
IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

[DOI: 10.2197/ipsjtsldm.8.26]

Regular Paper

An Efficient Performance Estimation Method for
Configurable Multi-layer Bus-based SoC

Salita Sombatsiri1,a) Yoshinori Takeuchi1,b) Masaharu Imai1,c)

Received: June 2, 2014, Revised: August 28, 2014,
Accepted: October 15, 2014, Released: February 12, 2015

Abstract: This paper proposes an efficient performance estimation method for configurable multi-layer bus-based
SoC, which evaluates system performance in an early stage of design process. The proposed method uses data flow
information obtained from a system-level profiling, an architecture-independent loosely-timed transaction level sim-
ulation, and constructs a system-level execution dependency graph. Then, based on each architecture-level model,
the architecture-level execution dependency graph is constructed and analyzed to estimate the performance of each
architecture. In the analysis, the behavior details of shared buses and multi-layer bus are determined based on the an-
alyzed dynamic bus contention and bus protocols’ features. Experiments were conducted by modeling the multi-layer
AHB and applying the method to estimate performance of the architectures executing JPEG encoder application. The
proposed method estimates the performance of SoC with less than 8% of errors comparing to the results from accurate
RTL simulations.

Keywords: electronic system level, configurable multi-layer bus, performance estimation

1. Introduction

The design methodology in System-on-a-Chip (SoC) indus-
tries is advancing towards Electronic System Level (ESL) to ac-
celerate time-to-market when designing complex systems. In-
stead of Register Transfer Level (RTL), ESL allows the design
in system-level, where functional requirements are specified with
Transaction Level Model (TLM). Typical ESL automates the
mapping decisions from functional specification onto an architec-
tural model in an architecture exploration framework to suggest
optimal architecture candidates which satisfy design constraints.

In architecture exploration, functional specification described
with System-Level Design Language (SLDL) is partitioned
into hardware-implemented part and software-implemented part.
Then, bus architecture is selected, and design quality, such as per-
formance, area and energy consumption, of each architecture is
evaluated in system-level. Various architectural platforms, for
example, multi-processor, hierarchical bus and multi-layer bus,
are modeled as an architectural model to represent architecture
candidates during the exploration.

Performance evaluation is one of the most important parts in
the exploration process because SoC architecture greatly affects
the design quality. Since various architectural platforms shall be
modeled for the exploration and all of the architectures based on
the model must be evaluated, a fast performance estimation ap-
proach that can be applied to all of those platforms is desired.

This paper proposes an efficient performance estimation
method for configurable multi-layer bus-based SoC. The pro-

1 Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565–0871, Japan

a) s-salita@ist.osaka-u.ac.jp
b) takeuchi@ist.osaka-u.ac.jp
c) imai@ist.osaka-u.ac.jp

posed method uses the data flow information obtained from a
loosely-timed transaction level simulation in the same way as
Ref. [1] to analyze system’s behavior. The key features of the
proposed method are as follows; (1) Predicting the behavior of
shared buses and multi-layer bus during the performance estima-
tion according to the analyzed dynamic bus contention and bus
protocols’ features. (2) Estimating the performance of various
architectures according to the speculated buses’ behavior by an-
alyzing an architecture-dependent execution graph. (3) By defin-
ing protocol’s specific parameters and behavior, the proposed
method is applicable to estimating performance of various bus
protocols. The method estimates the performance of SoC with
less than 8% of errors comparing to the results from accurate RTL
simulations.

This paper is organized as follows. In Section 2, the related
work is explained briefly. Section 3 describes the MoC, the ar-
chitectural model and the definition of the proposed performance
estimation method. Proposed method for performance estimation
is explained thoroughly in Section 4. Then, the AMBA AHB’s
behavior modeling is depicted as an example and the experiments
are conducted in Section 5. Finally, this paper concludes with
summary and future work.

2. Related Work

It is very complicated to estimate performance of the multi-
layer bus-based platform because it involves a large number of
signals, including the occasionally active ones. The most com-
mon way to evaluate their performance is hardware-software co-
simulation [2], [3]. Although these approaches can evaluate ev-
ery architectural platform, it takes an unacceptably long time be-
cause a complete behavior of all possible architectures are mod-
eled and simulated. Hence, models for architecture-level simu-
lation [4], [5], and fast co-simulation models [6], [7], [8] are pro-

c© 2015 Information Processing Society of Japan 26

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

posed. These models can accelerate the simulation by the or-
ders of magnitude, but they must be rebuilt for each of the ar-
chitectures. On the other hand, the flexible bus model-based ap-
proaches for communication refinement [9], [10] repeat only the
performance analysis steps for different bus architectures, but the
remodeling and simulation are still needed to collect the commu-
nication trace for architectures that contains different processing
element set. Yet, the overall estimation still takes too long.

The simulation of models using high-level languages, such as
SpecC or SystemC, are faster than the conventional HDL mod-
eling and simulation approach. These languages support system
modeling and simulation in several abstraction levels. Loghi et
al. proposed a Cycle Accurate (CA) model [11]. The simula-
tion speed of a CA model is likely to be 10–100 times faster
than the speed of a RTL simulation [12]. Models of AMBA
shared bus protocols [13] and multi-layer bus protocols [14] are
proposed to approximate system performance in the level of bus
cycle accurate at transaction boundaries. AMBA shared buses
are also modeled at transaction level to capture arbitration and
bus contention [15]. Baganne et al. has shown that the simula-
tion of Bus Cycle Accurate (BCA) model is approximately 19–
90 times faster than the RTL simulation depending on the test
data and the timed-model’s simulation is about 20 times faster
than the BCA’s [16]. However, the speed of high-level simula-
tions, e.g., simulating timed-model, BCA model, or CA model
using system-level languages, is still slow and the performance
estimation of each architecture requires an individual high-level
abstraction model, which takes up to 3 and 4 days of modeling
effort to create timed- and BCA model for each architecture [13],
respectively. Although higher abstraction level models such as
fast functional model allows simulation time speed-up between
20–110 times over CA model [17], they are mainly used for func-
tional verification.

It is undeniable that an accurate simulation-based performance
evaluation is necessary in the final design procedure, but in an
early design stage which explores potential architectures, a quick
estimation method is more crucial than the highly-accurate but
slow ones. Most fast estimation methods employ a static Model
of Computation (MoC). In Ref. [18], a formal model is used for
approximating the performance of AMBA shared bus and detect-
ing a deadlock. In Ref. [19], a Synchronous Data Flow (SDF)
offers an analytic properties and architecture-specific overhead
is analyzed for performance estimation of hierarchical shared
bus. Rather than a worst-case timing analysis, a statistical perfor-
mance analysis using a stochastic timed marked graph [20] and
a timed marked graph [21] are proposed. The research of Cho
et al. [22] comes closest to ours because it estimates system bus
latency for both shared bus and multi-layer shared bus. Nonethe-
less, the analysis of these models fails to capture the dynamic bus
contention during system execution, which is the main cause of
estimation inaccuracy.

Ueda et al. proposes a performance estimation method based
on system-level profiling [1], our preceding study. A system-
level profiling is a simulation of a loosely-timed model, which
is at least 20 times faster than BCA model’s simulation. Their
target architectural model includes functional blocks, instances

of Intellectual Properties (IP), simple shared buses and buffers.
The method simulates a user-defined system-level model to ob-
tain execution order and the amount of transferred data from the
profiling procedure, and constructs System-Level Execution De-
pendency Graph (SL-EDG) accordingly. Then, the Architecture-
Level Execution Dependency Graph (AL-EDG) is constructed by
adding edges representing dependencies raised by the availabil-
ity of buffer resources and analyzed to estimate system execution
time. Although the method is effective in terms of time spent for
the estimation process, it has three main limitations. First, bus
model is limited to shared bus and a data transfer must be con-
ducted by only one bus. Consequently, each system-level channel
must occupy a dedicated functional block’s port that is connected
to a bus. Second, the assumption regarding data communication
does not satisfy master-slave communication concept, which ex-
ists in most high-speed bus protocols. Third, the performance
analysis models neither dynamic bus behavior nor deadlock state.
For that reason, probable bus operations are ignored and deadlock
cannot be detected.

