
IPSJ Transactions on Computer Vision and Applications Vol.7 31–34 (Feb. 2015)

[DOI: 10.2197/ipsjtcva.7.31]

Express Paper

Block-Propagative Background Subtraction System for
UHDTV Videos

Axel Beaugendre1,a) Satoshi Goto1

Received: July 28, 2014, Accepted: November 20, 2014, Released: February 16, 2015

Abstract: The process of Ultra High Definition TV videos requires a lot of resources in terms of memory and com-
putation time. In this paper we consider a block-propagation background subtraction (BPBGS) method which spreads
to neighboring blocks if a part of an object is detected on the borders of the current block. This allows us to avoid
processing unnecessary areas which do not contain any object thus saving memory and computational time. The re-
sults show that our method is particularly efficient in sequences where objects occupy a small portion of the scene
despite the fact that there are a lot of background movements. At same scale our BPBGS performs much faster than
the state-of-art methods for a similar detection quality.

Keywords: block propagation, UHDTV, object detection, foreground, BPBGS

1. Introduction

Foreground detection is a key task for multiple computer vision
systems as it provides valuable information about objects’ posi-
tion and shape in the scene. The two major applications which
can benefit from it are in the fields of augmented reality systems
and in the field of video surveillance for object tracking, behavior
recognition, person counting, etc. This subject has been studied
for the last thirty years, however the resolution of the video used
for testing algorithms has been confined to standard definition
(SD) of 640× 480 pixels at most. With the increase of mobile de-
vices and the appearance of Ultra High Definition TV (UHDTV),
there is a need for more efficient algorithms able to deal with
very big video sources at a acceptable computing cost. Indeed,
the 8K UHDTV [3] which has a definition of 7680 × 4320 pix-
els, will make its start in 2020 and will require adapted detection
systems. In a recent synthesis work of Sobral [5], almost thirty
background subtraction (BGS) systems have been compared on
their speed, memory consumption and detection quality. Some
of the most noticeable algorithms are the Pixel-Based Adaptive
Segmenter (PBAS) [1] introduced by Hoffmann et al. in 2012, the
Multi-layer BGS [8] of Yao and Odobez in 2007, the Gaussian av-
erage [7] of Wren et al. in 1997 and the Mixture of Gaussian [2]
proposed by Kaewtrakulpong and Bowden in 2001. Three out
of four of those algorithms are statistical methods based on one
or multiple Gaussians and also based on color and texture fea-
tures. The PBAS distinguishes itself by being a non-parametric
approach.

We propose here a Block-Propagative Background Subtraction
(BPBGS) method which, starting from a seed-block, will propa-
gate the detection to neighboring blocks in the cases where there

1 Graduate School of Information, Production and Systems, Waseda Uni-
versity, Kitakyushu, Fukuoka 808–0135, Japan

a) axel.beaugendre@fuji.waseda.jp

are foreground pixels detected on one or multiple borders of the
current block. The seeds are the positions of the detected ob-
jects (or blobs) from the previous frame. The major asset of
this work is that it focuses only on areas where objects are most
likely located and the areas without objects are not processed at
all, thus saving a great amount of computational time and mem-
ory resources. This propagative approach allows us to deal with
ultra high definition images at a low cost since only the blocks
around the seeds will be processed. First we present our block-
propagative background subtraction method in Section 2. Then
we will compare our algorithm with some state-of-art works in
Section 3. Finally conclusions are given in Section 4.

2. Block-Propagative Background Subtrac-
tion

2.1 Block Detection
In order to work reliably, a full frame object detection is re-

quired to obtain the first foreground objects (also called blobs)
which will be used as starting seeds in the block-propagative
mode. Later, this full detection will occur every Δr frames in or-
der to potentially detect new objects and avoid to have too much
discrepancies. The refreshing period Δr should be set in adequacy
with the frame rate (fmr) of the video, a too small value might
be unproductive as the state of blobs will be updated needlessly.
Empirically we set the refreshing period to Δr = 2/3 × fmr.

