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Abstract: We consider the pattern formation problem by autonomous mobile robots, which is one of the most impor-
tant problems for distributed control of swarm of mobile robots. We present a randomized pattern formation algorithm
for asynchronous oblivious (i.e., memory-less) mobile robots that enables formation of any target pattern. As for de-
terministic pattern formation algorithms, the class of patterns formable from an initial configuration I is characterized
by the symmetricity (i.e., the order of rotational symmetry) of I, and in particular, every pattern is formable from I
if its symmetricity is 1. The randomized pattern formation algorithm ψPF we present in this paper consists of two
phases: The first phase transforms a given initial configuration I into a configuration I′ such that its symmetricity is
1, and the second phase invokes a deterministic pattern formation algorithm ψCWM by Fujinaga et al. (DISC 2012) for
asynchronous oblivious mobile robots to finally form the target pattern.
There are two hurdles to overcome to realize ψPF . First, all robots must simultaneously stop and agree on the end of the
first phase, to safely start the second phase, since the correctness of ψCWM is guaranteed only for an initial configuration
in which all robots are stationary. Second, the sets of configurations in the two phases must be disjoint, so that even
oblivious robots can recognize which phase they are working on. We provide a set of tricks to overcome these hurdles.

1. Introduction
Consider a distributed system consisting of anonymous, asyn-

chronous, oblivious (i.e., memory-less) mobile robots that do not
have access to a global coordinate system and are not equipped
with communication devices. We investigate the problem of
forming a given pattern F from any initial configuration I, whose
goal is to design a distributed algorithm that works on each
robot to navigate it so that the robots as a whole eventually
form F from any I. Besides the theoretical interest how the
robots with extremely weak capability can collaborate, the fact
that self-organization is a key property desired for autonomous
distributed systems motivates our work. However, existing pa-
pers [2], [3], [4], [5], [6], [7] have showed that the problem is
not solvable by a deterministic algorithm, intuitively because the
symmetry among robots cannot be broken by a deterministic al-
gorithm. Specifically, let ρ(P) be the (geometric) symmetricity
of a set P of points, where ρ(P) is defined as the number of an-
gles θ (in [0, 2π)) such that rotating P by θ around the center of
the smallest enclosing circle of P produces P itself.*1 Then F is
formable from I by a deterministic algorithm, if and only if ρ(I)
divides ρ(F), which suggests us to explore a randomized solution.

This paper presents a randomized pattern formation algorithm
ψPF . Algorithm ψPF is universal in the sense that for any given
target pattern F, it forms F from any initial configuration I (not
only from I such that ρ(I) divides ρ(F)). We however need the

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
a) yamauchi@inf.kyushu-u.ac.jp
b) mak@inf.kyushu-u.ac.jp
*1 That is, P is rotational symmetry of order ρ(P).

following assumptions; the number of robots n ≥ 5, and both I
and F do not contain multiplicities. The idea behind ψPF is sim-
ple and natural; first the symmetry breaking phase realized by
randomized algorithm ψS B translates I into another configuration
I′ such that ρ(I′) = 1 with probability 1 if ρ(I) > 1, and then the
second phase invokes the (deterministic) pattern formation algo-
rithm ψCWM in [5], which forms F from any initial configuration
I′ such that ρ(I′) = 1.*2 Since randomization is a traditional tool
to break symmetry, one might claim that ψPF is trivial. It is not
the case at all, mainly because our robots are asynchronous. We
return to this issue later in this section, after a brief introduction
of our robot model.

In the literature [2], [3], [4], [5], [6], [7], the robots are mod-
eled by points on a two dimensional Euclidean plane. Each robot
repeats a Look-Compute-Move cycle, where it obtains the posi-
tions of other robots (in Look phase), computes the curve to a next
position with a pattern formation algorithm (in Compute phase),
and moves along the curve (in Move phase). We assume that the
execution of each cycle ends in finite time. Each robot has no ac-
cess to the global x-y coordinate system; it has its own x-y local
coordinate system, and the robots’ positions in Look phase and
the curve to its next position in Compute and Move phases are
given in its x-y local coordinate system. The x-y local coordinate
systems are all right-handed. The robots are oblivious in the sense
that the algorithm is a function of the robots’ positions (in its x-y
local coordinate system) observed in the preceding Look phase.
We assume discrete time 0, 1, . . ., and introduce three types of

*2 Of course we can also use the pattern formation algorithm in [2] since it
keeps the terminal agreement of ψS B (i.e., the leader), during the forma-
tion.
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asynchrony. In the fully-synchronous (FSYNC) model, robots ex-
ecute Look-Compute-Move cycles synchronously at each time in-
stance. In the semi-synchronous (SSYNC) model, once activated,
robots execute Look-Compute-Move cycles synchronously. We
do not make any assumption on synchrony for the asynchronous
(ASYNC) model.

