
IPSJ SIG Technical Report

S-POR: An Extremely Simple Network Coding-based
Proof of Retrievability

Kazumasa omote1,a) Tran Phuong Thao1,b)

Abstract: Cloud computing is a service by which clients can outsource their data to reduce the burdens of data storage
and maintenance. However, cloud providers are untrustworthy, which therefore introduce several security challenges:
data availability, data integrity, and data confidentiality. Security of data confidentiality consists of cryptographic
approach and information-theoretic approach. For availability, integrity and information-theoretic confidentiality, net-
work coding-based POR (Proof of Retrievability) schemes have been proposed to allow the client to check whether the
data stored in the servers is available and intact. In this paper, we propose an extremely simple network coding-based
POR, named S-POR (S-POR: Simple network coding-based Proof of Retrievability). The implementation shows that
the S-POR incurs very low computation cost for both client-side and server-side. Due to its simplicity, the S-POR is
the most practical network coding-based POR for a real system, to the best of our knowledge.

1. Introduction
Since the amount of data is increasing exponentially, data

storage and data management are troublesome tasks for the
clients. To reduce the burdens for the data owners, remote
storage system called cloud is proposed. A cloud is considered as
a service which the clients can publish, access, manage and share
their data remotely and easily from anywhere via the Internet.
However, the shortcoming of this method is that a cloud storage
provider is never trusted. The cloud system thus introduces
three security challenges: data availability, data integrity and
data confidentiality. Data confidentiality consists of two security
approaches: cryptographic approach and information-theoretic
approach. For data availability, integrity and information-
theoretic confidentiality, the Proof of Retrievability (POR)
[1], [2], [3], which is a challenge-response protocol between a
client and a server, was proposed to allow the client to check
whether the data stored in the servers is available, intact and
always retrievable.

Related work. Based on the POR, the following techniques are
commonly used:
• Replication. This approach was proposed [4], [5] to allow

the client to store a file replica in each server. When a cor-
ruption is detected, the client uses one of healthy replicas
to repair the corruption. The drawback of this technique,
however, is high storage cost because the client must store a
whole file in each server.

• Erasure coding. Because the replication incurs high storage

1 Japan Advanced Institute of Science and Technology, 1-1 Asahidai,
Nomi, Ishikawa, Japan 923-1211

a) omote@jaist.ac.jp
b) tpthao@jaist.ac.jp

cost, this approach was applied [6], [7] to provide space-
optimal data redundancy. Erasure coding can reduce stor-
age cost because each server stores file blocks instead of
the file replica like replication. However, the drawback of
this technique is that to repair a corrupted data, the client
must reconstruct the entire file before generating new coded
blocks. Therefore, this technique increases computation cost
and communication cost in data repair.

• Obvious RAM (ORAM). Recently, the ORAM is applied
to the POR [8], [9]. Basically, this technique is used for
privacy-preserving the data store in the servers. By using
the ORAM structure, the servers cannot obtain the data ac-
cess patterns when the client performs the data check. For
the data repair, the ORAM-based POR embeds the erasure
coding to repair the data when an error occurs. The ORAM
structure leads to high storage cost because of the hierarchi-
cal storage layout, and high computation cost because of the
shuffling procedure every a number of read operations.

• Network coding. To address the drawback of erasure
coding, network coding is applied [10], [11] to improve
the efficiency in data repair. The client does not need to
reconstruct the entire file before generating new coded
blocks as erasure coding. Instead, the coded blocks which
are retrieved from the healthy servers are used to generate
new coded blocks. Compare with the ORAM, the structure
of the network coding is much simpler with no hierarchical
storage, no shuffling procedure and no the drawback of
the erasure coding. Therefore, this paper focuses on the
network coding technique.