For the rest of the frames, the blobs Bt−1 obtained from the
previous frames ft−1 will become seeds for the block propaga-
tion. The frame is virtually cut out into W × H blocks of equal
dimensions width × height. The size of the block has a big in-
fluence on the propagation. If the block is too big then we might
process more than enough area and, on the contrary, if the blocks
are too small then there is a chance to not detect some parts be-
cause of fragments which would be in a different block. For each

c© 2015 Information Processing Society of Japan 31

IPSJ Transactions on Computer Vision and Applications Vol.7 31–34 (Feb. 2015)

Fig. 1 Block detection flowchart. The current block iteration stops if the
block has already been processed and it does not propagate further if
no blob is on a border.

blob seed S of center (xc, yc), we compute the closest seed-block
coordinates Bs(xb, yb) following the next equation:

Bs(xb, yb) =

⌊
S (xc, yc)

(width, height)

⌋
(width, height). (1)

For all blobs Bt−1, once the seed block coordinates are set,
the local detection on the seed blocks begins. First the region
R(xb, yb) where the block is located needs to be checked. For that
purpose, we create an history map which will save the blocks al-
ready processed. The map is an image of the same size as the
input image and will be kept and updated during all the current
frame process. One pixel on each border (top, bottom, right, left)
is enough to determine if a block has been already processed.
If it is the case then the detection process stops right there for
this block. If on the contrary the block has not been processed
yet, we update the history map with the current block and the
detection can continue. The block is used as a region of interest
which is first extracted from the input image. Then a classic static
background subtraction is effectuated followed by morphological
operations (open and close) and by a label of connected compo-
nents. Figure 1 presents the flowchart of the block detection.

2.2 Block-propagation
The main asset of the proposed method is its recursive aspect.

Indeed, the next step is the propagation of the detection to neigh-
boring blocks. If there are objects adjacent to one or multiple bor-
ders, then it means that it is very likely that the object is truncated
and that the rest of the object is on the other side of the border.
Depending on the situation, the block can propagate the detection
in a maximum of four directions: top, bottom, right and left. For
each direction D in which the block will propagate, the position
of the next block BD(x, y) is calculated and the call for the next
block detection is launched. The neighboring blocks’ processes
are parallelized to converge more quickly. As seen previously,
the region of the block is verified through the history map before
actually processing the block, therefore there cannot be multiple
instances processing the same block at the same time. Also the
history map is updated by all instances and it is protected dur-
ing the updating process. An example of the propagation can be

Fig. 2 Example of block-propagation iterations from the seed block i0 to
the final result i5. Unprocessed areas are labeled in gray.

seen in Fig. 2. The detection expands little by little to neighboring
blocks until there is no foreground pixel on any block border.

3. Experimental Results

We tested our method with an 8K UHDTV sequence from
Ref. [3], the scene of the field. It is a 704 frames (12960–13664)
long video in which children run through a rice field. The video
is subject to a heavy background noise due to the crops’ move-
ments. The 8K ground truth frames are available at *1. In or-
der to compare our work to state-of-art methods, we used the
BGSLibrary [4]. We chose four methods among the best meth-
ods mentioned in Ref. [5]: the PBAS, the MultiLayerBGS, the
DPWrenGABGS and the MixtureOfGaussianV1BGS.

The parameters used are as follow: Δr = 40, T = 30, (W270 =

16,H270 = 9), (W1080 = 32,H1080 = 18), (W4K = 48,H4K = 27),
(W8K = 32,H8K = 18). We developed in C++ with the OpenCV
library *2 and OpenMP 2.0 *3, the computer used is a Quadcore
i7@2.83 GHz with 4 Go of RAM. In order to compare the differ-
ent methods, we evaluated the performance with the number of
foreground pixels classified as foreground also called True Pos-
itive (TP), the number of background pixels classified as back-
ground or True Negative (TN), the number of False Positive (FP)
which are background pixels classified as foreground and the
number of foreground pixels classified as background or False
Negative (FN). To measure the static quality metrics we com-
puted different metrics: the Recall or detection rate which focuses
on missed detection or false negative

Recall =
T P

T P + FN
, (2)

the positive prediction or Precision (Pre.)