In this research, the multi-layer bus architecture and bus pro-
tocols are studied and modeled in order to efficiently estimate
performance of SoC architecture. The architectural model is ex-
tended so that it can also represent configurable multi-layer bus,
memory and Direct Memory Access (DMA) controller engaged
in data communication. Communication port model is also im-
proved to indicate master-slave roles of ports on the connecting
bus and specify port sharing among multiple channels. In terms of
AL-EDG construction procedure, instead of adding buffer-related
dependency edges, our proposed method inserts additional ver-
tices representing executions on memories, DMA controllers and
related data transfers according to data communication path spec-
ified by the architectural model. In the analysis procedure, master
or slave roles of communication ports and buffer status are also
considered when analyzing bus requests in this study in addition
to the execution dependencies considered in the preceding study.
Furthermore, bus contention is recognized in order to predicts
probable dynamic bus behavior, i.e., split, retry and preemption
operation. With our proposed method, the performance of SoC
can be evaluated quickly and accurately.

3. Definitions

First, this section explains MoC, architectural model of the
configurable multi-layer bus-based SoC, and defines the proposed
performance estimation method.

3.1 Model of Computation (MoC)
A Kahn-Process Network-based acyclic directed graph called

System-Level Model (SLM) is used as our MoC to specify behav-
ior of a target system in terms of sequential data computation pro-
cesses and unbounded FIFO communication channels. An SLM
is described as a loosely-timed model of the TLM 2.0 specifi-
cation [23], in which processes expressing data processings are
untimed, while the entry points and exit points of channels ex-
pressing data transfers are explicitly noted by event triggers.

An SLM is represented by Msl = (P,C), which means that
SLM Msl is composed of a process set P = {pi|i = 0, 1, 2, . . .},

c© 2015 Information Processing Society of Japan 27

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

Fig. 1 An example of SLM.

and a channel set C = {c j| j = 0, 1, 2, . . .}. c j = (pm, pn) rep-
resents the channel from process pm ∈ P to pn ∈ P. The data
to be used in a process is received through the input channels,
executed inside the process and the result is transmitted via the
output channels. A write operation to an output channel is a non-
blocking operation, while a read operation from an input channel
is a blocking one. Additionally, s j and pcj represent the data size
and the execution priority of channel c j, respectively.

Figure 1 shows an example of an SLM, Msl, consisting of four
processes and three channels. An arrow represents the direction
of data flow in each channel. For instance, channel c1, c2 and c3

are data communications from process p1 to p2, p1 to p4 and p3

to p4, respectively.

3.2 Architectural Model
A configurable multi-layer bus-based architecture consists of

IP modules, DMA controllers, memories, shared buses and/or a
multi-layer bus. A multi-layer bus is composed of a bus matrix
and the buses on it, which allows the parallel communications in
a system with multiple masters and slaves. An architecture may
contain heterogeneous configurations of a multi-layer bus [24]
such as multiple masters, multiple slaves, local slave and sub-
systems. Some of the configurations degrade performance, but
removing unnecessary buses on bus matrix and optimizing bus
matrix with these configurations give a benefit in area and ease of
routing.

The configurable multi-layer bus-based architectural platform
is formalized as the architectural model called Architecture-Level
Model (ALM). An ALM describes components and organiza-
tion of an architecture, including the information about process-
to-functional block and channel-to-port mapping decisions. One
channel is accounted for the point that the data flows into it, called
source of channel, and the point that the data flows out of it, called
destination of channel, to be mapped on to the ports that are re-
sponsible for the transfers. An ALM is defined with a 7-tuple,
(F, PT,D,M, B, BM, BB), as follows;
• F is a set of IP modules’ instances, called functional blocks,

that undertake the execution of the system-level processes.
f bi = (j, Pf bi , f f bi , e(pk , f bi)) ∈ F indicates that functional
block i is an implementation of IP j and undertakes the pro-
cesses in set Pf bi . f f bi and e(pk , f bi) represent the operation
frequency of f bi and execution cycle of process pk ∈ Pf bi on
functional block f bi, respectively.

• PT is a set of ports pti = (f b j, bk, nq, nr). A port connects
a functional block f b j to a shared bus bk, and functions as a
master or a slave on the connecting bus. A port contains nq

receive buffers and nr transmit buffers for multiple buffering.
• D is a set of DMA controllers, di = (Cdi). Cdi refers to a set

of source and destination of channels that requires di to initi-
ate the transfer. A DMA controller functions as a bus master

Fig. 2 An example of ALM.

to transfer data from a requesting slave, store data in buffer
temporarily, and send data to another slave upon request.

• M is a set of memories, mi = (Cmi , nci). Cmi refers to the set
of source and destination of channels that are conducted via
a memory, which serves as a slave in the system. The mem-
ory space is divided into storage blocks, and the number of
storage blocks to store data of ci is represented by nci .

• B is a set of shared buses, bi = (wbi , fbi , prbi , bmpbi). wbi ,
fbi and prbi are bi’s data bus width, frequency and protocol.
bmpbi indicates the port of bus matrix that bi is connected.

• BM represents multi-layer bus’s bus matrix, which is defined
with a 4-tuple, (wbm, fbm, prbm, BBM), where wbm, fbm and
prbm is data bus width, frequency and protocol, respectively.
BBM is a set of buses, bbmi, that route bus matrix’s master
layers to slave layers on the fabric of multi-layer bus.

• BB is a set of bus bridges. bbi = (b j, bk), represents the bus
bridge that connects its master interface to b j and its slave
interface to bk, implying that bbi functions as a bus master
on b j and as a slave on bk.

Figure 2 shows an example of an ALM, Mal, composed of
four functional blocks, four ports, a DMA controller, a memory,
six shared buses and five buses on bus matrix of multi-layer bus.
Processes and channels of Msl in Fig. 1 are mapped onto compo-
nents in Mal. The process-to-functional block mapping informa-
tion specifies that p1, p2, p3 and p4 are mapped onto f b1, f b2,
f b3 and f b4, respectively. Similarly, the channel-to-port map-
ping indicates that the sources of c1 and c2, symbolized with c1s

and c2s, are mapped onto master port pt1, the source of c3, c3s, is
mapped onto slave port pt3, the destination of c1, c1d, is mapped
onto master port pt2, while the destinations of c2 and c3, c2d and
c3d, are mapped onto slave port pt4.

From the channel-to-port mapping, Cdi and Cmi , the communi-
cation path of each channel is determined considering the master-
slave communication regulation of bus protocols. In Fig. 2, chan-
nel c2’s communication path is “pt1 → pt4.” In the case of c1,
Cm1 = {c1s} because memory is necessary as an intermediate slave
of the communication between two master ports. Therefore, the
communication path of c1 becomes “pt1 → m1 → pt2,” mean-
ing that the data transfer is conducted from pt1 to m1 and from
m1 to pt2. Likewise, Cd1 = {c3s} because a DMA controller is
needed as a master in the communication of c3 and the communi-
cation path becomes “pt3 → d1 → pt4.” A communication path
may traverse more than one DMA controller or memory due to
the placement of ports on the buses connected to the bus matrix.
Besides, a transfer in a sub-path, e.g., “pt1 → m1,” may involve
multiple buses and buses on bus matrix.

c© 2015 Information Processing Society of Japan 28

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

3.3 Definition of the Proposed Efficient Performance Esti-
mation Method

• Input
(1) Msl: An SLM describing behavior of a system.
(2) Mal: An ALM specifying components and mappings of

an architecture.
• Output

Total execution time of a system described by Msl when ex-
ecuted on architecture Mal, considering concurrent data pro-
cessings and transfers.