A crucial assumption here is that a robot can sense the position
of another robot, but cannot sense its velocity. In the SSYNC
(and hence FSYNC) model, a robot never observe moving robots
by definition, while in the ASYNC model, a robot does but cannot
tell which of them are moving. This is an essential difficulty in
designing a randomized algorithm for the ASYNC model. In this
paper, we devise a trick to overcome this problem. Specifically, in
order for ψCWM to start working in safe, in the terminal configura-
tion of ψS B all robots must simultaneously stop and agree on the
end of the symmetry breaking phase. We solve the symmetricity
breaking problem in two phases: The randomized leader election
phase and the termination agreement phase. In the randomized
leader election phase, robots randomly select the leader on the
largest empty circle, which is the largest circle centered at the
center of the smallest enclosing circle of robots and contains no
robot in its interior. The robots on the largest empty circle move
by randomly selected small distance along the circumference of
the largest empty circle, and when they break the symmetry, some
of the robots enter the interior of the largest empty circle to form
a new largest empty circle. They repeat this random selection
phase until the system reaches a configuration where exactly one
robot is on the current largest empty circle. We call this robot
the leader. At this point, some robots may be still circulating on
the previous largest empty circles. Now, the problem is to check
the termination of these random movements when we have the
leader. The leader defines a static destination point for each of
these robots, such that they cannot reach by their small random
movement. The randomly moving robots should start determinis-
tic new movement. Eventually, all these robots stop and the leader
moves closer to the the center of the smallest enclosing circle so
that the robots agree the termination. Finally, robots start a pat-
tern formation phase.
Related works. The pattern formation problem in FSYNC
model and SSYNC model was first investigated by Suzuki and
Yamashita [6], [7]. First, they showed that any target pat-
tern formable by non-oblivious robots in the FSYNC model is
formable by oblivious robots in the SSYNC model, except point
formation of two robots. They also showed that point formation
of two robots is unsolvable in the SSYNC model, while there is
a trivial solution in the FSYNC model. Second, they character-
ized the formable patterns by non-oblivious robots in the FSYNC
model. A necessary and sufficient condition to from a target pat-
tern F from a given initial configuration I is ρ(I)|ρ(F). Later,
ASYNC model was introduced by Flocchini et al. [3]. Since
we cannot apply pattern formation algorithms for the FSYNC or
SSYNC model to the ASYNC model, the pattern formation prob-
lem in the ASYNC model has been an open problem. Dieudonné
et al. proposed a universal pattern formation algorithm with a
unique leader for more than three oblivious robots in the ASYNC
model [2]. Fujinaga et al. presented an embedded pattern forma-

tion algorithm for oblivious robots in the ASYNC model, where
each robot obtains an embedded target pattern in its local coordi-
nate system [4]. Their algorithm is based on a minimum weight
perfect matching between the target points and the positions of
robots, which is called clockwise matching. Finally, Fujinaga et
al. presented a pattern formation algorithm for oblivious robots
in the ASYNC model that uses the embedded pattern formation
algorithm [5]. Cieliebak et al. presented a gathering algorithm
for more than two oblivious robots in the ASYNC model [1].

All these papers investigate robots with deterministic algo-
rithms. To the best of our knowledge, randomized symmetricity
breaking is a new notion which works as a fundamental prepro-
cessing for many tasks of robots.

2. System model
Let R = {r1, r2, . . . , rn} be a set of anonymous robots in a two-

dimensional Euclidean plane. Each robot ri is a point and does
not have any identifier, but we use ri just for description.