Precision =
T P

T P + FP
(3)

which takes into account the background noise and incorrect
detection or false positive. Moreover, the Similarity measure con-
siders both incorrect and miss detections:

Similarity =
T P

T P + FN + FP
, (4)

We measured another metric which uses the pixels metrics, the

*1 https://sites.google.com/site/uhdtvcomputervision/downloads
*2 http://opencv.org
*3 http://www.openmp.org

c© 2015 Information Processing Society of Japan 32

IPSJ Transactions on Computer Vision and Applications Vol.7 31–34 (Feb. 2015)

Fig. 3 Foreground mask obtained from the different BGS algorithms. Color map: TP-white, TN-black, FP-red, FN-green.

c© 2015 Information Processing Society of Japan 33

IPSJ Transactions on Computer Vision and Applications Vol.7 31–34 (Feb. 2015)

Table 1 Quality comparison of our BPBGS with Refs. [1], [2], [7], [8]. Best scores are in bold.

Method ID TP FN FP TN Recall Pre. Sim. F-score PSNR SSIM fps
PBAS 270p [1] 429,020 64,518 797,432 31,886,628 0.705 0.680 0.594 0.687 20.929 0.976 2.44
MultiLayer 270p [8] 382,563 110,976 383,752 32,300,307 0.623 0.570 0.454 0.576 20.255 0.976 2.69
DPWrenGA 270p [7] 469,339 24,200 12,113,649 20,570,410 0.776 0.038 0.038 0.072 10.742 0.610 0.12
MOGV1 270p [2] 218,769 274,770 1,592,199 31,091,860 0.375 0.124 0.102 0.179 17.809 0.935 1.30
BPBGS 270p 16x9 385,351 108,188 66,027 32,618,032 0.638 0.693 0.560 0.660 23.627 0.993 24.00
BPBGS 2K 32x18 380,820 112,719 27,288 32,656,771 0.633 0.758 0.600 0.686 25.964 0.994 7.58
BPBGS 4K 48x27 314,695 178,843 13,831 32,670,229 0.534 0.778 0.519 0.627 24.856 0.992 5.69
BPBGS 8K 32x18 350,927 142,611 30,748 32,653,311 0.586 0.752 0.553 0.654 24.376 0.992 1.03

F-score which is the weighted harmonic mean of Precision and
Recall is defined by

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall
. (5)

Additionally we compute the perceptual measure SSIM (Struc-
tural SIMilarity) [6]:

SSIM(S,G) =
1
n

n∑
i=1

(2μS iμGi + c1)(2coυS iGi + c2)

(μ2
S i
+ μ2

Gi
+ c1)(σ2

S i
+ σ2

Gi
+ c2)

, (6)

in which σS i , σGi are the standard deviations, μS i , μGi the means
and coυS iGi the covariance. The different values used in the liter-
ature are c1 = (0.01 × L)2 and c2 = (0.03 × L)2 in which L is the
dimension size and L = 255 for gray-scale images. Finally, the
Peak Signal-Noise Ratio (PSNR) is calculated by:

PSNR =
1
n

n∑
i=1

10 log10
m∑m

j=1 ||S i(j) −Gi(j)||2 . (7)

The computational speeds of the methods which include the
label of connected components is measured in frames per second
(fps).

