
IPSJ SIG Technical Report

To pre-copy or To post-copy, That is the Question

Asraa Abdulrazak AliMardan1,a) Akane Koto1,b) Kenji Kono1,c)

Abstract: Live migration of virtual machines (VMs) is a promising technique for cloud management. It allows cloud
administrators to control and manage the computing resources flexibly in the cloud. Live migration offers two poli-
cies: 1) pre-copy and 2) post-copy. The differences in the policies result in different performance characteristics. The
trade-off stemming from the differences in the policies must be taken into consideration when a virtual machine is
to be moved from one physical machine to another. In this paper, we summarize our previous results of the perfor-
mance comparison of Xen pre-copy, KVM pre-copy and KVM post-copy, and show a simple model that estimates the
migration time of Xen pre-copy and KVM post-copy.

1. Introduction
Live migration of virtual machines (VMs) is a promising tech-

nique for cloud management. Live migration moves VMs across
different physical machines without disrupting the services of-
fered by VMs. This feature enables cloud administrators to man-
age computing resources in the cloud with great flexibility. For
example, the administrators can mitigate heavy load of a phys-
ical machine by moving some VMs running on the machine to
another. If the administrators move all VMs from the machine, it
can be shutdown for maintenance or power saving. Since a man-
agement policy of the computing resources differs in clouds, the
administrators can use live migration for various purposes. Live
migration can be used in the virtualization technique that recent
cloud platforms (e.g., Amazon Web Services [1], Google Com-
pute Engine [2], and Microsoft Azure [3]) commonly use as their
technical base.

However, using live migration effectively in clouds is some-
times difficult because cloud can be customized variously de-
pending on the principle of the cloud that defines workloads, a
management policy, and implementations of the cloud. Since the
behavior of live migration differs in the migrating VM’s work-
load, cloud administrators serving various kinds of services may
be bothered with unpredictable effects of live migration. Specifi-
cally, Clark et al. [4] say that live migration adjusts downtime and
migration time of live migration in response to the memory access
pattern of the migrating VM. In addition to the workloads, the ad-
ministrators can select a migration policy depending on their pur-
pose of live migration, which may cause unpredictable negative
impact on cloud services. Our experimental results reveal that one
of the famous migration policy named pre-copy [4] may increase
downtime and migration time of live migration, and another fa-
mous migration policy named post-copy [5] may cause terrible

1 Department of Information and Computer Science, Keio University
a) asraaiteng@sslab.ics.keio.ac.jp
b) koto@sslab.ics.keio.ac.jp
c) kono@sslab.ics.keio.ac.jp

performance interference on the migrating VM. In cloud environ-
ment, cloud administrators can customize implementations of the
cloud, which makes the effect of migration policy more compli-
cated. For example, our experimental results show that migration
time, downtime, and performance interference on VMs differ in
Xen and KVM. Since various things have an effect on the per-
formance of live migration and clouds, the administrators should
take care of many things for effective manage of the cloud.

For considering the causes of performance instability of live
migration, understanding the effects of live migration in each
cloud environment is practical way. To understand the effects
of live migration, downtime and migration time are sometimes
used as metrics for evaluating the performance of live migration.
These metrics show the length of time in the part of the whole of
live migration, and are used in many previous studies for deter-
mining the replacement of VMs among physical machines. Since
live migration may cause performance interference on VMs, per-
formance degradation of each VM is also an important metrics
for evaluating live migration. In this study, we define the perfor-
mance interference by live migration as migration noise. Espe-
cially, we observed CPU, network, and memory usage of each
VM and use the degradation of each as migration noise adding as
metrics of live migration in our experiments.

In our previous study [6], we compare the performance of three
migration methods. Specifically, we use two migration policies:
pre-copy and post-copy and two VMMs: Xen and KVM in our
experiments. Since Xen post-copy is not available to the pub-
lic, we compare three migration methods: Xen pre-copy, KVM
pre-copy, and KVM post-copy. Our major finding is that Xen
pre-copy, KVM pre-copy, and KVM post-copy all show different
trends in migration time. Thus, it is important to choose an ap-
propriate policy and/or implementation of live migration in the
cloud. In this paper, we show a simple model to estimate the
migration time of Xen pre-copy and KVM post-copy.