Network coding-based POR. Dimakis et al. [10] were the first
applying network coding to the distributed storage system. Chen
et al. [11] adapted the scheme of Dimakis et al. to propose the

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

IPSJ SIG Technical Report

Remote Data Checking for Network Coding-based distributed
storage system (RDC-NC) scheme which provides an elegant
data repair by recoding encoded blocks in healthy servers during
repair. Li et al. [12] proposed a tree-structure data regeneration
for the network coding to optimize network bandwidth by using
a maximum spanning tree. Cao et al. [13] applied the Luby
transform (LT) code for reducing the computation cost because
the LT code is a special network code which works in the finite
field of order two and only uses exclusive-OR (XOR) operation.
H. Chen et al. [14] proposed the NC-Cloud scheme to improve
the cost-effectiveness of repair using the functional minimum
storage regenerating (FMSR) code and lighten the encoding
requirement of storage nodes during repair. Le et al. proposed
the NC-Audit scheme [15] in which a third party auditor (TPA) is
employed and is delegated the responsibility to check the servers
instead of the client. Furthermore, the NC-Audit also focuses on
preventing the data leakage from the TPA. Omote et al. proposed
[16] (Multisource and Direct repair for Network Coding-based
POR) in which multiple clients can participate in the system.
Furthermore, the direct repair feature is supported to reduce the
burden for the client. The public authentication is also provided.

Contribution. This paper proposes the core network coding-based
POR, named S-POR (Simple network coding-based POR). The
S-POR has the following advantages:
• The S-POR prevents two most common attacks of a network

coding-based POR: response replay attack and pollution at-
tack.

• The S-POR is condensed as the core framework. It is thus
the most simple network coding-based POR.

• The performance evaluation of the S-POR shows that it is
very applicable in a real system. The S-POR can be easily
and efficiently used in future works.

Roadmap. The backgrounds of the POR, network coding and ho-
momorphic MAC are introduced in Section 2. The adversarial
model is presented in Section 3. The S-POR is proposed in Sec-
tion 4. The security and efficiency analyses are given in Section 5
and 6. The performance evaluation is described in Section 7. The
conclusion is drawn in Section 8.

2. Preliminaries
2.1 Proof of Retrievability (POR)

To check whether the availability and integrity of the data
stored in the cloud servers are satisfied, researchers proposed the
POR [1], [2], [3] which is a challenge-response protocol between
a client (verifier) and a server (prover), to ensure that data stored
in the servers is always available, intact and retrievable. A POR
protocol has the following phases:
• keygen(1λ): Given a security parameter λ, the client gener-

ates a secret key (sk) and a public key (pk). For symmetric
key setting, pk is set to be null.

• encode(sk, F): The client encodes an original file (F) to an
encoded file (F′), then stores F′ in the server.

• check(sk): The client uses sk to generate a challenge (c) and
sends c to the server. The server computes a response (r)

and sends r back to the client. The client then verifies r to
determine whether F is available and intact.

• repair(): If a corruption is detected in the check phase, the
client will execute this phase to repair the corrupted data.
The technique of this phase depends on the each specific
scheme, e.g., replication, erasure coding or network coding.

2.2 Network Coding
The network coding is firstly proposed in the network scenario

[17], [18], and is then applied in the distributed storage system
scenario [11].

Fundamental Concept. In the network scenario, suppose that a
source wants to send a file F to a receiver via the network. The
source firstly divides F into m blocks {v1, · · · , vm}. vk ∈ F

z
q where

k ∈ {1, · · · ,m} and Fz
q denotes a z-dimensional finite field over a

prime q. The source then augments vk with a vector of length m
which consists of a single ‘1’ in the k-th position and ‘0’ else-
where. Let {w1, · · · , wm} denote the augmented blocks. wk has the
following form:

wk = (vk,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

k

, 0, · · · , 0) ∈ Fz+m
q (1)

The source sends {w1, · · · , wm} as packets to the network.
Suppose that an intermediate node in the network receives
θ packets {wi1 , · · · , wiθ }. The intermediate node generates θ

coefficients α1, · · · , αθ ∈ Fq and linearly combines the received
packets and transmits the resulting linear combination to the
adjacent nodes. Therefore, each packet carries m accumulated
coefficients which produce that packet as a linear combination
of all m augmented blocks. The receiver can retrieve the
augmented blocks from any set of m combinations. If y ∈ Fz+m

q

is a linear combination of w1, · · · , wm ∈ Fz+m
q , then the file

blocks v1, · · · , vm can be calculated from the first coordinate of y
using the coefficients that contained in the last m coordinates of y.

