
IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

[DOI: 10.2197/ipsjtsldm.8.12]

Invited Paper

High-level Synthesis for Low-power Design

Zhiru Zhang1,a) Deming Chen2,b) Steve Dai1,c) Keith Campbell2,d)

Received: November 13, 2014, Released: February 12, 2015

Abstract: Power and energy efficiency have emerged as first-order design constraints across the computing spectrum
from handheld devices to warehouse-sized datacenters. As the number of transistors continues to scale, effectively
managing design complexity under stringent power constraints has become an imminent challenge of the IC industry.
The manual process of power optimization in RTL design has been increasingly difficult, if not already unsustainable.
Complexity scaling dictates that this process must be automated with robust analysis and synthesis algorithms at a
higher level of abstraction. Along this line, high-level synthesis (HLS) is a promising technology to improve design
productivity and enable new opportunities for power optimization for higher design quality. By allowing early access
to the system architecture, high-level decisions during HLS can have a significant impact on the power and energy
efficiency of the synthesized design. In this paper, we will discuss the recent research development of using HLS to
effectively explore a multi-dimensional design space and derive low-power implementations. We provide an in-depth
coverage of HLS low-power optimization techniques and synthesis algorithms proposed in the last decade. We will
also describe the key power optimization challenges facing HLS today and outline potential opportunities in tackling
these challenges.

Keywords: high-level synthesis, low-power design, algorithm, compiler optimization, hardware acceleration

1. Introduction

As modern system-on-a-chip (SoC) integrates billions of tran-
sistors and an increasing number of heterogeneous cores to meet
the rapid scaling in application requirements, it has become im-
portant to manage the design complexity by raising the level of
abstraction beyond the register-transfer level (RTL). Notably,
electronic system-level (ESL) design methodology offers a very
attractive option for enabling the next leap in productivity for in-
tegrated circuit (IC) design [35], [66], [100]. An ESL design flow
allows users to effectively model the software/hardware com-
ponents of the SoC system using high-level specifications and
quickly converge on optimized low-level implementations via au-
tomated compilation and synthesis tools. For example, an analy-
sis on C-based industrial system designs demonstrates the poten-
tial to achieve seven times decrease in code size and up to three
orders of magnitude reduction in simulation and verification cy-
cles [94].

Concurrently, the IC industry is undergoing a significant transi-
tion from performance-oriented design to power-constrained de-
sign, as power and energy efficiency are now first-order design
constraints across the computing spectrum. In order to meet the
stringent power requirements, designers often have to optimize
the initial RTL by applying a variety of low-power techniques

1 School of Electrical and Computer Engineering, Cornell University,
Ithaca, New York

2 Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, Urbana, Illinois

a) zhiruz@cornell.edu
b) dchen@illinois.edu
c) stevedai@csl.cornell.edu
d) kacampb2@illinois.edu

such as clock gating, power gating, and multiple voltage islands,
where functional, structural, temporal, and spatial information
must be jointly considered. The manual process in such a com-
plex “four-dimensional” space has become increasingly difficult,
if not impossible, to effectively optimize the RTL design within
a short turnaround time. Additionally, power scaling requires de-
signers to assess and optimize the system architecture as early as
possible in the design flow [75]. As shown in Fig. 1, attempting to
reduce power at the RT level typically has much less impact than
at the behavioral and system levels with high-level decisions such
as hardware/software partitioning, bus width sizing, scheduling,
resource sharing, pipelining, etc. Clearly, raising the level of ab-
straction beyond RTL is crucial for achieving fast power closure.

In light of the escalating design complexity and power-limited

Fig. 1 Power saving opportunity and effort at different levels of abstraction
derived from Ref. [81].

c© 2015 Information Processing Society of Japan 12

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

scaling, high-level synthesis (HLS) [20], [27], [65] has emerged
as a cornerstone of ESL design automation. HLS automatically
transforms untimed behavioral description of an algorithm into
optimized cycle-accurate hardware implementation in RTL. Dur-
ing the HLS flow, scheduling assigns each operation to a time
step corresponding to a clock cycle. Resource allocation se-
lects the numbers and types of hardware modules to be used,
and resource binding assigns operations to these allocated mod-
ules. HLS extracts parallelism in the input behavioral description
through control data flow analysis to synthesize the datapath and
control logic of the hardware implementation. Because it enables
automatic generation of optimized hardware from high-level pro-
gramming languages and facilitates effective design space explo-
ration of software and hardware architectures, HLS is a promis-
ing direction to significantly improve design productivity and at
the same time address the increasing difficulty in meeting power
constraints [100].

There has been a rich body of research on power optimiza-
tion in HLS in the past two decades [10], [14], [22], [43], [45],
[50], [54], [60], [80]. Some excellent surveys on the early ef-
forts are given in Refs. [79], [81], [86]. In this paper, we focus
on surveying the more recent developments of low-power HLS
techniques that are proposed in the last decade. Inspired by the
taxonomy proposed by Ranganathan for power-efficient comput-
ing in Ref. [83], we introduce a high-level categorization of the
current and emerging low-power techniques and provide in-depth
discussions on each category of techniques.

The rest of the paper is structured into three major sections.
Section 2 provides an overview of general HLS methodologies
for low-power design, followed by a detailed categorization of the
important power optimizations, such as high-level techniques of
scaling down power, applying low-power technologies, matching
work to energy-efficient options, and performing cross-layer anal-
ysis. Section 3 demonstrates case studies of several representative
low-power techniques in HLS, focusing on how to identify opti-
mization opportunities and leverage them effectively at the high
level. In particular, we describe an advanced compilation flow
that targets CUDA on FPGA to effectively explore multi-level-
granularity parallelism for performance and energy improvement.
Finally, Section 4 addresses the outstanding challenges in low-
power HLS and proposes some general directions for discovering
additional power optimization options.

2. Optimizations for Low Power

Conventional optimizations for low-power design focus on cut-
ting power at the circuit level. For example, designers often
use technologies with different Vth threshold voltages to trade-
off the performance of less timing-critical logic for reduced static
leakage power [48]. Similarly, it would be useful to scale down
the VDD supply voltage to reduce the dynamic switching power
on less performance-driven logic [37]. Other techniques such as
power gating [44], [77], which turns off the voltage for the inac-
tive part of the circuit, and clock gating [92], [96], which disables
inactive registers, are widely implemented to achieve static and
dynamic power savings, respectively. In general, the recurring
theme in low-power design is to avoid waste by reducing unnec-

essary activities and slowing down over-provisioned resources
that are running at a higher performance level than what is re-
quired by the workload [83].