A configuration is a set of positions of all robots at a given
time. In the ASYNC model, when no robot observes a configura-
tion, the configuration does not affect the behavior of any robots.
Hence, we consider the sequence of configurations, in each of
which at least one robot executes a Look phase. In other words,
without loss of generality, we consider discrete time 1, 2, . . .. A
robot starting a Look-Compute-Move cycle at time t obtains the
positions of other robots at time t′ ≥ t (Look phase), computes
a curve to the next location (Compute phase), and starts moving
along the curve at time t′′ ≥ t′ (Move phase). The Move phase
finishes at some time t′′′ ≥ t′′. Let pi(t) (in the global coordi-
nate system Z0) be the position of ri (ri ∈ R) at time t (t ≥ 0).
P(t) = {p1(t), p2(t), . . . , pn(t)} is a configuration of robots at time
t. The robots initially occupy distinct locations, i.e., |P(0)| = n.

The robots do not agree on the coordinate system, and each
robot ri has its own x-y local coordinate system denoted by Zi(t)
such that the origin of Zi(t) is its current position.*3 We assume
each local coordinate system is right-handed, and it has an arbi-
trary unit distance. For a set of points P (in Z0), we denote by
Zi(t)[P] the positions of p ∈ P observed in Zi(t).

An algorithm is a function, say ψ, that returns a curve to the
next location in the two-dimensional Euclidean plane when given
a set of positions. Each robot has an independent private source
of randomness and an algorithm can use it to generate a random
rational number. A robot is oblivious in the sense that it does not
remember past cycles. Hence, ψ uses only the observation in the
Look phase of the current cycle.

In each Move phase, each robot moves at least δ > 0 (in the
global coordinate system) along the computed curve, or if the
length of the curve is smaller than δ, the robot stops at the des-
tination. However, after δ, a robot stops at an arbitrary point of
the curve. All robots do not know this minimum moving dis-
tance δ. During movement, a robot always proceeds along the
computed curve without stopping temporarily. We call this as-
sumption strict progress property.

*3 During a Move phase, we assume that the origin of the local coordinate
system of robot ri is fixed to the position where the movement starts, and
when the Move phase finishes, the origin is the current position of ri.
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An execution is a sequence of configurations,
P(0), P(1), P(2), . . .. The execution is not uniquely deter-
mined even when it starts from a fixed initial configuration.
Rather, there are many possible executions depending on the
activation schedule of robots, execution of phases, and movement
of robots. The adversary can choose the activation schedule,
execution of phases, and how the robots move and stop on the
curve. We assume that the adversary knows the algorithm, but
does not know any random number generated at each robot
before it is generated. Once a robot generates a random number,
the adversary can use it to control all robots.
Pattern Formation. A target pattern F is given to every robot
ri as a set of points Z0[F] = {Z0[p]|p ∈ F}. We assume that
|Z0[F]| = n. In the following, as long as it is clear from the con-
text, we identify p ∈ F with Z0[p] and write, for example, “F is
given to ri” instead of “Z0[F] is given to ri.” It is enough empha-
sizing that F is not given to a robot in terms of its local coordinate
system.

Let T be a set of all coordinate systems, which can be identi-
fied with the set of all transformations, rotations, uniform scal-
ings, and their combinations. Let Pn be the set of all patterns of n
points. For any P, P′ ∈ Pn, P is similar to P′, if there exists Z ∈ T
such that Z[P] = P′, denoted by P ≃ P′.

We say that algorithm ψ forms pattern F ∈ Pn from an ini-
tial configuration I, if for any execution P(0)(= I), P(1), P(2), . . .,
there exists a time instance t such that P(t′) ≃ F for all t′ ≥ t.

For any P ∈ Pn, let C(P) be the smallest enclosing circle of P,
and c(P) be the center of C(P). Formally, the symmetricity ρ(P)
of P is defined by

ρ(P) =

⎧⎪⎪⎨
⎪⎪⎩

1 if c(P) ∈ P,
|{Z ∈ T : P = Z[P]}| otherwise.

We can also define ρ(P) in the following way [6]: P can be di-
vided into regular k-gons centered at c(P), and ρ(P) is the maxi-
mum of such k. Here, any point is a regular 1-gon with an arbi-
trary center, and any pair of points {p, q} is a regular 2-gon with
its center (p + q)/2.