Application in Distributed Storage System. In the network sce-
nario, there are multiple entities: source node, intermediate nodes
and receiver node. However, when the network coding is ap-
plied in the distributed storage system scenario, there are only
two entities: a client and cloud servers. From the original file
F = {v1, · · · , vm} (vk ∈ F

z
q), the client firstly creates m augmented

blocks {w1, · · · , wm} ∈ F
z+m
q . The client then chooses m coef-

ficients {α1, · · · , αm} ∈ Fq and linearly combines m augmented
blocks to create the coded blocks as c =

∑m
k=1 αk.wk ∈ F

z+m
q . The

client stores the coded blocks in the servers. {α1, · · · , αm} are cho-
sen such that the matrix which consists of all the coefficients of
the coded blocks has full rank. R. Koetter et al. [19] proved
that if the prime q is chosen large enough and the coefficients
are chosen randomly, the matrix will have full rank with a high
probability. When a corruption is detected, the client retrieves
the coded blocks from the healthy servers and linearly combines
them to regenerate new coded blocks. For example, in Fig. 2.2,
from the augmented blocks {w1, w2, w3}, the client chooses the
coefficients to compute six coded blocks. The client stores two

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

IPSJ SIG Technical Report

Fig. 1 An example of the network coding

coded blocks in each of the servers {S 1, S 2, S 3}. Suppose that S 1

is corrupted, the client requests S 2 and S 3 to compute the aggre-
gated coded blocks by themselves using the linear combinations.
The client finally mixes the aggregated coded blocks to obtain
two new coded blocks for the new server.

2.3 Homomorphic MAC
The data stored in the servers cannot be checked alone.

Instead, the data is embedded with an additional information,
i.e., Message Authentication Code (MAC) or signature. A MAC
is also call tag. The MAC approach is used in a symmetric key
setting while the signature approach is used in an asymmetric
key setting. Because this paper is based on a symmetric key
setting for the efficiency, the MAC approach is used in this paper.

Traditional MAC. This MAC was proposed [20] to authenticate a
message and to detect message tampering and forgery. This MAC
consists of the following algorithms:
• Gen(1λ) → {k}: on input a security parameter λ, the algo-

rithm outputs a secret key k.
• Tagk(M) → t: on input k and a message M, the algorithm

computes a tag t = M · k.
• Verk(M, t) → {0, 1}: on input M, t and k, the algorithm

outputs 1 if t is a valid tag, and 0 otherwise.

Homomorphic MAC. The traditional MAC cannot be secured
from the response replay attack (Section 3.1) when it is combined
with the network coding. The homomorphic MAC was then in-
troduced [17], [21] as a suitable technique for the network coding.
The homomorphic MAC consists of the following algorithms:
• Gen(1λ)→ {k, k′}: on input a security parameter λ, the algo-

rithm generates secret keys {k, k′} which are used for tagging
the message M, and for permuting the tag, respectively.

• Tag{k,k′}(M)→ t: on input {k, k′} and a message M, the algo-
rithm computes a tag t = M · k + fk′ (r) where f and r denote
a pseudorandom function and a random, respectively.

• Ver{k,k′}(M, t) → {0, 1}: outputs 1 if t is a valid tag, and 0
otherwise.

3. Adversarial Model
The S-POR scheme considers two common attacks of the POR:

replay attack and pollution attack.

3.1 Response Replay Attack
This attack is performed by the servers. The malicious server

re-uses the correct response in the past check phase in order to
save the computation cost, and still passes the verification in the
current check phase. An example is given as follows:
• Epoch 1: the client sends a challenge Q to the server SA.

Based on Q, SA then computes the response {cA, tA} where
cA and tA denote the aggregated coded block and aggregated
tag, respectively. The client verifies the response by comput-
ing t′

A
= cA ·kC where kC denotes the secret key of the client,

and compares whether t′
A

= tA. Suppose that the equality
occurs ({cA, tA} is valid).