The same concept of avoiding waste extends naturally into the
domain of HLS, which presents a greater number and wider va-
riety of optimization opportunities that are otherwise infeasible
at the lower levels of design. With scheduling and binding, HLS
generates cycle-accurate hardware circuit from untimed behav-
ioral description. Scheduling, the process of assigning time step
to each operation, can be performed intelligently, for example,
to enable additional slacks for scaling down the power for more
resources [47]. Binding, the process of assigning operations to
hardware resources, can likewise be performed cleverly by as-
signing less timing-critical operations to low-power technologies
such as modules with high Vth and low VDD [12], [49]. The first-
order task in low-power HLS is in leveraging the expanded design
space in high-level scheduling and binding to identify and maxi-
mize the number of Pareto-optimal design points. We may con-
sider a cross-layer approach that integrates upstream HLS with
downstream physical implementation flow such as technology
mapping and place-and-route to jointly realize additional power
saving. Apart from lower level techniques, we may also trans-
form algorithms and applications at the compiler level to achieve
inherent high-level power efficiency such as improved memory
locality and reduced runtime complexity [83]. We can also trade-
off accuracy for low power and even spend additional power to
save power [63], [68].

In this paper, we examine the low-power HLS optimization
techniques in accordance with a high-level design methodology.
Instead of a bottom-up approach that delves into specific circuit-
level techniques or the types of power saving targeted by the op-
timizations, we establish a top-down view inspired by Ref. [83]
that broadly categorizes the techniques based on their intuitive ap-
proaches to reducing inefficiency in the synthesized circuit. This
allows us to emphasize high-level optimization strategies without
losing sight of the low-level techniques. An overview of the cat-
egorization and a summary of relevant low-power optimization
techniques under each category are shown in Table 1.

2.1 Using Low-power Technologies
Ideally, a low-power design should consume only the power

that is absolutely necessary for meeting the design constraints and
performance requirements. As a result, an intuitive approach is to
use power-efficient instances of hardware modules. Binding oper-
ations to low-power resources such as high-Vth module, low-VDD

island, and power-efficient memory is a common technique for
low-power HLS design. The process of statically binding to low-
power technologies involves complex trade-offs between power
and performance. Otherwise, the design would have been bound
to the lowest-power resources in the first place. While HLS has
the ability to freely explore the design space in terms of schedul-
ing and binding, optimizations must be carefully crafted to bal-
ance the benefit of using low-power resources with any negative
effect on performance and cost. As an example, by exploiting the
timing slacks, defined as the amount of extra delay that an oper-
ation can tolerate without violating the given timing constraints,

c© 2015 Information Processing Society of Japan 13

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

Table 1 High-level categorization of current low-power optimization techniques.

Optimization Category Relevant Techniques
Using low-power technologies Multiple threshold voltage [15], [49], [91], multiple supply voltage [12], [39], [47], [59],

non-volatile memory [57]
Scaling down the power for under-utilized resources Clock gating [1], [45], power gating [14], [16], [18], [31], behavioral observability don’t care [22], [23],

soft constraints [24], dynamic voltage and frequency scaling [46], [64], [82]
Matching work to energy-efficient options Heterogeneous substrates [2], [3], [78], [87], [99],

C-like parallel programming targeting FPGA [29], [72], [97]
Cross-layer analysis Interconnect optimization [11], [13], [43], floorplanning optimization [38], [88],

memory optimization [7], [21], [61], [95], high-level/logic synthesis [28]
Trading-off other metrics for power Approximate hardware synthesis from behavioral description [67],

error-constrained bit-width optimization [26], [63], [70]
Spending power to save power Resource over-provisioning for hotspot reduction [68],

dynamic voltage and frequency scaling [46], [64], [82]

we can bind operations to low-power resources without incurring
any significant performance degradation. Unfortunately, differ-
ent operations often compete for the limited timing slack. It is
therefore important to optimally budget the use of low-power re-
sources based on the available slack, a problem generally known
as the timing budgeting problem [9], [36], [58]. Jiang et al. [47]
combines scheduling with timing budgeting to assign operations
to the appropriate time step and bind them to the appropriate
resource implementation to optimize slack distribution for low
power.

Minimizing the leakage current is an important technique to
reduce the static power consumption of the circuit. Because leak-
age current decreases exponentially with increase in Vth, a given
technology can manipulate the substrate bias to raise the Vth as
long as performance constraints are met. Advances in technology
allows cells with different Vth values on the same chip where the
lower Vth cells switch faster but suffer from high leakage while
the higher Vth cells switch slower but have lower leakage. Se-
lecting the module with the appropriate Vth given the design con-
straints is an interesting optimization problem in HLS. Khouri
and Jha [49] develop a heuristic algorithm that greedily targets
the frequently idle modules as candidates for high-Vth implemen-
tation, for which the selection considers the potential of the mod-
ule for leakage reduction. Tang et al. [91] propose to first syn-
thesize the design with low-Vth modules and then replace module
instances for nodes with positive slacks with corresponding high-
Vth implementations. Chen et al. [15] follow the same approach
of slack-based module replacement to reduce leakage power, but
also consider the reliability of the synthesized circuit in terms of
negative bias temperature instability.

It is also possible to run different blocks of the chip with dif-
ferent VDD’s. While modules with higher VDD incur shorter de-
lay, those with lower VDD experience longer delay. Running the
non-critical part of the logic in a low voltage island can greatly
reduce both the dynamic and static power of the circuit because
switching power and leakage power are proportional to V2

DD and
VDD, respectively. Chen et al. [12] present a network flow-based
low-power resource binding algorithm that jointly considers both
multiple-VDD and switching activity. The objective is to bind all
operations to functional units so that the number of operations
with low VDD is maximized and the total switching activities of
functional units are minimized. Gu et al. [39] assume that oper-
ations are initially assigned customized voltages and propose the
problem of partitioning these voltages into an appropriate num-

ber of voltage domains for a power-optimal design, referred to
as the voltage partitioning problem. Liu et al. [59] address the
NP-hard voltage partitioning problem with an approximation al-
gorithm where the accuracy depends on the ratio of maximum to
minimum initial voltages. The time complexity of the algorithm
is on the order of the product among the numbers of voltage do-
mains, initial voltages, and functional units.

Apart from the well-established low-power techniques, there
is a recent trend in adopting emerging technologies such as
non-volatile memory (NVM) for low-power design, examples of
which include STT-RAM [52], CBRAM [53], and RRAM [19].
NVM has the potential to replace traditional volatile memory
at different levels of the memory hierarchy and offers ultra-low
standby leakage power, small area, and instant on/off capability.
However, NVM typically incurs large write power and latency.
It is therefore necessary to carefully synthesize the proper mem-
ory architecture under design constraints when utilizing NVM.
HLS enables the optimization and synthesis of hybrid memory
architectures that consider the trade-off between emerging NVM
and traditional SRAM. Li et al. [57] propose an optimization that
minimizes the power consumption under given memory band-
width, chip area, and performance requirements for hybrid NVM
and SRAM architectures by intelligently deciding memory allo-
cations, memory hierarchy, and memory type.

HLS provides the high-level flexibility in synthesizing the
proper hardware architecture that incorporates critical design de-
cisions that are more difficult to explore at the lower levels. It
is important to note that using low-power technologies in HLS
should not be a spearheaded effort in indiscriminately applying
low-power modules anywhere in the design. Instead, it must be
a global optimization effort that examines the trade-off between
performance and power consumption of available technologies
and determines how, where, and when to apply low-power tech-
nologies. Leveraging these technologies may even necessitate al-
gorithmic improvements. In the case of NVM, it is necessary to
optimize the memory writes in the program to alleviate the large
write power.