Table 1 presents the comparison of our BPBGS to the state-
of-art algorithms using the metrics we just introduced. In order
to show the efficiency of our work we tested our method with
multiple scales: 270 p, 1080 p, 4K and 8K. However, the other
algorithms we tested on the sequence could not support scale
above 270 p. Indeed, above this size the algorithms were either
unable to process due to lack of memory or the processing time
was unreasonable. For example the MultiLayerBGS was process-
ing a single 1080 p frame in more than 15 min (0.001 fps). The
sequence being very subject to background noise, the precision
which takes into account the number of pixels incorrectly de-
tected as foreground is very important. We can see in Table 1
that our proposals, which do not process the entire frame, are
much less affected by the background noise. On the contrary, the
Recall rate is lower for our BPBGS, especially for higher scales.
The reason lies in the fact that some fragments might appear if
the missing junction is on a border, meaning no foreground pix-
els on the border of a block, then the detection is not propagated.
If we look at the F-score which takes into account both miss and
incorrect detection rates, we can see that our BPBGS is head-
to-head with the PBAS and above the MultiLayerBGS. We also
obtained better results by the perceptual measure SSIM with all
the different scales used. Last and most importantly, our propos-
als perform much faster than the state-of-art algorithms. Except
for the original UHDTV scale of our BPBGS which runs at 1 fps,
our proposals are much faster than the 270 p version of the other

methods. We even reach real-time despite including the label pro-
cess which is essential to applications such as tracking. Figure 3
shows a visual comparison of the state-of-art methods and our
BPBGS. Despite having some remaining background noise, our
proposals of HD and UHDTV scales fit better the ground truth
shape than the other works and detect the correct shape of the
arm of the child on the right of the image (Fig. 3 (h)–3 (j)).

4. Conclusions

The block-propagative background subtraction method pro-
posed in this paper is a fast and efficient way to detect foreground
objects in high and ultra high definition videos. By recursively
propagating the local block-detection to neighboring blocks, it is
possible to avoid processing most of the unnecessary areas. The
method obtains similar quality results compared to state-of-art
background subtraction algorithms while being much faster than
them. It can reach the speeds of 24 fps for the 270 p scale from
the re-scale to the connected component label. For the process of
the original 8K scale, the BPBGS performs at a speed of 1 fps,
which is already faster than the speed of the best state-of-art al-
gorithm on a 1080 p video. For the future work, we would like to
extend this block-propagation method with more advanced and
stronger background subtraction algorithms without losing too
much speed in the process.

References

[1] Hoffmann, M., Tiefenbacher, P. and RIgoll, G.: Background Segmenta-
tion with feedback: The pixel-based adaptive segmenter, Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pp.38–43 (2012).

[2] Kaetrakulpong, P. and Bowden, R.: An improved adaptive background
mixture model for realtime tracking with shadow detection, Euro-
pean Workshop on Advance Video Based Surveillance Systems (AVSS)
(2001).

[3] Shishikui, Y., Fujita, Y. and Kubota, K.: Super Hi-Vision - the star of
the show!, EBU Technical review (2009).

[4] Sobral, A.: BGSLibrary: An OpenCV C++ Background Subtraction
Library, IX Workshop de Visão Computacional (WVC’2013), Rio de
Janeiro, Brazil (2013).

[5] Sobral, A. and Vacavant, A.: A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos, Com-
puter Vision and Image Understanding, Vol.122, No.0, pp.4–21 (2014).

[6] Wang, Z., Bovik, A., Sheikh, H. and Simoncelli, E.: Image quality
assessment: From error visibility to structural similarity, IEEE Trans.
Image Process., Vol.13, No.4, pp.600–612 (2004).

[7] Wren, C., Azarbayejani, A., Darrell, T. and Pentland, A.: Pfinder: Real-
time tracking of the human body, IEEE Trans. Pattern Ana. Mach. In-
tell., Vol.19, No.7, pp.780–785 (1997).

[8] Yao, J. and Odobez, M.: Multi-layer background subtraction based
on color and texture, IEEE Computer Vision Recognition Conference
(CVPR) (2007).

(Communicated by Hondong Li)

c© 2015 Information Processing Society of Japan 34