For any configuration P (c(P) ! P), let P1, P2, . . . , Pn/ρ(P) be a
decomposition of P into the above mentioned regular ρ(P)-gons
centered at c(P). Yamashita and Suzuki [7] showed that even
when each robot observes P in its local coordinate system, all
robots can agree on the order of Pi’s such that the distance of the
points in Pi from c(P) is no greater than the distance of the points
in Pi+1 from c(P), and each robot is conscious of the group Pi it
belongs to. We call the decomposition P1, P2, . . . , Pn/ρ(P) ordered
by this condition the regular ρ(P)-decomposition of P.

A point on the circumference of C(P) is said to be “on cir-
cle C(P)” and “the interior of C(P)” (“the exterior”, respectively)
does not include the circumference. We denote the interior (ex-
terior, respectively) of C(P) by Int(C(P)) (Ext(C(P))). We de-
note the radius of C(P) by r(P). Given two points p and p′ on
C(P), we denote the arc from p to p′ in the clockwise direction
by arc(p, p′). When it is clear from the context, we also denote
the length of arc(p, p′) by arc(p, p′). The largest empty circle
L(P) of P is the largest circle centered at c(P) such that there is
no robot in its interior, hence there is at least one robot on its

circumference.
Algorithm with termination agreement. A robot is static when
it is not in a Move phase, i.e., in a Look phase or a Compute
phase, or not executing a cycle. A configuration is static if all
robots are static. Because robots in the ASYNC model cannot
recognize static configurations, we further define stationary con-
figurations. A configuration P is stationary for an algorithm ψ, if
in any execution starting from P, configuration does not change.

We say algorithm ψ guarantees termination agreement if in any
execution P(0), P(1), . . . of ψ, there exists a time instance t such
that P(t) is a stationary configuration, in P(t′) (t′ ≥ t), ψ out-
puts ∅ at any robot, and all robots know the fact. Specifically,
ψ(Z′[P(t′)]) = ∅ in any local coordinate system Z′. This prop-
erty is useful when we compose multiple algorithms to complete
a task.

3. Randomized pattern formation algorithm
The idea of the proposed universal pattern formation algorithm

is to translate a given initial configuration I with ρ(I) > 1 into a
configuration I′ with ρ(I′) = 1 with probability 1, and after that
the robots start the execution of a pattern formation algorithm.
We formally define the problem.

Definition 1 The symmetricity breaking problem is to change
a given initial configuration I into a stationary configuration I′

with ρ(I′) = 1.
In Section 3.1, we present a randomized symmetricity breaking

algorithm ψS B with termination agreement. In the following, we
assume n ≥ 5 and I and F do not contain any multiplicities. Ad-
ditionally, we assume that for a given initial configuration I, no
robot occupies c(I), i.e., c(I)∩I = ∅.*4 Due to the page limitation,
we omit the pseudo code of ψS B.

In Section 3.2, we present a randomized universal pattern for-
mation algorithm ψPF , that uses ψS B and a pattern formation al-
gorithm ψCWM [5] with slight modification.

3.1 Randomized symmetricity breaking algorithm ψSB

In the proposed algorithm ψS B, robots elect a single leader that
occupies a point nearest to the center of the smallest enclosing
circle. Clearly, the symmetricity of such configuration is one.

We use a sequence of circles to show the progress of ψS B. In
configuration P, let Ci(P) be the circle centered at c(P) with ra-
dius r(P)/2i. Hence, C0(P) = C(P). We denote the radius of
Ci(P) by γi. We call the infinite set of circles C0(P),C1(P), . . .
the set of binary circles. Because ψS B keeps the smallest enclos-
ing circle of robots unchanged during any execution, we use Ci

instead of Ci(P). We call Ci the front circle if Ci is the largest
binary circle in L(P) including the circumference of L(P), and we
call Ci−1 the backward circle (Fig. 1). We denote the number
of robots in Ci and on Ci by ni. Hence, if the current front circle
Ci is the largest empty circle, ni is the number of robots on Ci,
otherwise it is smaller than the number of robots on Ci.

