-
tributed and Dynamic Network Management

Vol. 43 No. 11 Reusable Mobile Agents for Managing Networks 3457

based on Mobile Agent Technology, Proc.
Conference on Communications (ICC’99),
pp.1362–1366 (1999).

7) Gschwind, T., Feridun, M. and Pleisch, S.:
ADK: Building Mobile Agents for Network
and System Management from Reusable Com-
ponents, Proc. Symposium on Agent Systems
and Applications/Symposium on Mobile Agents
(ASA/MA’99), pp.13–21, IEEE Computer So-
ciety (1999).

8) Karmouch, A.: Mobile Software Agents for
Telecommunications, IEEE Communication
Magazine, Vol.36, No.7 (1998).

9) Lange, B.D. and Oshima, M.: Programming
and Deploying Java Mobile Agents with Aglets,
Addison-Wesley (1998).

10) Minar, N., Kramer, K.H. and Maes, P.: Co-
operating Mobile Agents for Dynamic Network
Routing, Software Agents for Future Commu-
nication Systems, pp.287–304, Springer (1999).

11) Puliafito, A. and Tomarchio, O.: Advanced
Network Management Functionalities through
the use of Mobile Software Agents, Proc.Work-
shop on Intelligent Agents for Telecommunica-
tion Applications (IATA’99), LNCS Vol.1699,
pp.33–45, August (1999).

12) Sahai, A. and Morin, C.: Mobile Agents for
Managing Networks: The MAGENTA Perspec-
tive, in Software Agents for Future Communi-
cation Systems, pp.358–380, Springer (1999).

13) Satoh, I.: MobileSpaces: A Framework for
Building Adaptive Distributed Applications
Using a Hierarchical Mobile Agent System,
Proc. International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161–
168, IEEE Computer Society, April (2000).

14) Satoh, I.: Network Processing of Mobile

Agents, by Mobile Agents, for Mobile Agents,
Proc. Workshop on Mobile Agents for Telecom-
munication Applications (MATA’2001), LNCS,
Vol.2146, pp.81–92, Springer (2001).

15) Satoh, I.: Dynamic Configuration of Agent
Migration Protocols for the Internet, Proc.
International Symposium on Applications and
the Internet (SAINT’2002), pp.119–126, IEEE
Computer Society, January (2002).

16) Satoh, I.: A Framework for Building Reusable
Mobile Agents for Network Management, Proc.
Network Operations and Managements Sympo-
sium (NOMS’2002), pp.51–64, IEEE Commu-
nication Society, April (2002).

17) White, J.E.: Telescript Technology: Mobile
Agents, General Magic (1995).

(Received March 25, 2002)
(Accepted September 5, 2002)

Ichiro Satoh received his
B.E., M.E, and Ph.D. degrees
in Computer Science from Keio
University, Japan in 1996. From
1996 to 1997, he was a research
associate in the Department of
Information Sciences, Ochano-

mizu University, Japan, and from 1998 to 2000
was an associate professor in the same depart-
ment. Since 2001, he has been an associate
professor in National Institute of Informatics,
Japan. His current research interests include
distributed and mobile computing. He received
IPSJ paper award, IPSJ Yamashita SIG re-
search award, and JSSST Takahashi research
award. He is a member of six learned societies,
including ACM and IEEE.