4. Performance Estimation Method for Con-
figurable Multi-layer Bus-based SoC

There are four major procedures in the proposed efficient per-
formance estimation method.
(1) System-level profiling - SLM is simulated in order to gather

profiling information, which includes data processing tim-
ings, transfer timings and the amount of transferred data.

(2) SL-EDG construction - A graph representing execution de-
pendencies in system-level between data processings and
transfers is constructed from profiling information.

(3) AL-EDG construction - A graph representing architecture-
dependent execution orders between data processings and
transfers is constructed from SL-EDG and ALM.

(4) AL-EDG analysis - Performance of each ALM is esti-
mated by analyzing corresponding AL-EDG to obtain the
architecture-dependent data processing and transfer timings.

Since both time-consuming profiling procedure and SL-EDG
construction procedure are architecture-independent, they are
done only once for all ALMs of the same SLM and input data.
Therefore, it is possible to quickly estimate the performance of
various architectures by iteratively constructing and analyzing
AL-EDG without simulating every individual architecture.

4.1 System-Level Profiling Using SystemC
In order to gather profiling information, monitoring process

class and monitoring channel class are extended from SystemC’s
sc module and sc prim channel, respectively, because SystemC
can model hardware’s parallel execution [23]. Each process of
SLM is implemented with monitoring process class to capture
timings of data processings. Likewise, each channel is imple-
mented with monitoring channel class to monitor the amount of
transferred data and data transfer timings, which are recorded
when there are both read access and write access to the channel.

System-level profiling is proceeded by compiling SLM’s code
and executing its binary, meaning that it is done in a loosely-
timed manner. Consequently, all profiling information is quickly
gathered using SystemC simulator.

4.2 SL-EDG Construction
An SL-EDG is a graph that represents data processings, data

transfers and their execution dependencies in system-level. It
is constructed based on the profiling information. Its construc-
tion is independent of hardware architecture, so does the num-
ber of its vertices. SL-EDG is represented by Gsl = (Vsl, Esl).
The SL-EDG Gsl is comprised of the set of system-level ver-

Fig. 3 An example of SL-EDG.

tices Vsl = {vp(i,k) ∨ vc(j,l) | i, j, k, l ∈ N}, and the set of system-
level edges Esl = {(vp(i,k) , vp(i,k+1)) ∨ (vc(j,l) , vc(j,l+1)) ∨ (vp(i,k) , vc(j,l)) ∨
(vc(j,l) , vp(i,k)) | i, j, k, l ∈ N}.

Figure 3 illustrates the example of SL-EDG corresponding to
SLM in Fig. 1. Assuming that each process executes its data pro-
cessing twice and each channel transfers data twice. The circu-
lar nodes denoted by vp(i,k) represents the vertex of pi’s k-th data
processing and the octagonal nodes denoted by vc(j,l) represents
the vertex of c j’s l-th data transfer. The solid arrows represent
execution orders. The dashed arrows represent R/E dependency-
edges, indicating that the execution of data processing starts after
the data has been received, and the dotted arrows represents E/S
dependency-edges, indicating that the data transmission starts af-
ter the execution of data processing is over.

More details about system-level profiling and SL-EDG con-
struction are mentioned in another literature [1].

4.3 AL-EDG Construction
An AL-EDG is a graph that represents data processings, data

transfers and their execution dependencies according to compo-
nents of the architecture specified by an ALM. In addition to
the vertices and edges of SL-EDG, AL-EDG also consists of ver-
tices and edges involving DMA controllers and memories that
fulfill bus protocol’s regulation about master-slave communica-
tion of each data transfer. The number of its vertices depends on
the components and organization of the ALM. AL-EDG is rep-
resented by Gal = (Val, Eal), where Val and Eal are AL-EDG’s
vertex set and edge set, respectively.

The AL-EDG is constructed by the following steps;
(1) Copy SL-EDG as AL-EDG. Let Val be Vsl and Eal be Esl.
(2) Alter Val and Eal so that the AL-EDG also includes the de-

pendencies of data transfers raised by communication paths.
For every channel ci = (pu, px) ∈ C, do as follows;
(a) If cis ∈ Cdk , meaning that DMA controller dk initiated

ci’s transfer to a port mapped to the source of channel
ci, do as follows;
(i) Make vertices vd(k,l) representing processings on

dk, and vertices vc′′′(i, j)
representing additional data

transfers of ci. Then, add them to Val. Make
edges (vc′′′(i, j)

, vc′′′(i, j+1)
) representing execution orders

between data transfers of ci, and add them to Eal.
(ii) Delete edges (vc(i, j) , vp(x,y)) from Eal and add edges

(vc(i, j) , vd(k,l)), (vd(k,l) , vc′′′(i, j)
) and (vc′′′(i, j)

, vp(x,y)), which
represent execution dependencies in ci’s commu-

c© 2015 Information Processing Society of Japan 29

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

nication path traversing dk, to Eal.
(b) If cis � Cdk and cis ∈ Cmq , meaning that a port mapped

to the source of channel ci establishes ci’s transfer to
memory mq, do as follows;
(i) Make vertices vm(q,r) representing processings on

mq, and vertices vc′′′(i, j)
representing additional data

transfers of ci. Then, add them to Val. Make
edges (vc′′′(i, j)

, vc′′′(i, j+1)
) representing execution orders

between data transfers of ci, and add them to Eal.
(ii) Delete edges (vc(i, j) , vp(x,y)) from Eal and add edges

(vc(i, j) , vm(q,r)), (vm(q,r) , vc′′′(i, j)
) and (vc′′′(i, j)

, vp(x,y)), which
represent execution dependencies in ci’s commu-
nication path traversing mq, to Eal.

(c) If cis ∈ Cdk and cis ∈ Cmq , meaning that the communi-
cation of ci traverses memory mq after DMA controller
dk, do as follows;
(i) Make vertices vm(q,r) representing processings on

mq, and vertices vc′(i, j) representing additional data
transfers of ci. Then, add them to Val. Make
edges (vc′(i, j) , vc′(i, j+1)

) representing execution orders
between data transfers of ci, and add them to Eal.

(ii) Delete edges (vd(k,l) , v
′′′
c(i, j)

) from Eal and add edges
(vd(k,l) , v

′
c(i, j)

), (v′c(i, j)
, vm(q,r)) and (vm(q,r) , vc′′′(i, j)

), which
represent execution dependencies in ci’s commu-
nication path traversing mq after dk, to Eal.

(d) If cid ∈ Cds , meaning that the transfer of ci traverses
DMA controller ds after memory mq, do as follows;
(i) Make vertices vd(s,t) representing processings on

ds, and vertices vc′′(i, j) representing additional data
transfers of ci. Then, add them to Val. Make
edges (vc′′(i, j) , vc′′(i, j+1)

) representing execution orders
between data transfers of ci, and add them to Eal.

(ii) Delete edges (vm(q,r) , v
′′′
c(i, j)

) from Eal and add edges
(vm(q,r) , v

′′
c(i, j)

), (v′′c(i, j)
, vd(s,t)) and (vd(s,t) , vc′′′(i, j)

), which
represent execution dependencies in ci’s commu-
nication path traversing ds after mq, to Eal.