• Epoch 2: the client sends a challenge Q′ to SA. SA now
re-uses {cA, tA} in the epoch 1 without the need of comput-
ing another response for Q′, and still passes the verification
tA = cA · kC .

3.2 Pollution Attack
This attack is performed by the servers. The malicious server

responses a valid coded block to pass the check phase, but then
provides an invalid coded block in the repair phase. An example
is given as follows:
• Encode: the client encodes the augmented blocks
{w1, w2, w3} into six coded blocks: c11 = w1 and c12 = w2+w3

(stored in the server S 1), c21 = w3 and c22 = w1 + w2 (stored
in the server S 2), c31 = w1 + w3 and c32 = w2 + w3 (stored in
the server S 3).

• Check: the corrupted S 3 is detected.
• Repair: to repair S 3, the client requires S 1 and S 2 to pro-

vide their aggregated coded blocks. S 1 provides c1 = 1c11 +

1c12 = w1 + w2 + w3. Suppose S 2 injects a polluted block
c2 = X which is an arbitrary value. The client computes two
new coded blocks for the new server S ′3: c′31 = 1c1 + 1c2 =

X + w1 + w2 + w3, and c′32 = 1c1 + 2c2 = 2X + w1 + w2 + w3.
The number of unknowns is now m+1 where m denotes the num-
ber of augmented blocks (in this example, m = 4 and the un-
knowns are X, w1, w2 and w3). Therefore, the original file cannot
be retrieved from any m coded blocks.

4. The Proposed S-POR scheme
Throughout this paper, the followings notations are used.

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

IPSJ SIG Technical Report

C client
F original file
m number of file blocks
n number of servers
d number of coded blocks per server
k file block index, k ∈ {1,m}
i server index, i ∈ {1, n}
j coded block index per server, j ∈ {1, d}
vk file block (k ∈ {1,m})
z number of file blocks in Fq

wk augmented vector of w̄k

S i server
ci j j-th coded block stored in S i

ti j tag of ci j

ci aggregated coded block of S i

ti aggregated tag of S i

s number of spot check
l number of healthy servers used for data repair
S r corrupted server
S ′r new server replaced for S r

Fz
q z-dimensional finite field F over a large integer q

f Pseudo-random function: {0, 1}∗ × {0, 1}κ → Fq

θ number of pairs (ci, ti) that C can store.

The structure of the S-POR is given in Fig. 2. The S-POR is
now described via each phase of the POR as follows.

Fig. 2 The structure of S-POR

4.1 Keygen
C keeps two secret keys:

• kC
rand
← Fz+m

q .

• kPRF
rand
← Fq.

4.2 Encode
Step 1. C divides F and creates augmented blocks as follows:
• C divides F into m file blocks F = v1|| · · · ||vm. vk ∈ F

z
q where

k ∈ {1,m}.
• C creates m augmented blocks. Each has the following form:

wk = (vk,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

k

, 0, · · · , 0) ∈ Fz+m
q

.
Step 2. C computes n · d coded blocks and n · d tags as follows:

For ∀i ∈ {1, n},∀ j ∈ {1, d}:

• C generates m coefficients: αi jk
rand
← Fq.

• C computes coded block: ci j =
∑m

k=1 αi jk · wk.
• C computes tag: ti j = ci j · kC + fkPRF (i|| j).

Step 3. For ∀ j ∈ {1, d}, C sends {ci j, ti j} to S i.

4.3 Check (Spot Check)
Step 1. C decides the values of s. This value can be different
between the servers and can be changed every check time.
Step 2. C creates challenges as follows:

• Create s pairs {(b1, β1), · · · , (bs, βs)} where bu
rand
← [1, d] and

βu
rand
← Fq for u ∈ {1, s}.

• Send the challenge Q = {(b1, β1), · · · , (bs, βs)} to S i.
Step 3. Each server combines its s coded blocks and s tags using
the coefficient βu and sends the aggregated coded block and the
aggregated tag to C. Namely, S i conducts the followings:
• Combine coded blocks: ci =

∑s
u=1 cibu · βu

• Combine tags: ti =
∑s

u=1 tibu · βu

• Send {ci, ti} to C
Step 4. C verifies {ci, ti} as follows:
∀i ∈ {1, n}:
• C computes t′i = ci · kC +

∑s
u=1 βu · fkPRF (i||bu).