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-OS-132 No.4
2015/2/26

IPSJ SIG Technical Report

2. Migration policies and Implementations
The performance of live migration differs in clouds since cloud

administrators can customize clouds and live migration follow-
ing their principles. Live migration has been widely studied and
many policies and implementations have been proposed. This di-
versity gives cloud administrators several choices for customizing
the cloud. In this section, we explain the difference of pre-copy
and post-copy, and difference of Xen and KVM focusing on the
performance stability of live migration.

2.1 Migration policy: Pre-copy vs Post-copy
Pre-copy and post-copy aim to reduce downtime of live mi-

gration with their own memory transfer mechanism, which may
show different trends under the same workloads. Downtime is the
duration of stop-and-copy, one of the migration phase in which
migrating VM should be suspended for converting its workspace
from the source to the destination. Pre-copy reduces # of mem-
ory pages transferred during stop-and-copy by transferring most
of the VM’s memory pages in iterative pre-copy phase. In it-
erative pre-copy phase, pre-copy transfers most of the memory
pages at first, and re-transfers only dirty pages (i.e., memory
pages updated in the previous memory transfer) iteratively with-
out disturbing the VM. If the # of remaining dirty pages becomes
small enough, pre-copy stops iterative pre-copy and transfers only
frequent-updated dirty-pages and the VM’s device states in stop-
and-copy. Since the # of remaining dirty pages differs in the
VM’s dirty-rate and network capability, pre-copy may increase
downtime and migration time. On the other hand, post-copy de-
fined the types of memory pages transferred in stop-and-copy,
which maintains downtime independently from the VM’s dirty-
rate. The flow of post-copy is divided in two phases: stop-and-
copy and demand paging. In post-copy, all VM’s memory pages
are transferred only once; first it transfers only the VM’s device
states in stop-and-copy and transfers remaining memory pages in
response to the VM’s workloads. Since this feature, post-copy
also prevents migration time becoming longer in response to the
VM’s dirty-rate.

In post-copy migration, cloud administrators should consider
the time of fetching each memory page appearing during demand-
paging phase. After the stop-and-copy phase, post-copy fetches
each of the remaining memory pages from the source host via the
network. Since each of the memory fetching is triggered by the
VM’s memory access on the destination, the VM may be waited
for a long time when the VM accesses many memory pages in a
short time after it resumes on the destination. This waiting time
may cause terrible performance degradation of the VM. By con-
trast, pre-copy migrates most of the VM’s memory pages without
using the requests of the VM and does not causes such stopping
time.

2.2 Implementation: Xen vs KVM
2.2.1 Difference on VMM

Xen and KVM can provide para-virtualized VM with different
CPU management architecture, which may cause different trends

(a) Xen pre-copy (b) KVM pre-copy

Fig. 1 CPU utilization of each VM on the source host (workload of mi-
grating VM set working set size (WSS): 64 MB, Dirty-rate: 15360
pages/sec). Two VMs (migrating VM and collocating VM) running
on the source cause CPU resource contention, and thus live migration
starts moving migrating VM at 10 seconds to mitigate the contention.

in CPU resource allocation for migrating VM, collocating VM,
and migration process. In Xen, all VMs are served as domain:
one administer VM (domain-0) manages other VMs (domain-
Us), and CPU times for each VM is fairly allocated with credit
scheduling algorithm. All instructions for resource management
of VM including live migration are executed in domain-0. Unlike
Xen, KVM manages all VMs as QEMU process, a device em-
ulator running with KVM, and allocate CPU times of each VM
as CPU threads of the process. In KVM, all CPU times are man-
aged with completely fair scheduler (CFS) implemented in Linux.
Since KVM entrust the execution of live migration to QEMU,
live migration is executed as a thread of the QEMU process. In
our experiment, we reveal that these differences on management
architecture and scheduling algorithm vary the impact of live mi-
gration. Figure 1(a) and (b) are examples of our experimental
results. The green line in each graph is the CPU utilization of the
migration process. These figures show that each migration pro-
cess shows different trends on CPU utilization per unit time and
the duration that the migration process consumes CPU. These dif-
ferences also vary the impacts on migrating VM and collocating
VMs. In fact, these figures shows that Xen pre-copy causes much
performance interference on VMs than KVM pre-copy, but the
interference continues shorter than KVM pre-copy.