Recall that all local coordinate systems are right handed.
Hence, all robots agree on the clockwise direction on each bi-
nary circle. For Ci (i ≥ 0) and a robot r on Ci, we call the next

*4 If there is a robot on c(I), we move the robot by some small distance
from c(I) to satisfy the conditions of the terminal configuration of ψS B.
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Fig. 1 The set of binary circles and radial track of r, where C0 is the small-
est enclosing circle, C1 is the backward circle, and C2 is the front
circle.
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(d) Single leader is selected

Fig. 2 Random selection

robot on Ci in its clockwise direction predecessor, denoted by
pre(r), and the one in the counter-clockwise direction successor,
denoted by suc(r). When there are only two robots r and r′ on Ci,
pre(r) = suc(r) = r′. We say r is neighboring to r′ if r′ = pre(r)
or r′ = suc(r). For example, in Fig. 2(a), pre(r0) is r1, suc(r0) is
r7, and r1 and r7 are neighbors of r0.

During an execution of the proposed algorithm, robot r moves
to an inner binary circle along a half-line starting from the center
of the smallest enclosing circle and passing r’s current position.
We call this half-line the radial track of r (Fig. 1). When r moves
from a point on Ci to Ci+1 along its radial track, we say r proceeds
to Ci+1.

Algorithm ψS B first sends each robot to its inner nearest binary
circle along its radial track if the robot is not on any binary circle.
Hence, the current front circle is also the largest empty circle.

Then, ψS B probabilistically selects at least one robot on the
current front circle Ci, and make them proceed to Ci+1. These se-
lected robots repeat the selection on Ci+1. By repeating this, the
number of robots on a current front circle reaches 1 with proba-
bility 1. The single robot on the front circle is called the leader.

We will show the detailed selection procedure on each front
circle. We have two cases depending on the positions of robots

when the selection of a front circle Ci starts. One is the regular
polygon case where robots on Ci form a regular ni-gon, and the
other is the non-regular polygon case where ni robots on Ci form
a non-regular polygon.
Selection in the regular polygon case. When robots on the cur-
rent front circle Ci form a regular ni-gon (i.e., for all robot r on
Ci, arc(suc(r), r) = 2πγi/ni), it is difficult to select some of the
robots. Especially, when the symmetricity of the current config-
uration is ni, it is impossible to deterministically select some of
the robots. In a regular ni-gon case, ψS B makes these robots ran-
domly circulate on Ci. Then, a robot that do not catch up with its
predecessor and caught by its successor is selected and proceeds
to Ci+1.

First, if robot r on Ci finds that the robots on Ci form a reg-
ular ni-gon, r randomly selects “stop” or “move.” If it selects
“move,” it generates a random number v in (0..1], and moves
v(1/4)(2πγi/ni) along Ci in the clockwise direction (Fig. 2(a)).
This procedure ensures that the regular ni-gon is broken with
probability 1. When r finds that the regular ni-gon is broken, r
stops.

Uniform moving direction ensures the following invariants:
( 1 ) Once r finds that it is caught by suc(r), i.e., the following

inequality holds, r never leave from suc(r).

Caught(r) = arc(suc(r), r) ≤ 2πγi/ni

( 2 ) Once r finds that it missed pre(r), i.e., the following inequal-
ity holds, r never catch up with pre(r).

Missing(r) = 2πγi/ni < arc(r, pre(r)) ≤ (5/4)(2πγi/ni)

We say robot r is selected if it finds that the following predicate
holds.

S elected(r) = Caught(r) ∧ Missing(r)

Then, a selected robot proceeds to Ci+1 (Fig. 2(b)). Since no
two neighboring robots satisfy S elected at a same time, while
S elected(r) holds at r, suc(r) and pre(r) wait for r to proceed to
C1. Even when ni = 2, when they are not in the symmetric posi-
tion, just one of the two robots becomes selected. Note that other
robots cannot check whether r is selected or not in the ASYNC
model because they do not know whether r has observed the con-
figuration and found that S elected(r) holds.

Observation 2 During the above random movement on the
current front circle Ci, (3/4)(2πγi/ni) ≤ arc(r, pre(r)) ≤
(5/4)(2πγi/ni) holds at each robot r on Ci. Let r′ = pre(r)
and r′′ = suc(r) for r on Ci. If r becomes selected and
proceeds to Ci+1, then arc(suc(r′), r′) > (5/4)(2πγi/ni) and
arc(r′′, pre(r′′)) > (5/4)(2πγi/ni) hold thereafter even when
robots move.