(3) Divide the vertices into groups of functional blocks Vf bi ,
buses Vbi , buses on bus matrix Vbbmi , DMA controllers Vdi ,
and memories Vmi , that undertake their executions. The
channel vertices must be included in the groups of all buses
undertaking their executions.

In the following, the AL-EDG shown in Fig. 4 is constructed
for the ALM shown in Fig. 2. First, the SL-EDG in Fig. 3 is
copied as an initial AL-EDG. Since Cd1 = {c3s}, vd(1,1) , vd(1,2) ,
vc′′′(3,1)

and vc′′′(3,2)
are generated into the graph in step 2(a)i. Then,

in step 2(a)ii, edges (vc(3,1) , vp(2,1)) and (vc(3,2) , vp(2,2)) are removed,
and edges (vc(3,1) , vd(1,1)), (vc(3,2) , vd(1,2)), (vd(1,1) , vc′′′(3,1)

), (vd(1,2) , vc′′′(3,2)
),

(vc′′′(3,1)
, vp(2,1)) and (vc′′′(3,2)

, vp(2,2)) are added to the AL-EDG. Simi-
larly, because Cm1 = {c1s}, the graph is modified according to
steps 2(b)i and 2(b)ii as marked. Finally, the vertices are grouped.
vp(1,1) and vp(1,2) are put into Vf b1 , the group of process vertices
undertaken by f b1. Similarly, vd(1,1) and vd(1,2) are grouped into
Vd1 , the group of DMA controller vertices undertaken by d1. Vb2 ,
the group of channel vertices undertaken by b2, includes vertices
vc(3,1) , vc(3,2) , vc′′′(3,1)

and vc′′′(3,2)
. Likewise, Vb5 includes vertices vc(2,1) ,

vc(2,2) , vc′′′(3,1)
and vc′′′(3,2)

. In the example, vc′′′(3,1)
and vc′′′(3,2)

, also in Vbbm4 ,

Fig. 4 An example of AL-EDG.

Fig. 5 The flow of AL-EDG analysis.

the group of bbm4, are included in three groups because the trans-
fer from DMA controller to f b4 uses b2, b5 and bbm4.

4.4 AL-EDG Analysis
AL-EDG analysis estimates the performance by predicting the

behavior of the target system on a specified architecture. This pa-
per aims to speculate multi-layer and shared bus behavior based
on the analyzed dynamic bus contention arising from arbitration,
traffic congestion, advanced bus features and communication pro-
tocols. Therefore, the general concepts of bus protocols and ad-
vanced bus features of both multi-layer bus and shared bus are
modeled so that the AL-EDG analysis recognizes dynamic bus
contention. As a result, the proposed method earns an advantage
in terms of accuracy and performance estimation speed.

The AL-EDG analysis flow, shown in Fig. 5, begins with sys-
tem time variable initialization. Then, the analysis steps are iter-
ated to execute data processings and transfers until every vertex
in Val exhausts or the deadlock is detected.

First, the analysis finds the executable vertices of the current
iteration. A vertex in Vf bi , Vdj and Vmk is classified as executable
when it has no edge from other vertices, and added to executable
vertex set Vexe f bi

, Vexed j
and Vexemk

, respectively. In order to model
the regulation of bus protocol that bus master initiates a communi-
cation to slave, a channel vertex is considered as executable based
on the master’s request. That is, a channel vertex whose transfer

c© 2015 Information Processing Society of Japan 30

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

is initiated by a master port becomes executable when the status
of one of the its receive buffers is empty for a read transaction or
the vertex has no edge from other vertices for a write transaction.
A channel vertex whose transfer is initiated by a DMA controller
is executable when it has no edge from other vertices and for a
write transfer, the status of one of the slave port’s receive buffers
is empty. Then, the vertices are added to executable vertex set
Vexebi

and Vexebbm j
. The existence of multiple vertices within an

executable vertex set of bus or bus on bus matrix implies simul-
taneous bus requests and activities. For that reason, together with
the current bus activity, bus contention is detected.

In the next step, the vertices in each executable vertex set are
reordered by priority, which is decided according to scheduling
and arbitration policy at analysis time. Priorities of process ver-
tices are determined from user-defined process priorities on each
functional block. Priorities of channel vertices in Vexebi

of the
shared buses on the master layer side of bus matrix are determined
based on the priorities of bus master and bus bridge’s master in-
terface designated by system designer, so do priorities of those in
Vexebbm j

. On the other hand, priorities of those in Vexebi
of the bus

connected to the slave layer of bus matrix depend on priorities of
the bus matrix’s master layer.

Then, a vertex whose execution will be analyzed is selected
from each executable vertex set. The analysis program selects
the process vertex that has the highest priority and the status of
one of the target port’s transmit buffers is empty from Vexe f bi

, and
the channel vertex that has the highest priority and the master
is not banned by bus’s arbiter from Vexebi

and Vexebbm j
. However,

some channel vertices in Vexebi
and Vexebbm j

depend on the selected
vertices of other Vexebi

and Vexebbm j
whether it can be selected. For

instance, the channel vertex whose transfer involves bus bridge
bbq = (br, bs) can be selected from Vexebr

only when it holds the
highest priority among the vertices in Vexebs

.
The analysis predicts dynamic behavior of bus architecture

from the selected channel vertices and the speculated bus con-
tention. Bus activity is determined when a channel vertex is se-
lected from every executable vertex set of buses and bus on bus
matrix that it belongs to. Split or retry response’s operation, the
mechanism that allow the shared bus and bus on bus matrix to be
released when the slave cannot conduct normal data transfer im-
mediately, is diagnosed when the status of slave’s receive buffer
is not empty for write operation or there exists incoming edges
to the channel vertex for read operation. In the analysis of such
cases, the slave is assumed to response with retry when the trans-
fer traverses bus on bus matrix, and with split otherwise. Bus pre-
emption is detected if the selected vertex of a bus’s executable set
holds a higher priority than the one analyzed as executing on the
bus and the transfer on the bus is not analyzed as a lock transfer.
Otherwise, the occurrence of normal data transfer is determined.

Next, after initializing the shortest remaining time variable,
Tshort, as −1, the remaining operation time of each analyzing ver-
tex is computed by deducting elapsed time from estimated total
operation time of the vertex and bus activity, and the shortest time
is assigned to Tshort. The system time is advanced by the time as-
signed to Tshort. However, since there is a chance that the analyz-
ing system falls in a deadlock state, the analysis program detects

the deadlock if Tshort is less than 0, terminates immediately and
reports the deadlock condition to the user. In this case, the user
may modify the channel priority description and run the analysis
again in order to resolve the deadlock.

Total data processing time of each process vertex is calculated
in advance by the following equation;

tp =
e(pi , f b j)

f f b j

(1)

Total processing time of DMA controller and memory vertices
are assumed to be 0, since both components only temporarily
store data in their internal storage.

On the other hand, total bus usage time is determined based on
the predicted bus activity in every iteration so that dynamic bus
contention effects are recognized. The time for split operation is
determined as in Eq. (2).

ts =
S +Cc +Ca

min(fbi)
(2)

S and Cc are the overhead of split operation and protocol con-
version, respectively, while Ca is the number of address cycles
and min(fbi) represents the lowest bus frequency among the fre-
quency of buses that the split operation takes place. The time
for retry operation is determined similarly as in Eq. (3), where R

denotes the overhead of retry operation.

tr =
R +Cc +Ca

min(fbi)
(3)

Finally, the calculation of data transfer time is shown in Eq. (4),

td =
D ×Cd × B +Cc +Ca

min(fbi)
(4)

D =
wci

min(wbi)
(5)

where Cd and B are the number of clock cycles in one data cycle
and the number of burst beats, respectively. D is the number of
data cycles required to transfer one data, determined by Eq. (5),
where wci is the number of bits of one data transferred by the an-
alyzing channel vertex and wbi represents the bit width of the nar-
rowest data bus among the buses and bus matrix that the transfer
takes place. The number of address cycles implies pipeline nature
of the bus. It is counted as 0 if the new data transfer is consecutive
to the previous one or as the number of protocol’s address cycles,
otherwise. The number of burst beats is determined according to
the number of remaining data to be analyzed and bus preemption.