2.2 Scaling Down the Power for Under-utilized Resources
Apart from statically binding operations to low-power re-

sources, HLS can also be leveraged to dynamically scale down
the power for under-utilized resources. In particular, clock gating
is a typical technique to turn off the inactive logic in the circuit.
At a given point in time, it is often the case that a large amount

c© 2015 Information Processing Society of Japan 14

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

of logic is inactive, but the corresponding registers continue to be
triggered by the clock even though the registered values are not
changing. We can achieve significant saving in switching power
of the register and the clock nets by inserting additional logic to
disable the clock signals into these inactive registers. Ahuja et
al. [1] discuss methods of applying clock gating at various levels
of granularities at the behavioral level and propose priority for
clock gating decisions. Huang et al. [45] address the area over-
head of the clock gating logic and devise an optimization to min-
imize this overhead.

Power gating, on the other hand, turns off the inactive logic
by shutting off the power to the corresponding block of the cir-
cuit, which further minimizes the standby static power consump-
tion. Dal and Mansouri [31] develop a synthesis technique that
binds operations with maximally overlapping lifetimes to the
same power island, which consists of a cluster of logic whose
power can be shut off independently from the rest of the circuit.
Choi et al. [18] and Chen et al. [14], [16] tackle the inherent over-
head in state-retention storage required to preserve the logic states
during power gating cycles and develop scheduling and binding
algorithms to minimize the total size of required retention storage.

To enable the benefits of operation gating in HLS, the concept
of observability don’t care (ODC) has been generalized at the be-
havioral level to identify unnecessary computations and guide the
scheduler in maximizing the efficiency of clock gating [22], [23].
Soft constraints [24] can be applied within the scheduler to pro-
mote gating opportunity. We will provide a more detailed discus-
sion on behavioral ODC in Section 3.1.

In addition to turning off inactive logic, it is also possible to
slow down some of the operations for power reduction by apply-
ing dynamic voltage and frequency scaling (DVFS), which varies
the operating voltage and frequency of the circuit over time based
on the performance demand of the design [93]. Many scheduling
techniques [46], [64], [82] have been developed to take advan-
tage of DVFS to achieve power reduction. Overall, we note that
static analysis at the high level reveals runtime power optimiza-
tion opportunities that are much more difficult to identify at the
lower levels. Unlike RTL at which the clock boundaries are fixed,
HLS has the freedom to define the hardware structure (datapath)
as well as the schedule (control) to maximize power scaling for
under-utilized resources.

2.3 Matching Work to Energy-efficient Options
While it is desirable to leverage HLS to consider resource

optimizations at the device level, we must step back and ex-
amine system-level possibilities. As power scaling saturates
performance for single-core and multi-core systems, we are
encountering a shift toward heterogeneous multiprocessor sys-
tems that take advantage of the unique characteristics of differ-
ent types of computing substrates and combine them synergis-
tically to boost performance per unit of power. Examples of
heterogeneous platforms include CPU-FPGA [2], [3], [99] and
CPU-GPU-FPGA [87] systems for different levels of computa-
tion needs. More recently, Microsoft has integrated FPGAs in
its datacenters for Bing search engine’s page rank processing
and reported 95% increase in throughput with only 10% power

overhead [78]. It is evident that FPGA has the potential of be-
coming an integral part of these future heterogeneous systems
and is in fact an attractive option for energy-efficient computing.
FPGA is fully customizable for specialized applications and ex-
cels at dataflow-intensive designs that exploit both fine-grained
and coarse-grained parallelism [42]. Unfortunately, the availabil-
ity and power advantages of heterogeneous systems are usually
overshadowed by the difficulty in programming them. The lack
of a common programming model among CPU, GPU, FPGA, and
other emerging processors complicates the heterogeneous devel-
opment process and hinders widespread adoption. A high-level
design methodology has the potential to unify the development
effort on heterogeneous processors and enable new compilation
techniques and synthesis optimizations to simultaneously extract
the benefits of each substrate.

In particular, there are multiple lines of effort in targeting C-
like parallel programming languages to CPU-FPGA [29], [72],
[97]. This effort aims to enable cross-compilation of different
parts of a program written in a single unified programming lan-
guage onto the most suitable substrates based on the characteris-
tics of the corresponding workloads. Papakonstantinou et al. [72]
adapt the CUDA programming model [69] into a new FPGA de-
sign flow to enable efficient compilation of CUDA kernels onto
FPGA. Known as FCUDA, this CUDA-to-FPGA flow efficiently
maps coarse and fine-grained parallelism expressed in CUDA
kernels onto FPGA’s reconfigurable fabric. In Section 3.4, we
will provide a detailed case study of FCUDA with insights on
the suitability of CUDA for FPGA and the power advantages of
such high-level framework. Similarly, there is parallel effort in
industry in targeting OpenCL [51] at FPGA. There are multiple
developments on a new heterogeneous parallel programming and
compilation environment for OpenCL on a CPU/FPGA system in
which the host code is compiled onto the CPU and kernels are
accelerated on the FPGA [29], [97]. With optimizations such as
memory coalescing and kernel pipelining, such OpenCL compil-
ers have the potential to greatly improve performance per unit
power over homogeneous substrates.

2.4 Cross-layer Analysis
Rather than looking for optimization opportunities locally at

a specific stage of the synthesis flow, examining the optimiza-
tion problem holistically provides new dimensions to the solution
space. For example, Zheng et al. [101] propose a place-and-route
directed HLS flow that iterates among scheduling, binding, and
physical implementation, while Tan et al. [89] develop a technol-
ogy mapping-aware scheduling algorithm. Similarly in the con-
text of power optimization, inferring low-level physical imple-
mentation details at the high level can effectively reduce power
consumption even if the high-level estimates are not perfectly
accurate. Such cross-layer analysis may consider logic synthe-
sis, technology mapping, place-and-route, and memory synthe-
sis jointly with HLS so the upstream HLS synthesized design is
friendly for downstream physical implementation and optimized
for both the front-end and back-end flows.

Much of the work in cross-layer analysis focuses on optimizing
interconnect power. As an example, studies show that FPGA’s in-

c© 2015 Information Processing Society of Japan 15

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

terconnects contribute to more than 70% of total power consump-
tion [56]. As a result, low-power HLS techniques tackle resource
allocation and binding because they are the key steps in deter-
mining the interconnects. High-level power estimation is often
used to guide the selection of binding/allocation solutions. Chen
et al. [11], [13] extend the method in Ref. [8] to efficiently cal-
culate switching activities using high-level CDFG simulation and
use switching activities to estimate power consumption. Based on
a glitch-aware technology mapper [17], Cromar et al. [28] further
consider glitches, spurious switching activities, in their power es-
timation for additional power reduction during binding. We will
present a detailed case study of this work in Section 3.2. Fur-
thermore, Hsieh et al. [43] propose to activate unused flip-flops
to block the propagation of glitches to reduce glitch power on
interconnects associated with the output of functional units in a
design. Stammermann et al. [88] and Gu et al. [38] devise opti-
mization algorithms to simultaneously perform floorplanning and
binding.