After some selected robots proceed to Ci+1, other robots might
be still moving on Ci and may become selected later. However, in
the ASYNC model, no robot can determine which robot is mov-
ing on Ci. For the robots on Ci+1 to ensure that no more robot
will join Ci+1, ψS B makes some of the non-selected robots on Ci

proceed to Ci+1. The robots on Ci are classified into three types,
rejected, following, and undefined.
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The predecessor and the successor of a selected robot are clas-
sified into rejected, and each rejected robot stays on Ci. All robots
can check whether robot r is rejected or not with the following
condition:

Re jected(r) = (arc(r, pre(r)) > (5/4)(2πγi/ni)) ∨
(arc(suc(r), r) > (5/4)(2πγi/ni)).

Non-rejected robot r becomes following if r finds that at least
one of the following three conditions hold:

FollowPre(r) = ¬Re jected(r) ∧ Re jected(pre(r))

∧Caught(r)

FollowS uc(r) = ¬Re jected(r) ∧ Re jected(suc(r))

∧Missing(r)

FollowBoth(r) = ¬Re jected(r) ∧ Re jected(pre(r))

∧Re jected(suc(r)).

Hence, we have

Following(r) = FollowPre(r) ∨ FollowS uc(r) ∨ FollowBoth(r).

Intuitively, the predecessor and the successor of a following robot
never become selected nor following. Algorithm ψS B makes each
following robot proceed to Ci+1 (Fig. 2(c)).

Finally, robots on Ci that are neither selected, rejected nor fol-
lowing are classified into undefined.

Note that Re jected(r) implies ¬S elected(r) and
¬Following(r). Additionally, S elected(r) and Following(r)
may hold at a same time.

Eventually, all robots on Ci recognize their classification from
selected, following, and rejected. We can show that once a robot
finds its classification, it never changes. Then, selected robots
and following robots leave Ci and only rejected robots remain on
C0. During the random selection phase, ni does not change since
robots moves in Int(Ci)∪Ci. Hence, all robots can check whether
a robot r on Ci is rejected or not with Re jected(r), and the robots
on Ci+1 agree that no more robot proceeds to Ci+1. These robots
start a new (random) selection on Ci+1.

Consider the case where i = 0. When n = 5, the length of the
random movement is largest, and each robot circulates at most
π/10. Hence, no two robots form a diameter. Additionally, ψS B

guarantees that no two neighboring robots leave C0. Hence, ψS B

keeps C0 during the random selection. In the same way, when
n ≥ 5, the random selection does not change C0.
Selection for non-regular polygon case. When robots on the
current front circle Ci does not form a regular ni-gon, ψS B basi-
cally follows the random selection. Thus, robots do not circulate
on Ci randomly, but check their classification with the three con-
ditions.

Because robots do not form a regular ni-gon on Ci, there exists
a robot r on Ci that satisfies arc(suc(r), r) < 2πγi/ni. However,
there exists many positions of ni robots on Ci where all such robot
r are also rejected, i.e., arc(r, pre(r)) > (5/4)(2πγi/ni), from
which no robot becomes selected nor following (Fig. 3).

In this case, we add one more condition NRS elected(r). We
say r satisfies NRS elected(r) when r is on the front circle Ci,

r4
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r2

r3

r5

r6

r7

Fig. 3 Non-regular case. All robots are rejected, and no robot proceeds to
C1 with the two conditions Re jected and Following.
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(b) Terminal configuration

Fig. 4 Stopping rejected robots when the leader is first generated on C2. (a)
The leader embeds a regular octagon on C0 by its position on C4. (b)
After all robots C0 have reached the corners of embedded polygons,
rL proceeds to C5.

all robots on Ci do not satisfy S elected nor Following, and
arc(r, pre(r)) > (5/4)(2πγi/ni) and arc(suc(r), r) ≤ 2πγi/ni hold.
We note that no two neighboring robots satisfies NRS elected.
Robot r proceeds half way to Ci+1, and waits for all robots satisfy-
ing NRS elected to proceed.*5 Robots in between Ci and Ci+1 can
reconstruct the non-regular polygon on Ci with their radial tracks
and after all robots satisfied NRS elected leaves Ci, the robots in
Ext(Ci+1) ∩ Int(Ci) proceeds to Ci+1. Note that during a random
selection, no robot on Ci satisfies NRS elected.