• C checks whether ti = t′i .
Correctness of the verification:

ti =
∑s

u=1 tibu · βu

=
∑s

u=1(cibu · kC + fkPRF (i||bu)) · βu

=
∑s

u=1 cibu · kC · βu +
∑s

u=1 βu · fkPRF (i||bu)
t′i = ci · kC +

∑s
u=1 βu · fkPRF (i||bu)

=
∑s

u=1 cibu · βu · kC +
∑s

u=1 βu · fkPRF (i||bu)
= ti

Note that in every epoch, C always keeps θ latest pairs of {ci, ti},
denoted as R = {(ci, ti)} for i ∈ {i1, iθ}. To reconstruct F, C re-
trieves (m − θ) pairs of aggregated coded blocks and tags from
other healthy servers.

4.4 Repair
When a corrupted server (S r) is detected, and the new server

(S ′r) is used to replace S r. There are two cases:

Case 1: θ > d
Step 1. C picks randomly any d out of θ coded blocks in R. C
computes their tags. Namely,
• Suppose these d coded blocks are: {ci1 , · · · , cid }. The aggre-

gated coded blocks now become the new coded blocks of the
new server S ′r. This means that:

(cr1 , · · · , crd)← (ci1 , · · · , cid)

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

IPSJ SIG Technical Report

• For j ∈ {1, d}: C computes tr j = cr j · kC + fkPRF (r|| j).
Step 2. C sends {cr j, tr j} to S ′r where j ∈ {1, d}.

Case 2: θ < d
Step 1. C performs the check phase to collect (d − θ) more coded
blocks.
Step 2. C gathers his θ coded blocks and (d − θ) coded blocks
from Step 1. C then computes their tags. Namely,
• Suppose these d coded blocks are: {ci1 , · · · , cid }. The aggre-

gated coded blocks now become the new coded blocks of the
new server S ′r. This means that:

(cr1 , · · · , crd)← (ci1 , · · · , cid)
• For j ∈ {1, d}: C computes tr j = cr j · kC + fkPRF (r|| j).

5. Security Analysis
5.1 Response Replay Attack

Suppose the malicious server which performs this attack is S i.
• Epoch 1: C challenges S i by Q = {(b1, β1), · · · , (bs, βs)}. S i

responds a valid pair of {ci, ti}. C verifies ti = ci ·kC +
∑s

u=1 βu ·

fkPRF (i||bu).
• Epoch 2: C challenges S i by Q′ = {(b′1, β

′
1), · · · , (b′s, β

′
s)}.

S i re-uses {ci, ti}, but cannot pass the verification because:
ti , ci · kC +

∑s
u=1 β

′
u · fkPRF (i||b′u).

The probability for S i to pass the verification is the probability to
guess kPRF , which is 1

q . If q is chosen large enough (i.e, 160 bits),
this probability is negligible, which is 1

2160 .

5.2 Pollution Attack
This attack does not happen in the case 1 because only C

participates in the repair procedure. In the case 2, the ma-
licious server S i provides a polluted pair of {ci, ti} in Step 1.
The key point here is that C always checks every provided re-
sponse even in the repair phase. S i cannot pass the verification
ti = ci · kC +

∑s
u=1 βu · fkPRF (i||bu) if ci and ti are not the inde-

pendent linear combinations of the coded blocks and tags at the
points: {b1, · · · , bs} using the coefficient {β1, · · · , βs}.

6. Efficiency Analysis
The efficiency comparison between the RDC-NC [11], NC-

Audit [15], MDNC [16] and S-POR schemes is given in Table
1. The NC-Audit and MDNC schemes support the public authen-
tication in which the TPA is delegated the task of checking the
servers by the client. For the fair comparison, suppose that the
check phase in the NC-Audit and MDNC schemes is performed
by the client. Furthermore, suppose that the system model in the
MDNC only has a single client.