Memory is another important source of power consumption,
and memory bandwidth is often the bottleneck for optimal de-
signing of performance and power. Memory partitioning is a pop-
ular technique for power optimization. Lyuh and Kim [61] and
Wang and Hu [95] present algorithms to reduce power consumed
by memory accesses by leveraging memory banking and exploit-
ing multiple memory operating modes. The algorithm consists of
simultaneous memory access scheduling/binding and operating
mode assignment to assign discrete memory operations to dif-
ferent banks for performance and power optimization. Benini et
al. [7] propose an algorithm to optimally synthesize a multi-bank
on-chip SRAM architecture for power reduction based on the dy-
namic execution profile of memory access frequencies. They ar-
gue that mapping the most frequently accessed addresses onto on-
chip memory guarantees power efficiency. Cong et al. [21] further
propose a technique that statically calculates memory access fre-
quencies in polynomial time. This technique requires little to no
profiling and can support more partitioning schemes.

It is important to consider low-level physical information dur-
ing high-level design [85] to enable more holistic power optimiza-
tions. By adopting techniques that perform cross-layer analysis
that examines or integrates different steps of the design flow, we
can significantly reduce the turnaround time for achieving power
closure while maintaining a high-level design methodology.

2.5 Trading-off Other Metrics for Power
No matter how much effort we put in to avoid waste by ex-

ploring a large variety of low-power options, there is always a
power floor, the bare minimum amount of power, that must be
consumed for the given application specifications and technology
constraints. Moving below the power floor requires intelligently
compromising the functionality of the application, often in the
form of accuracy.

Mallik et al. [63] propose an error-constrained optimization
during synthesis that trade-off quantization error with power. The
optimization intelligently allocates bit-width using profiling and
high-level models to estimate quantization errors and power con-
sumption, respectively. Constantinides et al. [26] devise a proce-

dure to automatically analyze the sensitivity of outputs to round-
ing of internal variables for assigning bit-widths. Osborne et
al. [70] further applies clock gating to vary bit-width dynamically
at runtime based on branch statistics. Nepal et al. [67] extend
the approximation beyond data type and bitwidth and develop a
tool called ABACUS to synthesize approximate hardware circuits
from behavioral descriptions. The algorithm produces variants
on the abstract syntax tree of the behavioral description by per-
forming a range of approximate transformations, including data
type simplification, operation approximation, and arithmetic sub-
stitution. Similar to other low-power design techniques described
earlier, working at the high level of abstraction provides a wider
range of approximation solutions to efficiently identify the opti-
mal inexact circuits that represent the Pareto trade-off between
power and accuracy, thus performing global transformations on
the program whose power optimization effects are not limited by
lower-level implementations.

2.6 Spending Power to Save Power
It is common for synthesis to incur additional cost in one

area of the design to realize significant improvement in another
area of the design. In performance-centric HLS, for example,
we pay some additional cost in area and power for synthesizing
additional hardware logic to achieve significant improvement in
overall design throughput [30], [90]. Similarly in low-power op-
timization, we pay the additional cost of dynamic power man-
agement hardware to conserve the overall power of the system
through dynamic voltage and frequency scaling.

On the other hand, power consumption is not necessarily a di-
rect function of the number of resources that are used, but also
the way that power is distributed among these resources, which
determines the dynamic operating conditions of the synthesized
circuit. In particular, the temperature profile of the chip has a
strong influence on the leakage power, a phenomenon known as
thermal-induced leakage [32]. The intuitive notion that the min-
imum number of resources consumes the least amount of power
may not be always applicable. In fact, Ni and Memik [68] find
that over-provisioning resources allows for more optimal distribu-
tion of power density, reducing hotspots and subsequently mini-
mizing leakage power. They propose a resource allocation and
binding technique that allows certain degree of redundancy to
achieve a low-power design considering thermal-induced leak-
age.

3. Case Studies

Low-power design requires that the system architecture be op-
timized as early as possible in the design flow [75]. In this sec-
tion, we use several case studies to elaborate on how we can cap-
italize on the high-level observations and approaches described
in Section 2 to reduce inefficiency in the synthesized design. In
particular, we illustrate examples of analysis that identify opti-
mization opportunities in the design and act on the results of the
analysis. Approaches include algorithmic improvement in the
synthesis engine and programmer-directed optimizations in the
source design. Techniques involve mathematical modeling of the
design, which provide a systematic method to globally optimize

c© 2015 Information Processing Society of Japan 16

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

design preferences, an important objective of which is power. We
will show that although gate-level details are considered in some
of these techniques, high-level power optimization trumps gate-
level power analysis in efficiency and effectiveness.

3.1 Behavioral Observability Don’t Care
Clock gating is an important technique in RTL synthesis for

scaling down the power for under-utilized resources, and a simple
way to identify clock gating opportunity is based on stability con-
ditions [33]. The value stored in a register may not change from
cycle to cycle. Even if it changes, the value may not need to be
propagated down the pipeline if the downstream circuit does not
subsequently use the result. This condition of observability don’t
care (ODC) dictates that significant power saving can be achieved
by clock-gating the unobservable branches of the circuit without
affecting the desired functionality [4].

To exploit this benefit in HLS, the concept of ODC has been
generalized at the behavioral level to identify unnecessary com-
putations and guide the scheduler in maximizing the efficiency
of clock gating [22]. While behavioral-level ODC helps alleviate
the otherwise intensive designer input needed to identify clock
gating candidates, it also reveals clock gating opportunities not
visible at the RTL level. For example, the algorithm in Fig. 2 (a)
can be correctly implemented with the architecture in Fig. 2 (b).
However, none of the registers is able to take advantage of ODC-
based clock gating because the comparison is scheduled after the
multiplication, and the observability condition is not determined
before the registers. In contrast, if the same algorithm is imple-
mented with the architecture in Fig. 3 by scheduling the compari-
son before the multiplication, the two registers and the multiplier
on the B path can be safely ignored when the comparison selects
the A path at the multiplexer. In this case, the B path with the
multiplier is unobservable, and the two registers on the B path
can be clock-gated, from which the multiplier is also data-gated
because its inputs will remain stable. It is important to note that
although the architecture in Fig. 3 requires two extra 1-bit regis-
ters to pipeline the result of the comparison, the power overhead

Fig. 2 (a) C code of a simple example design. (b) A hardware implementa-
tion of the design which cannot be clock-gated because the observ-
ability condition is scheduled after the multiplication.

Fig. 3 Clock gating of the registers on the B path is possible when the ob-
servability condition is scheduled before the multiplication.

from these two small 1-bit registers is negligible compared to the
power reduction achieved from clock-gating the two large 32-bit
registers.