We consider one more exception case for initial configurations
where robots form a non-regular polygon on C0. In this case,
each robot r first examines NRS elected(r). If proceeding all
robots satisfying NRS elected changes C0, the successor of such
robot proceeds to C1 instead of them. Assume that r is one of
such robots satisfying NRS elected(r). Because C0 is broken after
all robots satisfying NRS elected proceeds, in the initial config-
uration arc(r, pre(r)) = πγ0. Otherwise, there exists a rejected
robot that does not satisfy NRS elected in the initial configura-
tion. Hence, proceeding suc(r) does not change C0.

After that, robots on Ci determine their classification by us-
ing Re jected, Following, and following robots proceed to Ci+1.
Eventually all following robots leave Ci, and only rejected robots
remain on Ci.
Termination agreement. By repeating the above procedure on
each binary circle, with probability 1, only one robot reaches the
inner most binary circle, with all other robots rejected (Fig. 2(d)).
We say this robot is selected as a single leader. However, rejected
robots may be still moving on the binary circles. Thus, the leader
robot starts a new phase to stop all rejected robots, so that the

*5 Otherwise, r cannot distinguish how many robots satisfied NRS elected.
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terminal configuration is stationary.
Let rL be the single leader and Ci be the front circle for R \ {rL}

(this implies the leader is selected during the random selection on
Ci). Intuitively, rL checks the termination of Ci− j (i− j ≥ 0) when
rL is on Ci+ j+2. Given a current observation, all robots on Ci− j

are expected to move at most (1/4)(2πγi− j/ni− j) from corners of
some regular ni− j-gon. Hence, there exists an embedding of reg-
ular ni− j-gon onto Ci− j so that its corners does not overlap these
expected tracks. If there is no such embedding, then randomized
selection has not been executed on Ci− j, and rL embeds an arbi-
trary regular ni− j-gon on Ci− j. Robot rL shows the embedding by
its position on Ci+ j+2, i.e., rL’s radial track is the perpendicular
bisector of an edge of the regular ni− j-gon (Fig. 4(a)).

Then, ψS B makes robots on Ci− j occupy distinct corners of the
regular ni− j-gon. The target points of these robots are determined
by the clockwise matching algorithm [4]. We restrict the match-
ing edges before we compute the clockwise matching. Specifi-
cally, we use arcs on Ci− j instead of direct edges, and direction
of each matching edge (from a robot to its destination position)
is always in the clockwise direction. Note that under this restric-
tion, the clockwise matching algorithm works correctly on Ci− j.*6

The robots on Ci− j has to start a new movement with fixed target
positions. Because robots can agree the clockwise matching irre-
spective of their local coordinate systems, rL can check whether
robots on Ci− j finish the random movement.

Then, rL calculates its next position on Ci+ j+3 in the same way
for robots on Ci− j−1, and moves to that point.

The leader finishes checking all binary circles on C2i+2, then it
proceeds to C2i+3 to show the termination of ψS B (See Fig. 4(b)).
However, ψS B carefully moves robots on C0 to keep the smallest
enclosing circle. When there are just two robots on C0, then the
random selection has not been executed on C0, and rL does not
check the embedding. When there are more than three robots,
there is at least one robot that can move toward its destination
with keeping the smallest enclosing circle, and ψS B first moves
such a robot.

For any configuration P satisfying the following two condi-
tions, ψS B outputs ∅ at any robot irrespective of its local coordi-
nate system. Hence, such configuration P is a stationary configu-
ration of ψS B.
( 1 ) P contains a single leader on the front circle, denoted by Cb.
( 2 ) All other robots are in Ext(Ck) ∪Ck, satisfying b ≥ 2k + 3.
Clearly, ψS B guarantees terminal agreement among all robots.

Algorithm ψS B guarantees the reachability to a terminal con-
figuration with probability 1, and the terminal configuration is
deterministically checkable by any robots in its local coordinate
system.

*6 Algorithm ψCWM [4] reconstructs a clockwise matching from all mini-
mum weight perfect matchings between robots and target points, i.e., for
a set of overlapping edges, ψCWM selects some of them in a “clockwise”
manner. The critical assumption is that the number of robots is equal to
the number of target points. When ψS B uses ψCWM , it restricts the direc-
tion of edges when considering the set of all minimum weight matchings.
Because the number of target points is larger than the number of robots,
without this restriction, a robot in the middle point of two target points
may increase the number of target points.