By analyzing the selected vertices and the speculated bus be-
havior, the analysis program advances elapsed time of the ana-
lyzing vertices and bus activities by Tshort, and keeps track of
system’s resource status. For the process and channel vertices an-
alyzed for the first time, the IDs of the vertices are registered to
models of the target storage to track the status of buffers in ports,
DMA controllers and storage blocks in memories. An ID is un-
registered from the storage model when the dependent vertices
are analyzed as completed, implying that the data is processed
or transferred. The storage model with no ID registered implies
that the status is empty. Since data transfer of a channel ver-
tex might be separated into several burst transfer’s analysis, the
number of remaining transfer data is deducted by the number of

c© 2015 Information Processing Society of Japan 31

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

burst beats, B, when elapsed time becomes equal to total opera-
tion time. The vertices are recognized as completed when their
elapsed time becomes equal to the total operation time except for
the channel vertices that the number of remaining data must also
become 0. In each channel vertex’s analysis, bus bridge in use
is marked as active. Shared bus and bus on bus matrix resources
are marked as active, lock, split and retry to represents the data
transfer, lock transfer, split and retry operation on the bus, re-
spectively. Additionally, the bus master whose transfer is split is
marked as banned from arbitration. Lastly, the completed vertices
and related edges are removed from the Gal.

Finally, the status of each resource is finalized according to the
bus protocol at the end of each iteration, e.g., unban bus master,
etc. If there are no vertices left in the Gal, the analysis returns Tsys

as system time. Otherwise, the analysis loops from searching the
executable vertices step.

4.5 Computational Complexity
The computational complexity of the AL-EDG analysis is de-

rived from the flow explained previously and the program im-
plemented to estimate the performance of multi-layer AHB bus-
based SoC, which is described thoroughly in Section 5.

The asymptotic notation O(n3) expresses the proposed AL-
EDG analysis’s computational complexity as a function of the
number of AL-EDG vertices, n. The analysis repeats from
searching executable vertices to finalizing iteration for at most kn

iterations, where k is a constant indicating the number of loops
spent for analyzing a vertex. In each iteration, the most com-
plex step in the computational time aspect is ordering the exe-
cutable vertices, where the worst case consumes n2 time com-
plexity. Therefore, the complexity of the proposed analysis in the
worst-case is cubic w.r.t. the number of AL-EDG vertices.

However, the computational complexity becomes O(n2) in
most cases that the processes execute iteratively and each of the
components in an architecture undertakes only a few number of
processes and channels. Consequently, a few executable vertices
exist in the executable vertex sets at a time and ordering the exe-
cutable vertices consumes only n order of time complexity. The
O(n2) complexity of most cases is depicted in Section 5.5.

The complexity applies to the situation that the application
size, e.g., the size of image in the image processing, causes both
the number of vertices in SL-EDG and AL-EDG to grow. In other
words, AL-EDG analysis runtime increases by O(n3) when esti-
mating the performance of various-sized applications executed on
the same architecture.

5. Case Study

To show that proposed method is efficient to be included in
architecture exploration of ESL, the proposed analysis flow is
applied for performance analysis of multi-layer AHB bus-based
SoC. The proposed method is also applicable to shared bus-based
architecture and not limited to AHB bus protocol.

The efficiency of the proposed performance estimation method
is investigated in two aspects. The first one is the accuracy of the
performance estimated by the proposed method when compared
with the performance obtained from the RTL simulation. The

Table 1 List of protocol’s parameters.

Parameter Value
S 2
R 2

Table 2 List of protocol related variable values.

Variable Value
Cd 1, 2
Cc 0, 1
Ca 0, 1
B 1, 2, 4, 8, 16

second one is the speed-up of the proposed method over the RTL
simulation, which is measured from the runtime of both tools.

5.1 Modeling of Multi-layer AHB Protocol
In order to apply the proposed flow to analyze the performance

of a multi-layer AHB bus-based system, some protocol parame-
ters, protocol related variable values, and conditions are specified.

Protocol’s parameters and protocol related variable values are
defined based on AHB protocol of the AMBA specification [25]
as shown in Tables 1 and 2. The split and retry responses of AHB
requires two cycles as the overhead, therefore, both overhead of
split operation S and overhead of retry operation R are set to 2.
The values for protocol related variables are determined accord-
ing to system status during the analysis, but restricted to a certain
set of values. The number of clock cycles in one AHB and APB
data cycle Cd is 1 and 2 under the assumption that there is no
wait cycle. The overhead of protocol conversion differs by pro-
tocol pairs and direction of data flow. For AHB-APB protocol
conversion, CC is 1 for a write transfer and 0 for a read transfer,
split response and retry response. The number of address cycles
Ca can be either 0 when pipelined, otherwise the AHB address
cycles with no wait state is 1. The number of burst beats B is typ-
ically 1, 2, 4, 8 and 16, except only when bus preemption occurs
that B can be an integer not more than 16.

There are three additional multi-layer AHB protocol condi-
tions. Firstly, every communication via bus matrix must be
locked because the arbiters of multi-layer bus do not allow pre-
emption. Consequently, the shared buses used for the transfer
must be marked as lock. The second condition regards the state
machine of AHB master interface that 1-cycle-idle phase presents
between two bus requests. Therefore, a channel vertex is removed
from executable vertex sets for one clock after the analysis of the
previous operation has finished. Finally, the arbitration policy of
buses and buses on bus matrix is restricted to fixed-priority policy.

The following describes the analysis of the Gal in Fig. 4. Let
the priorities of f b1, f b2 and d1 be 3, 2, 1, respectively, so do
the priorities of c1, c2 and c3. Assume that the mapped functional
blocks of p1, p2, p3 and p4 spend 100, 80, 120 and 140 ns for data
processing calculated by Eq. (1) and the amount of data trans-
ferred in c1, c2 and c3 are 16, 16 and 32, respectively. The system
operates at 50 MHz, and there is one receive and one transmit
buffer in each port. The execution Gantt chart is shown in Fig. 6.

After Tsys is initialized, the executable vertices are searched
throughout Gal. In the first iteration, vp(1,1) and vp(3,1) have no
source edge, so they are added to Vexe f b1

and Vexe f b3
, respectively.

Moreover, since pt2 has an empty receive buffer, v′′′c(1,1)
is analyzed

c© 2015 Information Processing Society of Japan 32

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

Fig. 6 An example of AL-EDG analysis.

to have a bus request raised, and is added to Vexeb3
, Vexeb6

and
Vexebbm5

. Then, vp(1,1) , vp(3,1) and v′′′c(1,1)
are selected to be analyzed.

Next, the analysis predicts the bus activity of b3, b6 and bbm5

to be retry response because there exists an edge to v′′′c(1,1)
.

Then, the shortest remaining time of analyzing vertices is de-
termined. The remaining time of vp(1,1) and vp(3,1) are 100 and
120 ns, respectively, while the retry response of v′′′c(1,1)

takes 60 ns
according to Eq. (3) computed with one address cycle. For that
reason, Tshort becomes 60 and Tsys is advanced.

The vertices and bus behavior are analyzed. The ID of vp(1,1)

and vp(3,1) are registered in the model of pt1’s and pt3’s transmit
buffer. At the same time, the retry response finishes.