The above example shows that clock gating may not be ap-
plicable on some architectures among many alternatives of the
same functionality. At the RTL level, the hardware architecture
has been fixed, which limits the amount of clock gating that can
be performed. Because HLS performs scheduling to synthesize
the architecture of choice for the design, HLS provides the free-
dom to choose the right schedule and a good architecture that
maximize clock gating opportunity. Comparing the architecture
in Fig. 3 with that in Fig. 2 (b), scheduling the comparison before
the multiplication allows more registers to be clock-gated. At the
same time, it is evident that a basic strategy for operation gating
is to evaluate the gating conditions earlier in the design. In other
words, it requires a scheduling optimization that creates a favor-
able schedule in which the gating condition c is executed prior
to another operation v whose observability depends on the gating
condition. In this context, it is natural to extend the mathematical-
programming-based SDC scheduling formulation [25] for opera-
tion gating.

With the SDC scheduling, an integer-valued scheduling vari-
able sv is used to represent the time step for which operation v is
executed. A system of integer-difference constraints in the form
of su − sv ≤ d, where d is a constant integer, encapsulates a range
of scheduling constraints such as dependency, latency, and clock
period, and optimizes the schedule for all the operations. In the
context of operation gating, additional soft constraints [24] are
introduced in the form of sc − sv − w ≤ d, where w is a penalty
variable used to encourage gating condition c to be executed prior
to the operation v. Unlike hard constraints that must be obeyed
for the correctness of the design, low power is a soft constraint
treated as design preference and will be honored whenever possi-
ble given the hard constraints. Reference [22] relates the penalty
in the soft constraint to the estimated power dissipation of the op-
eration in question. Minimizing the penalty thus achieves maxi-
mum power saving.

3.2 Glitch Reduction
The switching activity of a circuit can be divided into two

categories: functional transitions and glitches. Functional tran-
sitions are required for the circuit to function correctly while
glitches represent useless logic computations resulting from im-
balances in timing before the outputs become stabilized. Thus
glitches clearly represent wasted power, but accurately character-
izing them requires low-level (gate netlist level) analysis. At the
same time, the opportunities for binding optimizations that can
reduce glitch power are greatest in high-level synthesis. Thus a
cross layer approach is required.

HLPower [28] is such a cross-layer approach, targeting glitch
power reduction through glitch-aware binding that minimizes
switching activity. The HLPower binding engine does register
binding first and functional unit binding second. The register
binding is done with a conventional algorithm. The functional
unit binding algorithm is customized, as shown in Fig. 4, to re-
duce glitch power. First, for each operation type, a control step

c© 2015 Information Processing Society of Japan 17

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

Fig. 4 The HLPower binding algorithm.

that uses the most of that resource is identified. Next, the cor-
responding resource contraint defining operations are selected as
the base set for bipartite matching. A bipartite graph is then con-
structed from the base operation set to the remaining operations.
Edges are created for each operation pair that can be shared.

For each potential pairing, a partial technology-mapped netlist
representing that binding assignment is constructed, including
any multiplexer that needs to be inserted for sharing. Switch-
ing activity is computed for the partial netlist using node-level
transition density and switching activity analysis. The switching
activity is then used, in addition to a mux size metric, to weigh
each edge to direct the bipartite matching. The optimal pairs are
grouped together as shown in Fig. 4 and then iteratively matched
again with the remaining operation. This process is repeated un-
til all operations have been assigned a sharing group or no feasi-
ble pairings remain. The binding is now complete as each group
represents a physical functional unit that the member operations
are bound to. Experimental results show a decrease in dynamic
power of 22% over a previous approach that does not consider
glitches.

3.3 Polyhedral Optimization

Listing 1: Nested loop amenable to polyhedral modeling.

f o r (a = 0 ; a < 1 5 ; a++)
f o r (b = 0 ; b <= a ; b++)

X[a] [b] = f (X[a] [b+1] , X[a +1] [b]) ;

Profiling an application often reveals a few “hot” instructions
that are taking the majority of the energy, typically in the body
of a nested loop. Thus optimizing such nested loops can lead
to substantial overall energy savings. When the nested loops in-
volve very regular array access patterns (e.g., matrix multiply),
an analytical model known as the polyhedral model can be used
to model the iteration and memory access space of the nested
loop. The model can then be used to perform transformations
which reorder the iterations for improved locality and even ex-
pose parallelism to perform effective performance/power design
trade-offs.

The polyhedral model is based on linear algebra, enabling ana-
lytical solutions to such optimization problems. A basic example
of a nested loop amenable to polyhedral modeling is shown in
Listing 1. Each inner loop iteration is represented with a vector�i
(equivalent to (a, b) in the example) normalized such that�i ≥ �0.
We can model the loop bounds constraints as system of linear
inequalities:

A�i ≤ �b (1)

where A is a coefficient matrix and �b is a constant vector. We
can also map each array access in each iteration to an array index
vector �s through a linear function with coefficient matrix M and
constant offset �o:

�s =M�i + �o (2)

Each coefficient matrix M provides information about inter-
iteration dependencies that must be satisfied. Through the ap-
plication of a transformation matrix T, we can now project the
iteration domain defined by Eq. (1) into a new space resulting in
a reordering of the memory accesses defined by Eq. (2):

�i′ = T�i (3)

�s′ =MT−1�i′ + �o (4)

The physical result of this transformation can take many forms,
ranging from loop iteration reversal to loop header permuta-
tions to more advanced transformations such as diagonal traver-
sal (skewing). Furthermore, these transformations can easily be
combined through matrix multiplication. There are two primary
benefits to performing such transforms:
• Memory accesses can be reordered to improve locality and

thus increase data reuse.
• By making transformations such that inner loop iterations do

not depend on each other, iterations of the inner loop(s) can
be parallelized.

Finding the right transformations to get a particular memory
access pattern or to increase parallelism has now been reduced
to a linear algebra problem. When high-level synthesis is ex-
tended with polyhedral optimization, as one might imagine, new
optimization opportunities present themselves that can result in
substantial energy savings.
3.3.1 Retuning a Polyhedral Optimizer for HLS

In one study [102], a source-to-source polyhedral optimization
engine called CLooG [5], tuned for targeting software compilers
for CPUs, is retuned to target the Vivado HLS engine for FP-
GAs [98]. Three modifications and extensions to the engine are
made:
• Turn off polyhedra seperation: Polyhedra seperation frag-

ments the iteration space where appropriate to avoid compu-
tation masking “if” statements in inner loops, which can be
problematic for branch predictors on CPUs. Such masking
“if” statements are not a problem for the hardware gener-
ated by HLS, so turning off this feature actually improves
the quality of results due to the reduced loop complexity.