6.1 Storage Cost
Client. In the RDC-NC and MDNC, C has the keys in Fz+m

q .
The storage cost is thus O((z + m) log2 q). In the NC-Audit, C
stores the keys and mnd coefficients. The storage cost is thus
O((z + m + mnd) log2 q). In the S-POR, C stores the keys and θ
coded blocks. The storage cost is thus O((z+m) log2 q)+θ(|F|m +m).

Server. The size of a coded block equals that of an augmented
block, which is |F|m + m. In all the schemes, n servers store nd

coded blocks. The storage cost is thus O(nd(|F|m + m)).

6.2 Encode Phase
Computation (client). In the RDC-NC, MDNC and S-POR, C
computes m tags, then linearly combines m augmented blocks
and tags into nd coded blocks and new tags, respectively. The
cost is thus O(mnd). In the MDNC, C only computes m tags. The
cost is thus O(m).

Computation (server). In the RDC-NC, NC-Audit and S-POR,
n servers do nothing, just receive coded blocks and tags from C.
The cost is thus O(1). In the MDNC, n servers linearly combine
m received augmented blocks and tags to nd coded blocks and
new tags. The cost is thus O(mnd).

Communication. In the RDC-NC and S-POR, C transmits nd
coded blocks and tags to n servers. The cost is thus O(nd(|F|m +m)).
In the NC-Audit, C transmits not only coded blocks, tags but also
all coefficients. The cost is thus O(nd(|F|m + m) + mnd).

6.3 Check Phase
Computation (client). In all the schemes, C performs a verifica-
tion for each of n servers. The cost is thus O(n).

Computation (server). In all the schemes, each of n servers
responds the aggregated coded block and tag of d stored coded
blocks and tags, respectively. The cost is thus O(nd).

Communication. In all the schemes, each of n servers trans-
mit an aggregated coded block and tag to C. The cost is thus
O(n(|F|m + m)).

6.4 Repair Phase
Computation (client). In the RDC-NC, NC-Audit and MDNC, C
computes d coded blocks and tags for the new server using the
aggregated coded block and tag of each of l healthy servers. The
cost is thus O(ld). In the S-POR, C retrieves and verifies (d − θ)
coded blocks, then computes d coded blocks and tags for the new
server. The cost is thus O(2d − θ).

Computation (server). In the RDC-NC, NC-Audit and MDNC, l
healthy servers combine d coded blocks and tags to provide to C.
The cost is thus O(ld). In the S-POR, (d − θ) servers combine d
coded blocks and tags to provide to C. The cost is thus O((d−θ)d).

Communication. In the RDC-NC and MDNC, l healthy servers
provide the aggregated coded blocks and tags to C. C then trans-
mits d coded blocks and tags to the new server. The cost is thus
O((l + d)(|F|m + m)). In the NC-Audit, C also transmits all coeffi-
cients. The cost is thus O((l+d)(|F|m +m)+ld). In the S-POR, (d−θ)
servers transmit the aggregated coded blocks and tags. Then, C
transmits d coded blocks and tags to the new server. The cost is
thus O((2d − θ)(|F|m + m)).

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

IPSJ SIG Technical Report

Table 1 Comparison

RDC-NC [11] NC-Audit [15] MDNC [16] S-POR (proposal)
Storage Client O((z + m) log2 q) O((z + m + mnd) log2 q) O((z + m) log2 q) O((z + m) log2 q) + θ(|F|m + m)
cost Server O(nd(|F|m + m)) (*) O(nd(|F|m + m)) O(nd(|F|m + m)) O(nd(|F|m + m))
Encode Computation (client) O(mnd) O(mnd) O(m) O(mnd)
phase Computation (server) O(1) O(1) O(mnd) O(1)

Communication O(nd(|F|m + m)) O(nd(|F|m + m) + mnd) O(mn(|F|m + m)) O(nd(|F|m + m)
Check Computation (client) O(n) O(n) O(n) O(n)
phase Computation (server) O(nd) O(nd) O(nd) O(nd)

Communication O(n(|F|m + m)) O(n(|F|m + m)) O(n(|F|m + m)) O(n(|F|m + m))
Repair Computation (client) O(ld) O(ld) O(ld) O(2d − θ)
phase Computation (server) O(ld) O(ld) O(ld) O((d − θ)d)