The memory management architecture implemented in Xen
and KVM differently interfere VMs during and after live migra-
tion. Xen cannot free VM’s unused memory automatically since
it does not support memory overcommit. If cloud administrators
want to rearrange each VM’s memory in Xen, they should resize
another VM’s memory to small before they increase the size one
VM with insufficient memory. Even Xen uses self-ballooning
mechanism that rearranges the size of VM’s memory automati-
cally depending on the workload, the administrators cannot use
the mechanism with live migration because the mechanism does
not support live migration. In order to use live migration for
memory management of the cloud, they should resize VM’s
memory after the migrating VM is migrated and freed on the
source host. By contrast, KVM can rearrange VM’s memory au-
tomatically even when it is executing live migration. Since KVM
uses memory management mechanism implemented in Linux,
KVM can use memory overcommit, which means that it does not
need to resize the VM’s memory explicitly. However, KVM can-

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-OS-132 No.4
2015/2/26

IPSJ SIG Technical Report

not free VM’s memory completely even after it migrates the VM
because of QEMU’s architecture. In KVM+QEMU architecture,
QEMU keeps holding the VM’s memory in preparation for the
VM’s return from another hosts.
2.2.2 Difference on pre-copy

In addition to the difference of VMM, Xen and KVM provide
pre-copy live migration with different implementations. One of
the difference between Xen pre-copy and KVM pre-copy is the
threshold for stopping iterative pre-copy phase. As described in
Section 2.1, pre-copy migration execute iterative pre-copy un-
til the # of remaining dirty pages becomes small enough. To
make pre-copy suitable for various workloads, Xen pre-copy use
three values; # of remaining dirty-pages, the total # of transferred
pages, and # of pre-copy iterations. Using these values, Xen de-
fines three stop conditions of iterative pre-copy: (1) the memory
transfer rate required in stop-and-copy may become the same or
higher than the maximum network throughput taken for migra-
tion. (2) The total # of iterations becomes 30. (3) The # of re-
maining dirty pages in the iteration becomes smaller than 50. (4)
The total # of pages transferred during iterative pre-copy becomes
three times larger than the size of the VM’s memory. If one or
more of the stop conditions are satisfied, pre-copy stops iterative
pre-copy and move to stop-and-copy. In case of KVM, pre-copy
uses # of remaining pages only for the threshold. Specifically,
KVM pre-copy continuously calculates the time taken for trans-
ferring the remaining pages in stop-and-copy during iterative pre-
copy, and compare the calculated value to a pre-defined thresh-
old. The pre-defined threshold indicates the maximum down-
time allowed in the migration. If the calculated value does not
become smaller than the pre-defined threshold, pre-copy cannot
move to stop-and-copy and may time out at the worst. Although
the threshold can be adjusted before each migration, it is difficult
for cloud administrators to set it appropriately depending on the
workload. We reveal the fact in our experiments and show the
results in Section ??.
2.2.3 Difference on post-copy

Like the difference on pre-copy, post-copy is also implemented
in Xen and KVM with different technique for reducing the wait-
ing time on each memory fetching. Although Xen post-copy is
not available to the public, the paper of studying Xen pre-copy [5]
shows that Xen post-copy uses dynamic self-ballooning (DSB)
mechanism for reducing the total # of the fetched pages. DSB
mechanism is an extension of memory ballooning implemented
in Xen, which can free the migrating VM’s free pages dynam-
ically before the pages are transferred for the fetching. These
released free pages can be recreated at the destination by mem-
ory ballooning mechanism, DSB mechanism may reduce the # of
memory pages transferred in demand paging. By contrast, KVM
post-copy uses memory compression mechanism to reduce the
size of each memory page. However, since this memory compres-
sion mechanism does not reduce the total # of memory fetching
over the network, it may not reduce the waiting time under the
slow network.