To finalize this iteration, v′′′c(1,1)
is excluded from the analysis for

1 cycle due to AHB interface’s idle phase. Consequently, Tsys is
advanced by 20 ns in the second iteration.

In the third iteration, v′′′c(1,1)
is reconsidered and analyzed to be

responded with retry. Tshort becomes 20 ns because the analysis
of vp1,1 has ended, therefore, vertex vp(1,1) , edges (vp(1,1) ,vc(1,1)) and
(vp(1,1) ,vc(2,1)) are removed from Gal.

In the fourth iteration, vc(1,1) becomes executable and is added
into Vexeb1

, Vexeb6
and Vexebbm2

, so does vc(2,1) which is added into
Vexeb1

, Vexeb5
and Vexebbm1

. Since both channel vertices are initiated
from the same port, but c1 holds a higher priority, vc(1,1) is selected
on b1, b6 and bbm2, while vc(2,1) is selected on only b5 and bbm1.
Consequently, vc(2,1) is ignored in this iteration. Unfortunately, be-
cause b6 is occupied with retry response operation, vc(1,1) is not
analyzed. Tsys is advanced to 120 ns, and vertex vp(3,1) and edges
(vp(3,1) ,vc(3,1)) are removed from Gal.

Then, vc(3,1) is analyzed to transfer data for 16 burst beats, which
takes 340 ns for one address cycle and 16 data cycles in the fifth
iteration. However, the second retry operation of vc(1,1) remains
only 20 ns, so Tsys becomes 140 ns.

In the sixth iteration, The analysis of vc(1,1) ’s transfer starts and
lasts for 340 ns. At Tsys = 460, transfer of the first 16 data of
vc(3,1) finishes, but since there are 16 data left to be transferred, the
vertex has to be considered again after 20 ns of 1-clock-cycle idle
phase. At the same time, the analysis of vc(1,1) remains 20 ns too,
so Tshort becomes 20 ns.

At Tsys = 480, the seventh iteration takes place to analyze the

Fig. 7 An SLM of JPEG encoder.

Table 3 Information of data in channels.

width #data
[bit]

c0 24 64
c1 8 64
c2 12 64
c3 12 64
c4 12 64
c5 8 256

Table 4 Information of functional blocks and its ports.

FB Exe.cycle Port
name*1 [cycle]

BS 67 1 Slave
CT 68 1 Master

DCT 368 1 Slave
ZZ 67 1 Slave
Q 68 1 Master

VLC 200–265 1 Master
WRT 258 1 Slave

execution of memory vertex vm(1,1) . Tshort equals 0 ns and the eight
iteration begins at the same point of time. The executable vertex
vc(2,1) is selected to be analyzed and its execution time is 320 ns be-
cause the address cycle overlaps with the last data cycle of vc(1,1) .
Meanwhile, vc(3,1) is analyzed again and the transfer time becomes
340 ns.

The analysis proceeds in the same fashion until Gal exhausts.

5.2 Experimental Environment Setup
The effectiveness of the proposed performance estimation

method is studied through a JPEG encoder application. Figure 7
shows an SLM of JPEG encoder, consisting of seven processes
and six channels. The processes are Block Splitting (BS), Color
Transformation (CT), Discrete Cosine Transformation (DCT),
Quantization (Q), ZigZag ordering (ZZ), Variable Length Coding
(VLC) and file WRiTing (WRT). The data width and the amount
of data in one system-level transaction of each channel are shown
in Table 3. The images used in the experiments are processed in
a 8 × 8 pixel block unit and without downsampling.

The experiments were conducted on a 3.60 GHz Intel Xeon,
32 GB memory and 64 bit CentOS5 machine. The estimation
method is implemented in C language and the SLM was imple-
mented with SystemC 2.3.0 [23]. The source code of the pro-
posed method and the SLM was compiled with gnu gcc 4.1.2.
RTL simulation tool is ModelSim SE-64 10.3.

5.3 Accuracy Measurement
The results of the AL-EDG analysis for performance estima-

tion method are compared with the performance results of RTL
simulation to measure the accuracy of the analysis. The perfor-
mance of eight architectures, each of which executes the same
aforementioned seven processes of JPEG encoder, are evaluated.
The execution cycle shown in Table 4 is the worst-case execu-

*1 FB stands for functional block. The functional block executes the pro-
cess with the same name.

c© 2015 Information Processing Society of Japan 33

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

Table 5 The number of vertices in SL-EDG and AL-EDG.

Image size 256 × 512 512 × 512 512 × 1,024 1,024 × 1,024
SL-EDG 59,542 118,972 238,234 476,628
AL-EDG 84,118 168,124 336,538 673,236

Fig. 8 Performance results from the proposed method, the method w/o
considering dynamic bus contention and RTL simulation (1,024 ×
1,024 pixel image)

tion cycle. Moreover, each architecture is comprised of the same
set of functional blocks and ports, whose information is shown in
Table 4, a DMA controller and a memory. The DMA controller
functions as a master to initiate the communication between DCT
and ZZ functional block. The memory stores data transferring
between Q and VLC functional block. The width of the buses,
shared bus and bus matrix, is 32 bits and each architecture is op-
erated at 50 MHz. The architectures contain the same functional
blocks, DMA controllers and memories, but their ports are at-
tached to the bus architecture differently and various configurable
multi-layer bus architectures are represented. Therefore, the dif-
ference in performance of the architectures are solely affected by
the communication architecture.

The performance estimation by the proposed method is pro-
ceeded as follows; First, the encoding of an image was profiled
to collect the data processing timing, data transfer timing and the
amount of transferred data, and the SL-EDG was constructed ac-
cordingly. For each ALM of the architectures under evaluation,
an AL-EDG was constructed and analyzed to obtain the estimated
performance. Table 5 shows the number of vertices in the SL-
EDGs and AL-EDGs. Normally, the number of vertices in an
AL-EDG depends on the components and communication path of
every channel, but the number of vertices of AL-EDGs in the ex-
periments are equal because the only difference is the architecture
organization. However, the vertices are divided in to the groups
of components that undertake them differently. The experiments
were conducted with four images of different sizes.

Figure 8 shows the performance results yielded from RTL
simulation, the proposed method considering dynamic bus con-
tention and the method that does not consider dynamic bus con-
tention. The results of the proposed method considering dynamic
bus contention is represented in the graph as estimation results
(w/ dynamic contention) and those of the method that does not
consider dynamic bus contention is represented as estimation re-
sults (w/o dynamic contention).

The performance results of the proposed method considering

dynamic bus contention are compared with the results of RTL
simulation in order to evaluate the estimation error. Architectures
noted as arch3 and arch7, respectively illustrated in Figs. 9 (c)
and (g), contain multi-layer bus with heterogeneous configura-
tions and incur the smallest error of 1.5%. On the other hands,
arch8, illustrated in Fig. 9 (h), is the shared bus-based architec-
ture and incurs the biggest error of 7.6%. When bus contention
is detected to occur on a shared bus, the analysis program spec-
ulates a probable operation as well as the operation time, which
raises communication-related timing errors of each bus. These
errors are accumulated especially when bus contention arises re-
peatedly. For that reason, the accuracy of the proposed method
becomes worse in the case of a single shared bus-based architec-
ture, arch8. In the case of multi-layer bus-based architecture, the
errors are distributed to several shared buses and ensue on the es-
timated system time parallelly. According to the timing results,
a larger amount of bus contention is found when analyzing per-
formance of arch6, arch5 and arch4, respectively, so the errors
of these architecture are bigger than the other architectures that
contains multi-layer bus.