Communication O((l + d)(|F|m + m)) O((l + d)(|F|m + m) + ld) O((l + d)(|F|m + m)) O((2d − θ)(|F|m + m))

7. Performance Evaluation
This section evaluates the computation performance of the S-

POR scheme to show that it is applicable for a real system. A pro-
gram written by Python 2.7.3 is executed using a computer with
Intel Core i5 processor, 2.4 GHz, 4 GB of RAM, Windows 7 64-
bit OS. The length of the prime q is set to be 256 bits. The number
of servers is set to be 10 (n = 10). The number of coded blocks
stored in each server is set to be 20 (d = 20). The number of
spot check for each server is set to be a half of d (s = d/2 = 10).
The number of healthy servers which are used for repairing is set
to be 3 (l = 3). The size of each file block is set to be 223 bits
(1MB). The experiment results are observed with three sets of
computation performance: Figure 3 (encode), Figure 4 (check),
and Figure 5 (repair), by varying the file size.

0.187 0.203 0.187 0.203 0.172

90.838 137.047
180.499 230.35

271.395
416.614

607.668

800.265

1013.831

1203.199

0

200

400

600

800

1000

1200

1400

50 75 100 125 150

T
im

e
 (

s)

File size (MB)

Keygen (client)

Init (client)

Encode (client)

Fig. 3 The computation performance of the encode phase

0.001 0.001 0.001 0.001 0.001

0.417 0.416 0.416 0.415 0.417

0.301
0.315 0.313 0.311 0.314

0

0.1

0.2

0.3

0.4

0.5

50 75 100 125 150

T
im

e
 (

s)

File size (MB)

Challenge (client

Respond (server)

Verify (client)

Fig. 4 The computation performance of the check phase

0.594
0.61 0.597 0.598 0.591

0.1505 0.1575 0.1565 0.1555 0.157

0.413 0.417 0.416 0.415 0.417

0

0.25

0.5

0.75

1

1.25

1.5

50 75 100 125 150

T
im

e
 (

s)

File size (MB)

case 1 (client)

case 2 (client)

case 2 (server)

Fig. 5 The computation performance of the repair phase

In Fig. 3, the graphs reveal that the computation time in the en-
code and init (splitting file) functions linearly increases while the
keygen function is constant. If the file size if 1 GB, the compu-
tation time in the encode and init functions is roughly 8308.561s
and 1863.914s, respectively. In Fig. 5, the graphs reveal that the
computation time of the check, response, and verify functions is
constant. In Fig. 5, the graphs reveal that the computation time
of the repair functions in both cases is also constant. The results
show that the S-POR is very efficient and applicable in a real sys-
tem.

8. Conclusion
This paper proposes the S-POR scheme, which is the core net-

work coding-based POR. The security analysis proves that the
S-POR can prevent the two most common attacks of a network
coding-based POR: response replay attack and pollution attack.
The evaluation results reveals that the S-POR is very fast and
applicable in a real system. The S-POR can be easily used for
further future works.

References
[1] A. Juels and B.Kaliski, ”PORs: Proofs of retrievability for large files”,

Proc. 14th ACM Conf. on Computer and Communications Security -
CCS 2007, pp.584-597.

[2] H. Shacham and B. Waters, ”Compact Proofs of Retrievability”, Proc.
14th Conf. on the Theory and Application of Cryptology and Informa-
tion Security - ASIACRYPT 2008, pp.90-107.

[3] K. Bowers, A. Juels and A. Oprea, ”Proofs of retrievability: theory
and implementation”, Proc. Workshop on Cloud computing security -
CCSW 2009, pp.43-54.

[4] W. J. Bolosky, J. R. Douceur, D. Ely and M. Theimer, ”Feasibility
of a serverless distributed file system deployed on an existing set of

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

IPSJ SIG Technical Report

desktop PCs”, Proc. of ACM conf. on Measurement and modeling of
computation systems - SIGMETRICS, 2000, pp.34-43.