• Floating-point bounds computation strength reduction:
Polyhedral transformations often result in a new iteration

c© 2015 Information Processing Society of Japan 18

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

Fig. 5 Illustration of tiling for odd-shaped iteration spaces. Red points are
tile origins and blue points are unmasked iteration points within each
tile. An exemplary tile that straddles the iteration space border is
highlighted in grey.

domain that involves complex loop limit computations with
floor and ceiling functions, divisions, and min and max
functions which are performed as floating point computa-
tions. By transforming these loop limit equations, compu-
tation strength can be dramatically reduced: Ceiling and
floor functions with divisions inside can be reduced to inte-
ger divisions; integer divisions in equations can be replaced
with multiplications with the use of a little algebra; and fi-
nally nested min and max function trees can be balanced for
more parallelism. Further savings can be obtained through
bitwidth reduction of the loop index, which can safely be
performed if the compiler knows the limits of each loop in-
dex variable.

• Tiling with masking: Partitioning the iteration space into
tiles that are small enough to fit into registers exposes enor-
mous data reuse and parallelism opportunities to the Vivado
HLS engine. Unfortunately, the optimal transformed itera-
tion domain often has an odd shape (e.g., a parallelogram
due to a diagonal memory access pattern) which is difficult
to tile. The solution, illustrated in Fig. 5, is to use reg-
ular tiles to cover the entire shape and for those tiles on
the boundary, suitable empty iterations will be introduced
to mask out unnecessary iterations outside of the bound-
ary. This would greatly simplify boundary conditions and
improve parallelism for hardware generation.

The net result of applying all three modifications is a 60% re-
duction in energy consumption, a 55% reduction in area, and a
18% reduction in latency, a triple win [102]!
3.3.2 Enabling Inter-loop Pipelining

In another study [103], the PoCC polyhedral compiler [76]
is extended to enable the Vivado HLS engine [98] to pipeline
one nested loop’s output into another nested loop’s input where
Vivado was previously unable due to incompatibilities between
the two memory access patterns. With the polyhedral model,
transforming the two loops such that their memory access pat-
terns are compatible for pipelining is simply a matter of finding

an iteration space to memory access space mapping matrix M
from Eq. (2) that results in feasible transformed iteration domains
in both nested loops. In this study, row access, column access,
and diagonal access pattern matrices are tried and the best is cho-
sen. Loop unrolling and pipelining directives are then added to
the output code to direct Vivado to take advantage of the newly
exposed parallelism.

The result is a 29.6× speedup on average over the unoptimized
source code and a 6× speedup over code with the same Vivado
optimization directives added, but without the polyhedral trans-
forms needed to make some of the Vivado optimizations work.
If Ref. [102] is any indication, significant energy savings are also
likely with these optimizations.
3.3.3 Lessons

This case study provides two insights into how to think about
power reduction:
(1) Power reduction can be a win-win: With so many un-

tapped optimization opportunities at the behavioral level,
one should be wary of considering area, latency, and power
optimization to be a zero-sum game. All three can win si-
multaneously when complexity is reduced by using the right
model.

(2) Strength reduction is a power saver: Think about the
hardware that must be synthesized to execute an instruction.
Where possible, reduce floating point to fixed point to inte-
ger computation, reduce division to multiplication to shift-
ing, etc. Be aware of how programming languages can, by
their semantics, limit the strength reductions the compiler
can perform.

3.4 FCUDA
As we approach the point of diminishing returns for single-

threaded performance and power efficiency optimization, increas-
ingly the programmer needs to be in the loop to identify paral-
lelism opportunities that compilers can exploit to increase perfor-
mance per watt. Parallel extensions to the C programming lan-
guage such as OpenMP and MPI have emerged to meet this chal-
lenge through a single level of parallelism. Taking things to the
next level, the CUDA and OpenCL programming languages give
the programmer the power to explicitly express hierarchical and
multidimensional spatial parallelism, grouping threads into multi-
ple instances of “blocks” or “workgroups” with multidimensional
indices to express massive parallelism on the order of thousands
of threads.

At the same time, in data centers where getting the most per-
formance out of a given amount of rack space is paramount, com-
putational density per watt has started to become the key limiting
factor due to skyrocketing power demands and thermal dissipa-
tion limits. This is the domain where specialized hardware such
as ASICs and FPGAs win over GPUs and CPUs, in many cases
by multiple orders of magnitude.

Thus an interesting study would try to find the best of both
worlds: take massively parallel applications implemented in mas-
sively parallel programming languages and figure out how to map
them to ASICs or FPGAs. FCUDA [40], [41], [71], [72], [73],
[74] is one such study.

c© 2015 Information Processing Society of Japan 19

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

Fig. 6 The FCUDA compilation process.

Fig. 7 Translating CUDA parallelism to FPGA hardware parallelism.

The FCUDA compilation process is illustrated in Fig. 6. The
input to the compiler is kernels written in CUDA with program-
mer specified annotations to guide and parameterize the FPGA
implementation. The annotated CUDA code is then run through
a source-to-source transformation engine which creates explicit
thread and block loops to transform the CUDA code into equiva-
lent high-level synthesis friendly C code. Several transformations
and optimizations are performed at this stage, including sepa-
rating memory access from computation to effectively optimize
each part, scratch pad memory partitioning and main memory ac-
cess coalescing, common subexpression elimination, loop fission
about CUDA barriers to maintain correctness, and the insertion
of parallel annotations and loop unrolling directives.

These annotations then direct the Vivado HLS engine [98] to
generate a hierarchically parallel hardware design which resem-
bles the hierarchical parallelism of the CUDA model: inner loop
unrolling results in multiple threads running in each core with
shared logic and scratchpad memory; the cores are grouped into
core-clusters with each cluster sharing a common main memory
data communication interface; finally, the core clusters are then
physically tiled and connected to a memory interface to complete
the design.

Figure 7 provides some detail about how CUDA parallelism is
translated to hardware parallelism for each thread block. First a
loop over all threads is created. Next, loop fission is performed
across FCUDA barriers to maintain correctness. Loop unrolling
is then performed to enable groups of threads to execute in paral-
lel. The result after synthesis is then multiple synchronized cores
that are specialized to execute a thread block.

The resulting hardware design uses 5–16% of the energy as the
equivalent GPU implementation with competitive latency [74].
Further latency and energy savings can be achieved by reduc-
ing the computation word bitwidth from 32 to 16 or even 8 bits.
Such savings are much more difficult to achieve on a comparable
GPGPU platform that is typically optimized for a single bitwidth.

3.4.1 Extensions
As one might imagine, power reduction opportunities abound

when an embarrassingly parallel GPGPU programming model
meets the highly flexible FPGA platform. Several FCUDA exten-
sions have been developed to explore some of this optimization
potential:
• Design space exploration: The hierarchically parallel na-

ture of the CUDA input specification presents the FCUDA
compiler with many design choices. The Multilevel Granu-
larity Parallelism Synthesis (ML-GPS) framework [74] is an
FCUDA extension that searches four dimensions of this de-
sign space: thread coarsening granularity, scratchpad mem-
ory partitions, cores per core-cluster, and core clusters per
accelerator to find a performance optimized solution. The
framework uses Vivado [98] as an accurate back-end quality-
of-results estimating tool, but minimizes the number of
Vivado invocations through regression analysis from a few
key datapoints and through the use of a multidimensional
binary-search algorithm. The binary search algorithm lever-
ages the convex nature of the array partition and unroll factor
search space to find the minimum latency point.