Figure 10 illustrates the mean values and the ranges of errors
from comparing the performance results of eight architectures.
The proposed method evaluates system performance with approx-
imately only 1–8% difference from the RTL simulation and the
mean values of error appears as 3.8%. Its overestimation is due
to the fact that the Worst-Case Execution Time (WCET) of VLC
functional block is constantly used in the estimation. On the other
hand, the execution cycle of VLC varies because its execution be-
havior depends on the processed data.

During the performance analysis, taking dynamic bus con-
tention, i.e., bus requests and current bus activity, and dynamic
bus behavior, i.e., dynamic address phase calculation, split, retry
and preemption operation, into account benefits the estimation re-
sults in many aspects. Figure 8 also illustrated the estimation re-
sults when neither dynamic bus contention nor probable dynamic
bus behavior is recognized. They are labeled as estimation re-
sults (w/o dynamic contention). The first benefit is that analyzing
system performance without considering dynamic bus contention
and behavior may cause underestimation as of the one of arch8
because it assumes too optimistic bus contention. On the con-
trary, the address phase is not recognized dynamically when ig-
noring bus requests and current activity, so more errors incur in
the estimation results of arch1, arch2, arch3 and arch4. This leads
to a wider error range of −5.2% to 5.2%, which reduces the reli-
ability of the estimation, and insufficient design, which is unac-
ceptable because it might not satisfy the design constraints. The
second benefit is that the proposed method’s estimation results
are approximately 1–2% more accurate than the results when bus
contention and behavior are ignored. For instance, the estimation
errors of arch1 from the method with and without the consider-
ation regarding dynamic contention are 2.5% and 4.0%, respec-
tively. However, since data processings of JPEG encoder applica-
tion dominates data communications between IPs, the impact of
considering dynamic bus contention and behavior is not so large.

c© 2015 Information Processing Society of Japan 34

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

Fig. 9 ALM of architectures in the experiments. (a) arch1, (b) arch2, (c) arch3, (d) arch4, (e) arch5,
(f) arch6, (g) arch7, (h) arch8.

Fig. 10 Error bar shows the error of the estimation.

Fig. 11 Runtime for profiling and construction of SL-EDG.

5.4 Tool Runtime and Speed-Up
Figure 11 illustrates the time spent for system-level profil-

ing and SL-EDG construction w.r.t. the number of pixels in the
sample images. The procedures are done as fast as within two
minute for the image as large as total 2,359,296 pixels (1,536 ×
1,536 pixel) because the profiling is conducted in a loosely-timed

Fig. 12 Average speed-up in estimating performance of eight architectures.

TLM manner. However, the time spent for the two procedures
tends to grow linearly for the bigger size of image.

The AL-EDG construction and analysis achieved much faster
in evaluating the performance of an individual architecture, which
is proven by the runtime speed-up value as high as 152.6 times
over the simulation. Figure 12 shows the relationship between
the runtime of the proposed estimation method (circles)/RTL sim-
ulation (squares) of each architecture candidates and the number
of pixels. The stars show the average speed-up of the architecture
w.r.t. the number of pixels, and the relevant error bar indicates
the range of speed-up values. The experiments demonstrate that
the speed-up varies from 17.4–152.6 times by the combination
and organization of functional blocks, DMA controller, memo-
ries and buses as well as the size of the sample image. The bigger
the image is, the less the average speed-up becomes. This is be-
cause the runtime of the analysis program grows by a polynomial
function as the image becomes bigger, while the RTL simulation
runtime grows linearly in our case study.

Figure 13 draws the relationship between tools’ runtime and

c© 2015 Information Processing Society of Japan 35

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

Fig. 13 The proposed method’s overall speed-up.

Fig. 14 AL-EDG analysis’ runtime of individual architecture.

the number of pixels. It shows that the overall procedure of the
efficient performance estimation method has achieved the max-
imum speed-up of 25.6 times over the overall RTL simulation
in evaluating the performance of eight architectures. A bigger
speed-up value can be gained when evaluating a larger number of
architectures due to the fact that the proposed method conduct the
profiling and SL-EDG construction procedure only once for one
image. On the other hands, the speed-up slightly drops when ap-
proximating the performance of architectures encoding the bigger
image. However, the proposed method is able to evaluate the per-
formance of a large number of architectures within a much shorter
time that the RTL simulation which takes unbearable long time.

5.5 Discussion
The abstraction level of the proposed method is between

untimed- and timed-model. The reason is that a loosely-timed
simulation takes place in the system-level profiling procedure,
and then, the static analysis is executed repeatedly to estimate the
performance of architectures. Therefore, one of the most obvious
advantages of the proposed method over the dynamic simulation
methods, e.g., RTL, CA and BCA simulation, is that it requires
less modeling effort. Unlike dynamic simulations, in which mod-
els for each architecture must be implemented, the SLM in the
proposed method is created and profiled only once and the infor-
mation can be utilized for performance estimation of every ALM.
Consequently, days of modeling effort can be saved because infe-
rior architectures are discriminated in an early design stage.

Figure 14 illustrates the logarithm relationship between the
number of AL-EDG vertices, n, and the runtime of the proposed
method spent on AL-EDG analysis for eight individual architec-
tures encoding the 512 × 512 pixel-image. The slopes of lines in
the graph shows that the runtime of the experiments increases by

only O(n1.65). The reason is that in the conducted estimations, the
number of executable vertices in each executable vertex set of the
functional blocks, DMA controllers, memories, shared buses and
buses on the bus matrix of the multi-layer bus in an architecture is
scheduled to as few as no more than five process or channel ver-
tices during each iteration. Consequently, the complexity of the
most complex step, ordering the executable vertices, is reduced
to n and so does the overall complexity which becomes n2.

Considering the speed-up value, the proposed method is fast
and uses less memory resource comparing to the conventional
RTL simulation. The efficient performance estimation method is
able to evaluate the performance of the architecture encoding a
larger image in a short time when the RTL simulation takes too
much time. Moreover, RTL simulation might be impossible be-
cause the memory resource is insufficient in some circumstances,
while the proposed method can overcome such problem due to
the fact that the method refrains from using the real image data.

In Sections 5.3 and 5.4, experiments were conducted only to
the architectures with the same set of functional blocks, DMA
controllers, and memories. The proposed estimation method
achieves 25.6 times faster estimation compared to RTL simula-
tion with small error. Furthermore, proposed method also works
well with different sets of components by repeating only the AL-
EDG related procedures.

The runtime of the proposed method is roughly compared with
the CA simulation time in order to approximate the speed-up. The
experiments were conducted again on the Pentium4 workstation,
running at 3.4 GHz. Then, the results are evaluate against the CA
simulation time results presented by Martin et al. [17]. It is found
that the proposed method has gained approximately 30-35 times
of runtime speed-up over the CA simulation.

6. Conclusion

This paper proposes an efficient performance estimation
method for a configurable multi-layer bus-based architecture by
utilizing system-level data flow information. The flow of per-
formance analysis takes the outstanding behavior details of bus
protocol into account so that it can recognize the dynamic bus
contention. The proposed method is fast and accurate. It es-
timates the performance within 8% of error comparing to the
conventional RTL simulation. Furthermore, the AL-EDG con-
struction and analysis have achieved the speed-up of 152.6 times
over RTL simulation in estimating the performance of one archi-
tecture. The experimental results also shows that the proposed
performance estimation method including system-level profiling,
SL-EDG construction, and AL-EDG construction and analysis
of eight architectures has achieved the overall speed-up of 25.6
times over the eight RTL simulations. When evaluating more ar-
chitectures, the proposed method repeats only the AL-EDG con-
struction and analysis procedures. Therefore, the larger the num-
ber of architectures becomes, the bigger overall speed-up value is
gained.