3. Quantitative Comparison
In this section, we briefly summarize the results shown in our

Table 1 Machine configurations
Host Machine Dell PowerEdge T610 with Xeon 2.8 GHz CPU, 32 GB RAM

VMM Xen 4.1.0 / KVM (Linux 3.0.4) + QEMU 1.1-rc1
VM Fedora 14 (Linux 3.0.4 kernel) with 1 VCPU and 1.5 GB RAM

Network switch Cisco Catalyst 3750G, Gigabit Ethernet

Table 2 workloads
Migrating VM change working set size and dirty-rate

CPU intensive simple C program (empty infinity loop)
Collocating VM Network I/O intensive Netperf with 2 client machines

Memory I/O intensive the same workload as migVM with Full
MB WSS, 51,200 pages/sec dirty-rate

previous paper [6].

3.1 Experimental Setup
We prepare three machines and three para-virtualized VMs as

noted in Table 1. The three machines are connected each other
with Gigabit Ethernet via the network switch. One of the ma-
chines is used as NFS and all VM images locating on the host are
accessed from other two machines via the network.

To analyze the worst performance of each migration method,
we prepare several biased scenarios with simple benchmark. On
migrating VM, we run simple C program requiring two param-
eters: working set size (WSS) and dirty-rate. WSS is the range
of memory where the VM accesses and dirty-rate is the rate of
accessing. These metrics are inspired by the study of each policy
based on [4] and [5]. These studies explain that various mem-
ory access patterns on migrating VM change the behavior of live
migration. During executing live migration with the migrating
VM’s workload, we run one of the single-resource contention
workloads as shown in Table 2. In each experiments, we ad-
just machine configurations to analyze migration noise caused in
each resource clearly. We configured the number of CPU cores
attached to each host from 4 to 1 under CPU intensive workload
and limited the RAM size of each machines from 32 GB to 2
GB under memory I/O intensive workloads. We execute each ex-
periment 5 times, but all results taken from the each time show
similar feature. To explain our results clearly, we use one set of
the results selected randomly.

3.2 Experimental results
3.2.1 Downtime

Our experimental results shows that each migration method re-
duces downtime in various workloads. Figure 2 (a) shows to keep
the almost all downtime within 0.4 seconds under CPU inten-
sive workload. Especially, Figure 2 (a) and (b) show that KVM
post-copy keeps less downtime than others (34.4-59.5 millisec-
onds) because post-copy approach keeps the duration of stop-and-
copy minimally. Xen pre-copy and KVM pre-copy may also keep
less downtime, but their downtime becomes more than 1 second
where the network I/O contention occurs. This is because the
degradation of memory transfer rate of the migration increases
the number of pages transferred during stop-and-copy.

These figures also reveal that different implementation causes
different effect on downtime. According to the figures, Xen pre-
copy shows less downtime than KVM pre-copy under the light
workloads but the situation reverses under the heavy workloads.

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-OS-132 No.4
2015/2/26

IPSJ SIG Technical Report

0.01

0.1

1

10

100

0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0

32MB 64MB 128MB 256MB 512MB Full MB

D
ow

nt
im

e
[s

ec
]	

WSS [MB] / Dirty-rate [pages/sec]	

Xen Pre-copy KVM Pre-copy KVM Post-copy

N/A	 N/A	N/A	 N/A	N/A	 N/A	N/A	 N/A	 N/A	

(a) CPU intensive workload

0.01

0.1

1

10

100

0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0

32MB 64MB 128MB 256MB 512MB Full MB

D
ow

nt
im

e
[s

ec
]	

WSS [MB] / Dirty-rate [pages/sec]	

Xen Pre-copy KVM Pre-copy KVM Post-copy

N/A	

N/A	

N/A	 N/A	

N/A	

N/A	

(b) Network I/O intensive workload

Fig. 2 Downtime caused by each migration method under various workloads. Change the parameter of
migrating VM’s workload when the collocating VMs run CPU intensive workload (a) and network
I/O intensive workload (b).