• Throughput optimization: In the original FCUDA com-
piler, the programmer shows the compiler how to separate
computation from memory accesses. For some kernels with
interleaved memory and computation, this seperation is a
job better suited to the compiler. The Throughput Oriented
Performance Porting (TOPP) framework [71] is an FCUDA
extension that performs deeper code analysis and transfor-
mations to optimize throughput and act as an automated
way to insert FCUDA annotations. The framework works
by lowering the input CUDA code to a Hierarchical Region
Graph (HRG) of AST nodes that capture control flow, data
dependencies, and thread invariance with leaf nodes iden-
tified as computations, memory accesses, or synchroniza-
tions. With this intermediate representation, the TOPP en-
gine can perform code motions to remove synchronization
points and move memory accesses closer to where they are
used. As a bonus, this shortening of variable lifetimes en-
ables a graph coloring algorithm to reduce scratchpad mem-
ory usage through sharing.

• Pipelining multiple kernels: Taking things to the next level,
Gurumani et al. [40] take a stereo matching algorithm imple-
mented with 13 CUDA kernels along with host code and map
it to a single FPGA using FCUDA to produce kernel building
blocks. The kernel pipeline is shown in Fig. 8. With all the

c© 2015 Information Processing Society of Japan 20

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

Fig. 8 Stereo matching CUDA kernel pipeline from Ref. [40]. Sample im-
ages courtesy of Ref. [84].

kernels being mapped to the same FPGA, each kernel, each
with its own design space, is now competing with the other
kernels for the same resources, greatly complicating the de-
sign space search problem. Furthermore, buffers need to
be inserted between dependent kernels to efficiently stream
data, but choosing each buffer size and the communication
quanta is a difficult latency/area trade-off that can affect both
upstream and downstream kernels. To achieve an efficient
implementation, application specific knowledge as well as
an analytical model is used to find an optimal solution.

• Sharing data with a network-on-chip: Gurumani et
al. [41] propose the use of a Network-on-chip architecture
to enable cores to communicate with each other to distribute
scratchpad memory pressure and reduce main memory ac-
cesses. Their architecture is a 2D mesh of FCUDA cores.
Each core has its own memory and its own router to connect
it to the network. Each router contains a directory to keep
track of where each memory location is stored in the network
(if any). Thus if one core has data another needs, the data
can be forwarded to avoid a high-latency, power-intensive
main memory access. Due to the lack of memory coherence
among thread blocks in the CUDA programming model, the
directory can safely ignore writes, greatly reducing the de-
sign complexity and thus area and power overheads.

3.4.2 Lessons
This case study teaches some important lessons about effective

power reduction:
(1) Keep the programmer in the loop: Where it is easy for

the programmer to provide help, compiler designers should
consider taking advantage of such inputs. With programmer
annotations for parallelism and data movements, the orig-
inal FCUDA compiler is able to reduce the waste resulting
from worst case assumptions. The use of application specific
knowledge in the kernel pipelining study also suggests the

programmer can greatly help the compiler automate multi-
kernel FPGA mapping.

(2) Decouple computation from memory access: Entangled
memory accesses and computation make power optimization
difficult. Considering each part separately is a good tech-
nique for decomposing the power optimization problem.

(3) Optimize memory accesses first: Memory accesses can
consume more power than computation. Intelligently par-
titioning scratchpad memories into banks, coalescing main
memory accesses into bursts, and sharing on-chip memory
help to reduce wasteful energy “spending” on memory ac-
cesses.

(4) Avoid redundant computation: When targeting a GPU,
having all threads redundantly compute the same result
can make sense if the synchronization overhead would be
greater. But with the high flexibility of the FPGA platform,
this waste can be identified and avoided with common subex-
pression elimination and by identifying thread invariant in-
structions.

4. Future Directions

Considering the existing state-of-the-art in low-power design
and high-level synthesis, we have some thoughts about future di-
rections that have great potential:
(1) Effective power modeling and analysis: Effective high-

level power optimization requires accurate performance,
power, and area (PPA) models, but these models can be dif-
ficult to create at the high level due to the many abstraction
layers in the design flow and the intricate interactions be-
tween these layers. We believe that it is important to build
models of the common HLS building blocks (e.g., functional
units, memories, interconnects, etc.) that are parameterized
by configuration parameters and timing constraints and pro-
duce area and energy estimates at each level of abstraction.
Such PPA estimates need to be propagated efficiently up the
design flow and applied correctly in the high-level frame-
work to achieve power benefits. The need for such robust pa-
rameterized power modeling is already evident in the GPU
domain so architects can quickly co-optimize performance
and power [55]. It is natural for HLS, which enables high-
level exploration of a large design space, to soon adopt this
trend. It is also crucial to continue advancing the research on
algorithmically integrating scheduling and binding in HLS
with key logic synthesis and physical planning techniques
such as technology mapping and place-and-route to enable
effective high-level power analysis tools that predict power
consumption, identify power hot spots, and provide early
prescriptive feedback to the designers.

(2) Advanced power management: Increasing complexity also
calls for greater flexibility in the synthesized hardware. In
the context of low-power design, new HLS techniques are
needed in synthesizing dynamic yet lightweight power man-
agement units alongside the main design to monitor real-
time power and workload and adapt to the characteristic
of the execution at runtime. Similar to the power man-
agement micro-controller used in advanced multicore pro-

c© 2015 Information Processing Society of Japan 21

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

cessors (e.g., Refs. [34], [62]), the synthesized power man-
agement hardware may incorporate predictive modeling to
anticipate performance and power requirements and apply
intelligent control algorithms to minimize power consump-
tion based on the analysis. How to carefully balance the
area/performance overhead introduced by power manage-
ment and the potential power saving is a very interesting re-
search problem.

(3) Better HLS programming languages: Programming lan-
guages define a contract between the programmer and the
compiler and determine the division of labor between the
two. Most existing programming languages for hardware
design through HLS are based on C, which requires the pro-
grammer to do a lot of micromanagement to effectively con-
trol the computation. This micromanagement as well as the
Von Neumann based C programming model itself may limit
the HLS engine’s ability to do optimizations due to worst
case assumptions and memory model assumptions. Better
programming languages are needed that allow the program-
mer to do what humans do best: specify concepts, algo-
rithms, and high-level organization and free the HLS engine
to do what machines do best: the grunt work of platform
mapping, scheduling, optimization, and design space explo-
ration.
One way to gain insight into better language design is to an-
alyze a sampling of code at all levels of granularity from the
token to the module level and distinguish the components
that do useful work from those that are only there to meet
the requirements of the language. When some of the not-
so-useful code gets synthesized as hardware, it represents
wasted energy that could be saved through better language
design. Language designers need to consider how easily a
programmer can understand the semantics as well as whether
the language provides sufficient information for the compiler
to efficiently target heterogenous platforms.