In the future, the statistical analysis shall be applied to the pro-
posed method to assure the estimated performance statistically
and propose a system-level architecture optimization framework
to explore multi-layer bus-based architectural platform.

c© 2015 Information Processing Society of Japan 36

IPSJ Transactions on System LSI Design Methodology Vol.8 26–37 (Feb. 2015)

Acknowledgments This research was partly supported by
the Ministry of Education, Culture, Sports, Science and Technol-
ogy, Grant-in-Aid for Scientific Research C 25330059.

References

[1] Ueda, K., Sakanushi, K., Takeuchi, Y. and Imai, M.: Architecture-
level performance estimation method based on system-level profiling,
IEE P-Comput. Dig. T., Vol.152, No.1, pp.12–19 (2005).

[2] Verkest, D., Rompaey, K., Bolsens, I. and Man, H.: CoWare–A de-
sign environment for heterogeneous hardware/software systems, Des.
Autom. Embed. Syst., Vol.1, No.4, pp.357–386 (1996).

[3] Honda, S., Wakabayashi, T., Tomiyama, H. and Takada, H.: RTOS-
Centric Hardware/Software Cosimulator for Embedded System De-
sign, Proc. CODES+ISSS ’04, pp.158–163 (2004).

[4] Balarin, F., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.,
Watanabe, Y. and Yang, G.: Concurrent Execution Semantics and Se-
quential Simulation Algorithms for the Metropolis Meta-model, Proc.
CODES ’02, pp.13–18 (2002).

[5] Buck, J., Ha, S., Lee, E.A. and Messerschmitt, D.G.: Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems,
Int. Journal of Computer Simulation, Vol.4, (1994).

[6] Yoo, S., Nicolescu, G., Gauthier, L. and Jerraya, A.: Automatic Gen-
eration of Fast Timed Simulation Models for Operating Systems in
SoC Design, Proc. DATE ’02, pp.620–627 (2002).

[7] Bouchhima, A., Yoo, S. and Jerraya, A.: Fast and accurate timed exe-
cution of high level embedded software using HW/SW interface sim-
ulation model, Proc. ASP-DAC 2004, pp.469–474 (2004).

[8] Yoo, S. and Jerraya, A.: Hardware/software cosimulation from inter-
face perspective, Computers and Digital Techniques, IEE Proceed-
ings, Vol.152, No.3, pp.369–379 (2005).

[9] Takahashi, M., Miyajima, H. and Fukui, M.: An Efficient Power and
Performance Evaluation Method with Reconfigurable Bus Architec-
ture Model, Proc. SASIMI 2003, pp.345–350 (2003).

[10] Lahiri, K., Raghunathan, A. and Dey, S.: System-level Performance
Analysis for Designing On-chip Communication Architectures, Trans.
Comp.-Aided Des. Integ. Cir. Sys., Vol.20, No.6, pp.768–783 (2006).

[11] Loghi, M., Angiolini, F., Bertozzi, D., Benini, L. and Zafalon, R.:
Analyzing On-Chip Communication in a MPSoC Environment, Proc.
DATE ’04, Vol.2, pp.752–757 (2004).

[12] Pasricha, S. and Dutt, N.: On-Chip Communication Architectures:
System on Chip Interconnect, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2008).

[13] Pasricha, S., Dutt, N. and Ben-Romdhane, M.: Fast exploration of bus-
based communication architectures at the CCATB abstraction, ACM
Trans. Embed. Comput. Syst., Vol.7, No.2, pp.22:1–22:32 (2008).

[14] Pasricha, S., Dutt, N. and Ben-Romdhane, M.: BMSYN: Bus Matrix
Communication Architecture Synthesis for MPSoC, Trans. Comp.-
Aided Des. Integ. Cir. Sys., Vol.26, No.8, pp.1454–1464 (2007).

[15] Schirner, G. and Domer, R.: Quantitative Analysis of Transaction
Level Models for the AMBA Bus, Proc. DATE ’06, pp.1–6 (2006).

[16] Baganne, A., Bennour, I., Elmarzougui, M., Gaiech, R. and Martin, E.:
A multi-level design flow for incorporating IP cores: Case study of 1D
wavelet IP integration, Proc. DATE ’03, pp.250–255 suppl. (2003).

[17] Martin, G.: Overview of the MPSoC design challenge, Proc. DAC ’06,
pp.274–279 (2006).

[18] Madl, G., Pasricha, S., Bathen, L.A.D., Dutt, N. and Zhu, Q.: Formal
Performance Evaluation of AMBA-based System-on-chip Designs,
Proc. EMSOFT ’06, pp.311–320 (2006).

[19] Lee, C., Kim, S. and Ha, S.: A Systematic Design Space Exploration
of MPSoC Based on Synchronous Data Flow Specification, J. Signal
Process. Syst., Vol.58, No.2, pp.193–213 (2010).

[20] Li, M., Achteren, T., Brockmeyer, E. and Catthoor, F.: Statistical Per-
formance Analysis and Estimation for Parallel Multimedia Processing,
J. Signal Process. Syst., Vol.58, No.2, pp.105–116 (2010).

[21] Liu, H.-Y., Petracca, M. and Carloni, L.P.: Compositional system-
level design exploration with planning of high-level synthesis, Proc.
DATE ’12, pp.641–646 (2012).

[22] Cho, Y.-S., Choi, E.-J. and Cho, K.-R.: Modeling and Analysis of the
System Bus Latency on the SoC Platform, Proc. SLIP ’06, pp.67–74
(2006).

[23] Accellera Systems Initiative: IEEE Standard for Standard SystemC R©
Language Reference Manual, available from 〈http://standards.ieee.
org〉 (2012).

[24] ARM: ARM Multi-layer AHB Technical Overview (rev2.0), available
from 〈http://infocenter.arm.com〉 (2001).

[25] ARM: AMBA Specification (Rev 2.0), available from
〈http://infocenter.arm.com〉 (1999).

Salita Sombatsiri received her B.E. from
Chulalongkorn University in 2010 and
Master of Information Science and Tech-
nology from Osaka University in 2013.
She is currently a Ph.D. candidate at
Osaka University. Her research interests
include system level design methodology
of embedded systems and the modeling of

communication architecture.

Yoshinori Takeuchi received his B.E.,
M.E. and Dr. Eng. degrees from Tokyo In-
stitute of Technology in 1987, 1989 and
1992, respectively. From 1992 through
1996, he was a research associate of the
Department of Engineering, Tokyo Uni-
versity of Agriculture and Technology.
From 1996, he has been with Osaka Uni-

versity. He was a visiting scholar in University of California,
Irvine from 2006 to 2007. He is currently an associate profes-
sor of Graduate School of Information Science and Technology
at Osaka University. His research interests include system level
design, VLSI design and VLSI CAD. He is a member of IEICE
of Japan, IPSJ, ACM, and SP, CAS and SSC Society of IEEE.

Masaharu Imai received his B.S. degree
in Electrical Engineering in 1974 and
M.S. and Ph.D. degrees in Information
Science from Nagoya University in 1976
and 1979. From April 1979 to March
1996, he was with the Department of In-
formation and Computer Sciences, Toyo-
hashi University of Technology, where his

final title was professor. He was a visiting professor at the Uni-
versity of South Carolina, Columbia, SC, from 1984 to 1985.
Since April 1996, he has been with Osaka University, where he
is a professor of the Department of Information Systems Engi-
neering, the Graduate School of Information Science and Tech-
nology. His research interests include ASIP design automation,
hardware/software codesign, VLSI architecture, and system level
design methodology of embedded systems, Since 1991, he has
been working for EDA standardization including VHDL under
IEEE and Japan Electronics and Information Technology Indus-
tries Association (JEITA). He is a member of IEICE, ACM, and
IPSJ.

(Recommended by Associate Editor: Tohru Ishihara)

c© 2015 Information Processing Society of Japan 37