0
10
20
30
40
50

0.0
3

0.0
6

0.1
2

0.2
4

0.4
8

0.9
6

1.9
2

3.8
4

7.6
8

10
.00

M
ig

ra
tio

n
tim

e
[s

ec
]	

Downtime parameter [sec]	

Stop-and-Copy

Pre-copy

0
10
20
30
40
50

0.0
3

0.0
6

0.1
2

0.2
4

0.4
8

0.9
6

1.9
2

3.8
4

7.6
8

10
.00

M
ig

ra
tio

n
tim

e
[s

ec
]	

Downtime parameter [sec]	

Stop-and-Copy

Pre-copy

N/
A	

N/
A	

N/
A	

N/
A	

(a) (b)
Fig. 3 Migration time of KVM pre-copy under various user-defined down-

time parameter (a) WSS: 0 MB, Dirty-rate: 51,200 pages/sec (b)
WSS: Full MB, Dirty-rate: 51,200 pages/sec

Since Xen pre-copy consumes as much computational resource
as possible, its downtime changes variously depending on the
resource utilization of the host. Actually, Xen pre-copy holds
about 800-1000 Mbps during CPU intensive workload but it holds
only about 300 Mbps under network I/O intensive workloads,
which results in terrible downtime. Comparing with Xen pre-
copy, KVM pre-copy does not causes long downtime even under
heavy workloads since it keeps resource consumption regardless
of the workload.

One point to be noted is that KVM pre-copy fails when the
workload is heavy. This is because its user-defined parameter
prevents the migration when the estimated downtime is heavier
than the parameter. Figure 3 shows that KVM pre-copy changes
its execution depending on the parameter even under the same
workload. Figure 3 (a) presents that KVM pre-copy shows short
migration time with long downtime when the parameter is larger
than 0.96. Since the estimated downtime instantly becomes lower
than the parameter when the value is large, KVM pre-copy moves
to stop-and-copy phase suddenly after it starts migration. The pa-
rameter is so sensitive that the KVM pre-copy changes its execu-
tion violently only when the parameter changes slightly (Figure

3(b)).
3.2.2 Migration Time

Figure 4 (a) and (b) shows that Xen pre-copy takes less mi-
gration time than KVM post-copy although post-copy eliminates
the redundant memory transfers adopted in pre-copy. As noted
in Section 3.2.1, Xen pre-copy consumes much computational
resources than KVM pre-copy and KVM post-copy, which short-
ens the duration of Xen pre-copy. Instead of the less resource
consumption, KVM post-copy keeps migration time even under
the heavy workload, while Xen pre-copy increases to more than
four times as long as KVM post-copy.

These figures also reveal the optimization to reduce the mi-
gration time implemented in each method as noted in Section 2.
Figure 4 (a) indicates that KVM post-copy shortens the migra-
tion time when the WSS is full MB and dirty-rate is higher than
5,120 pages/sec. When the workload becomes heavy, KVM post-
copy increases the memory transfer rate. Actually, it increases the
network bandwidth from 300 Mbps to 400 Mbps when the work-
load becomes heavy. Figure 4 (a) and (b) also shows that Xen
pre-copy presents a slow curve increase depends on the dirty-rate
while KVM pre-copy prolongs the migration time linearly. This
is because Xen pre-copy decrease the duration of the 1st pre-copy
depending on the workload (Figure ??). Xen pre-copy regard the
pages updated many times during the 1st iteration as the pages
that will be updated soon after the subsequent iterations thus it
does not need to transfer during the 1st iteration. Instead of these
optimizations, KVM pre-copy adopts user-defined parameter to
shorten the migration time as shown in Section 3.2.1.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-OS-132 No.4
2015/2/26

IPSJ SIG Technical Report

0

10

20

30

40

50

60

70

80

0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0

32MB 64MB 128MB 256MB 512MB Full MB

M
ig

ra
tio

n
Ti

m
e

[s
ec

]	

WSS [MB] / Dirty-rate [pages/sec]	

Xen Pre-copy KVM Pre-copy KVM Post-copy

N/A	 N/A	N/A	 N/A	N/A	 N/A	N/A	 N/A	 N/A	

(a) CPU intensive workload

0

20

40

60

80

100

120

140

0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0 0
51

20

10
24

0
15

36
0

25
60

0
51

20
0 0

51
20

10

24
0

15
36

0
25

60
0

51
20

0

32MB 64MB 128MB 256MB 512MB Full MB

M
ig

ra
tio

n
Ti

m
e

[s
ec

]

WSS [MB] / Dirty-rate [pages/sec]	

Xen Pre-copy KVM Pre-copy KVM Post-copy

N/A	

N/A	

N/A	 N/A	

N/A	

N/A	

(b) Network I/O intensive workload

Fig. 4 Migration caused by each migration method under various workloads. Change the parameter of
migrating VM’s workload when the collocating VMs run CPU intensive workload (a) and network
I/O intensive workload (b).