3.2 Randomized pattern formation algorithm ψPF

We present a randomized pattern formation algorithm ψPF . Al-
gorithm ψPF executes ψS B when the configuration does not satisfy
the two conditions of the terminal configuration of ψS B. When the
current configuration satisfies the two terminal conditions of ψS B,
ψPF starts a pattern formation phase.

Fujinaga et al. proposed a pattern formation algorithm ψCWM

in the ASYNC model, which uses the clockwise minimum weight
perfect matching between the robots and an embedded target pat-
tern [5]. The embedding of the target pattern is determined by the
robots on the largest empty circle. Additionally, when there is a
single robot on the largest empty circle, ψCWM keeps this robot the
nearest robot to the center of the smallest enclosing circle during
any execution. We use this property to separate the configurations
that appears executions of ψS B and those of ψCWM .

Algorithm ψPF uses ψCWM after ψS B terminates, however, to
compose ψS B and ψCWM , we modify the terminal configuration of
ψS B to keep the leader showing the termination of ψS B. Let P be a
given terminal configuration of ψS B, and the single leader be rL on
the front circle CL. Given a target pattern F, let F1, F2, . . . , Fn/ρ(F)

be the regular ρ(F)-decomposition of F. Then, ψCWM embeds F
so that f ∈ F1 lies on the radial track of rL, and r(F) = r(P).
When c(F) ∈ F, ψCWM also perturbs this target point. Let F′ be
this embedding.

Then, ψPF first moves rL as follows: Let L(F′) be the largest
empty circle of F′ and ℓ(F′) be its radius. Let k (k > 0) be an
integer such that Ck be the largest binary circle in L(F′). If C2k+3

is in CL, rL proceeds to C2k+3. When C2k+3 is in Ext(CL), rL does
not move. Then, ψPF starts the execution of ψCWM . After R \ {rL}
reach their destination positions, rL moves to its target point along
its radial track.

4. Correctness
We will show a sketch of the proof of ψPF . Let I be an initial

configuration where robots form a regular n-gon. We first show
that ψS B randomly selects at least one and at most n/2 robots
and C0 does not change by robots’ random movement on C0.
Intuitively, the adversary has no choice to let the robots move
with keeping the regular n-gon. However, the proposed algo-
rithm outputs a moving distance smaller than the minimum mov-
ing distance δ, and the adversary cannot stop other robots. Con-
sequently, because of the strict progress property, the robots then
observe a non-regular configuration.

Lemma 3 Starting from an initial configuration I where the
robots form a regular n-gon, with probability 1, any execution
of ψS B in the ASYNC model reaches a configuration where at
least one robot is selected, and until then ψS B does not change the
smallest enclosing circle of robots.

A selected robot r proceeds to C1 and while S elected(r) holds,
S elected and Following do not hold at its neighbors, and the
neighbors become rejected after r proceeds. We have the same
property for any following robot. Eventually, all robots recognize
their classification and selected and following robots reach C1.
No two neighboring robots in P(0) enters the interior of C0 in the
randomized selection on C0. Hence, the smallest enclosing circle
does not change during any execution of ψS B when n ≥ 5. Con-
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sequently, with probability 1, the system reaches a configuration
where C0 contains only rejected robots.

The rejected robots on C0 do not become selected nor follow-
ing even when robots on C1 moves, because n0 does not change
and all robots can check their states with the predicate Re jected.
Hence, robots on C1 start a new random selection phase. We
obtained the base case. Clearly, we can apply above results to
robots on any front circle. The system reaches a configuration
where only one robot is on the front circle, and all robots in the
backward circle are rejected.

Then, ψS B makes the leader check whether the robots on each
binary circle Ci have stopped by embedding a regular ni-gon so
that robots on Ci starts a new deterministic movement to reach
the corners of the regular ni-gon. The system eventually reaches
a terminal configuration of ψS B with probability 1.

From a static terminal configuration of ψS B, robots execute
ψCWM , and we have the following theorem.

Theorem 4 Algorithm ψPF forms any target pattern from any
initial configuration with probability 1.

5. Conclusion
We present a randomized pattern formation algorithm for

oblivious robots in the ASYNC model. The proposed algorithm
consists of a randomized symmetricity breaking algorithm and a
pattern formation algorithm proposed by Fujinaga et al. [5]. One
of our future directions is to extend our results to the robots with
limited visibility, where oblivious robots easily increase the sym-
metricity [8].
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