[5] R. Curtmola, O. Khan, R. Burns and G. Ateniese, ”MR-PDP:
Multiple-Replica Provable Data Possession”, Proc. 28th Distributed
Computation System Conf., 2008, pp. 411-420.

[6] M. K. Aguilera, R. Janakiraman and L. Xu, ”Efficient fault-tolerant
distributed storage using erasure codes”, Tech. Rep., Washington Uni-
versity in St. Louis, 2004.

[7] K. Bowers, A. Juels and A. Oprea, ”HAIL: A High-Availability and
Integrity Layer for Cloud Storage”, Proc. 16th ACM Conf. on Com-
puter and Communications Security - CCS 2009, pp.187-198.

[8] E. Shi, E. Stefanov, and C. Papamanthou, ”Practical dynamic proofs
of retrievability”, Proc. of the 2013 ACM SIGSAC conf. on Computer
and communications security - CCS 2013, pp.325-336.

[9] D. Cash, A. Kp, and D. Wichs, ”Dynamic Proofs of Retrievability via
Oblivious RAM”, Advances in Cryptology EUROCRYPT 2013 Lec-
ture Notes in Computer Science, vol.7881, 2013, pp.279-295.

[10] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright and K. Ramchandran,
”Network coding for distributed storage systems”, IEEE Trans. on In-
formation Theory, 56(9):4539-4551, Sep 2010.

[11] B. Chen, R. Curtmola, G. Ateniese and R. Burns, ”Remote Data
Checking for Network Coding-based Distributed Storage Systems”,
Proc. ACM Cloud Comput. Security Workshop - CCSW 2010, pp.31-
42.

[12] Jun Li, Shuang Yang, Xin Wang, X. Xue and Baochun Li, ”Tree-
structured Data Regeneration in Distributed Storage Systems with
Network Coding”, Proc. 29th conference on Information communi-
cations - INFOCOM 2010, pp. 2892-2900.

[13] Ning Cao, Shucheng Yu, Zhenyu Yang, Wenjing Lou and Y. Thomas
Hou, ”LT Codes-based Secure and Reliable Cloud Storage Service”,
Proc. 31st IEEE conference on Computer Communications - INFO-
COM 2012.

[14] Henry C. H. Chen, Yuchong Hu, Patrick P. C. Lee and Yang Tang,
”NCCloud: Applying Network Coding for the Storage Repair in a
Cloud-of-Clouds”, Proc. of 10th USENIX conference on File and Stor-
age Technologies - FAST 2012, pp. 21-21.

[15] Anh Le and A. Markopoulou, ”NC-Audit: Auditing for network cod-
ing storage”, International Symposium on Network Coding - NetCod
2012, pp. 155-160.

[16] K. Omote, T. Thao, ”MDNC: Multi-source and Direct Repair in Net-
work Coding-based Proof of Retrievability Scheme”, Proc. of 15th Int.
Workshop on Information Security Applications - WISA’14, Springer-
Verlag, 2014.

[17] S. Agrawal and D. Boneh, ”Homomorphic MACs: MAC-Based In-
tegrity for Network Coding”, Proc. 7th Conf. on Applied Crypt. and
Network Security - ACNS 2009, pp.292-305.

[18] R. Ahlswede, N. Cai, S. Li and R. Yeung, ”Network information flow”,
IEEE Trans. on Information Theory, 46(4):1204-1216, 2000.

[19] R. Koetter and M. Medard, ”An algebraic approach to network cod-
ing”, IEEE/ACM Trans. on Networking, 11(5):782-795, Oct 2003.

[20] D. R. Stinson, Cryptography - Theory and Practice, CRC Press, Boca
Raton, 1995.

[21] K. Izawa, A. Miyaji, and K. Omote, ”Lightweight Integrity for XOR
Network Coding in Wireless Sensor Networks”, Information Secu-
rity Practice and Experience Lecture Notes in Computer Science,
vol.7232, 2012, pp.245-258.

7ⓒ 2015 Information Processing Society of Japan

Vol.2015-DPS-162 No.55
Vol.2015-CSEC-68 No.55

2015/3/6