4. Estimating Migration Time
4.1 Pre-copy in Xen

To estimate the migration time in the experiments in the pre-
vious section, we assume M, W, d represent the total memory
size of a migrating VM, the working set size, and the dirty rate,
respectively. Here, the page size p is 4Kbyte. Suppose that ti is
i-th iteration time. In the i-th iteration in Xen pre-copy, all the
memory pages modified in (i − 1)-th iteration are transferred to
the destination. Therefore, we have

t1 = M/B (1)

ti = min(W, p · d · ti−1)/B, (2)

where B is the available bandwidth. The iteration phase stops
if one of the following conditions is satisfied (N is the number of
iterations).
(1) V exceeds 3 · M, where V is the total amount of memory

transferred in the iteration phase;

N∑
i=1

B · ti > 3 · M.

(2) The number of pages to be transferred is less than 50;

min(W, p · d · tN) < 50 · p.

(3) The number of iterations reaches 30;

N = 30.

Therefore, the migration time Tpre is estimated to

Tpre =

N∑
i=1

ti.

Figure 5 shows the comparison of the estimated and measured
migration time of Xen pre-copy.

4.2 Post-copy in KVM
For the post-copy, all the memory pages are transferred to the

destination without retransmissions. Therefore, the migration
time Tpst can be estimated to

Tpst = M/B.

Figure 6 shows the comparison of the estimated and measured
migration time of KVM post-copy.

5. Conclusion
Live migration of virtual machines (VMs) is a promising tech-

nique for cloud management. It allows cloud administrators to
control and manage the computing resources flexibly in the cloud.
Live migration offers two policies: 1) pre-copy and 2) post-copy.
To give a clue in the selection of the migration policies, this paper
summarizes our previous results of the performance comparison
of Xen pre-copy, KVM pre-copy and KVM post-copy, and shows
a simple model that estimates the migration time of Xen pre-copy
and KVM post-copy.

References
[1] : Amazon Elastic Compute Cloud (Amazon EC2).
[2] : Google Compute Engine.
[3] : Microsoft Azure.
[4] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C.,

Pratt, I. and Warfield, A.: Live Migration of Virtual Machines, Pro-
ceedings of the 2nd Conference on Symposium on Networked Systems
Design and Implementation (NSDI ’05), pp. 273–286 (2005).

[5] Hines, M. R. and Gopalan, K.: Post-copy Based Live Virtual Machine
Migration Using Adaptive Pre-paging and Dynamic Self-ballooning,
Proceedings of the 5th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (VEE ’09), pp. 51–60 (2009).

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-OS-132 No.4
2015/2/26

IPSJ SIG Technical Report

0	
50	
100	
150	
200	
250	
300	
350	
400	
450	

0	
51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	

32MB	 64MB	 128MB	 256MB	 512MB	 1300MB	

,m
e(
se
c)
	

migra,on	 ,me	 cpu	 intensive	 	 	 	 	

es,mated	 measured	

Fig. 5 Comparison of estimated and measured migration time of Xen pre-copy.

0	
50	
100	
150	
200	
250	
300	
350	
400	
450	

0	
51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	 0	

51
20
	

10
24
0	

15
36
0	

25
60
0	

51
20
0	

32MB	 64MB	 128MB	 256MB	 512MB	 1300MB	

,m
e(
se
c)
	

migra,on	 ,me	 cpu	 intensive	 	 	 	 	

es,mated	 measured	

Fig. 6 Comparison of estimated and measured migration time of Xen pre-copy.

[6] Koto, A., Kono, K. and Yamada, H.: A Guideline for Selecting Live
Migration Policies and Implementations in Clouds, IEEE International
Conference on Cloud Computing Technology and Science (CloudCom)
(2014).

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-OS-132 No.4
2015/2/26