(4) Advanced strength reduction: Strength reduction is a great
way to simplify generated hardware and reduce power con-
sumption on FPGA and ASIC platforms. Advanced tech-
niques are needed to perform algebraic transformations us-
ing commutativity, associativity, and distributivity axioms;
to reduce floating-point computations to fixed-point; and to
reduce bit widths. Profiling-based variable range analysis
is one possible approach. Transformations that reduce pre-
cision may be acceptable, but the programming language
needs to make expressing such precision requirements nat-
ural (see third point).
Given the enormous design space and flexibility of custom
hardware, HLS is uniquely suited to exploit strength reduc-
tion all the way to the gate level. In the HLS paradigm,
we are not limited by some unspoken rule about how the
functional units should behave, what their physical structure
should be, or even how many different types there are, as
long as collectively they implement the behavior specified by
the designer and are coarse-grained enough to make synthe-
sis scalable. One research direction could explore dividing
conventional functional units into their building blocks (e.g.,

the carry lookahead logic in an adder), dividing instructions
into corresponding micro-ops, and then seeing if strength re-
duction could optimize out some of the micro-ops (e.g., if
only some bits of the result are needed).

(5) More advanced computation models: Polyhedral models
are great for nested loops, but do not work as well for other
control flow structures. GPGPU hierarchically parallel mod-
els are great for highly-regular, embarrassingly parallel al-
gorithms, but don’t work as well for less regular or par-
allel computations. More models are needed to cover the
rest of the application space and enable more advanced pro-
gram transformations. As more applications are covered,
more code becomes efficiently high-level synthesizable. At
the same time, existing models can be stretched to extend
them to more applications. For example, polyhedral mod-
els have been shown to be more applicable than previously
thought [6].
Computation models also need to be extended for power es-
timation. These models could also be extended to enable
mapping to low-level physical design models. For example,
spatial information present in the polyhedral and GPGPU
models could be mapped to physical placement models to
reduce wire lengths, cutting power consumption.

(6) Advanced memory management and architecture gener-
ators: Reducing the distance bits have to travel is a great
way to reduce energy usage. Advanced memory architec-
ture generators are needed to keep the data closer to where
it is used. Avoiding cache coherence issues is a great way to
reduce complexity in generated interconnects, but the pro-
gramming language model needs to make the lack of co-
herence obvious (see third point). Network-on-chip archi-
tectures are one approach, particularly when combined with
advanced computation models (see fifth point). A more rad-
ical approach is to fragment the global memory space into
many separate memory spaces. The partitioning could be
done explicitly through programming models like MPI or
implicitly through automatic partitioning algorithms. Mem-
ory partitioning could then guide hardware partitioning and
help create efficient placement solutions.
Finally, nonvolatile processor-in-memory architectures
could enable a new power saving paradigm: instead of
performing energy intensive writes of data to off-chip
storage to insure that it persists after power-off, simply save
the data closest to where it is likely to be used.

(7) Application-specific compilers: Reusable, efficient high-
level hardware building blocks would be a great way to
accelerate hardware design that involves many commonly
used algorithms. The large parameterization space of these
building blocks in terms of latency, power, interface require-
ments, electrical specifications, target technology, and floor-
plan makes effective reuse a challenge. A possible approach
to this problem is the creation of application-specific HLS
engines. Compiler designers could look at the best hardware
designs for a specific application and attempt to generalize, a
much simpler proposition than trying to generalize all hard-
ware designs.

c© 2015 Information Processing Society of Japan 22

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

5. Conclusions

In this paper, we survey recent low-power optimization and de-
sign techniques in high-level synthesis and provide a systematic
(sometimes detailed) study of the most promising solutions so far
in this very important domain of research. We also describe the
key power optimization challenges facing high-level synthesis to-
day, some lessons we learned, and some potential opportunities
to further improve quality of results of high-level synthesis in the
future. As we have seen, there are numerous directions to be
explored in low-power design for high-level synthesis. Further-
more, low-power design is inextricably linked to other quality-of-
results metrics such as latency, throughput, and area. Thus for a
truly holistic, cross-layer approach that has the most potential, all
of these optimization goals should be considered.

Acknowledgments We thank the editorial committee for
their helpful comments.

References

[1] Ahuja, S., Lakshminarayana, A. and Shukla, S.K.: Power reduction
using high-level clock-gating, Low Power Design with High-Level
Power Estimation and Power-Aware Synthesis, pp.119–129, Springer
(2012).

[2] Altera: Cyclone V SoCs: Lowest system cost and power, Altera (on-
line), available from 〈http://www.altera.com/devices/processor/
soc-fpga/cyclone-v-soc/cyclone-v-soc.html〉 (accessed 2014-10-31).

[3] Anthony, S.: Intel unveils new Xeon chip with integrated FPGA,
touts 20x performance boost, ExtremeTech (online), available from
〈http://www.extremetech.com/extreme/184828-intel-unveils-new-
xeon-chip-with-integrated-fpga-touts-20x-performance-boost〉
(accessed 2014-10-31).

[4] Babighian, P., Benini, L. and Macii, E.: A scalable ODC-based al-
gorithm for RTL insertion of gated clocks, Design, Automation, and
Test in Europe (DATE), pp.500–505 (2004).

[5] Bastoul, C.: Code generation in the polyhedral model is easier than
you think, Int’l Conf. Parallel Architecture and Compilation Tech-
niques (PACT), pp.7–16 (2004).

[6] Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A. and Bastoul,
C.: The polyhedral model is more widely applicable than you think,
Compiler Construction, pp.283–303, Springer (2010).

[7] Benini, L., Macii, A. and Poncino, M.: A recursive algorithm for
low-power memory partitioning, Int’l Symp. Low Power Electronics
and Design (ISLPED), pp.78–83 (2000).

[8] Bogliolo, A., Benini, L., Riccó, B. and De Micheli, G.: Effi-
cient switching activity computation during high-level synthesis of
control-dominated designs, Int’l Symp. Low Power Electronics and
Design (ISLPED), pp.127–132 (1999).

[9] Bozorgzadeh, E., Ghiasi, S., Takahashi, A. and Sarrafzadeh, M.: Op-
timal integer delay budgeting on directed acyclic graphs, Design Au-
tomation Conf. (DAC), pp.920–925 (2003).

[10] Chandrakasan, A.P., Potkonjak, M., Mehra, R., Rabaey, J. and
Brodersen, R.W.: Optimizing power using transformations, IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems
(TCAD), Vol.14, No.1, pp.12–31 (1995).

[11] Chen, D., Cong, J., Fan, Y. and Wan, L.: LOPASS: A low-power ar-
chitectural synthesis system for FPGAs with interconnect estimation
and optimization, IEEE Trans. Very Large-Scale Integration Systems
(TVLSI), Vol.18, No.4, pp.564–577 (2010).

[12] Chen, D., Cong, J., Fan, Y. and Xu, J.: Optimality study of resource
binding with multi-Vdds, Design Automation Conf. (DAC), pp.580–
585 (2006).

[13] Chen, D., Cong, J., Fan, Y. and Zhang, Z.: High-level power es-
timation and low-power design space exploration for FPGAs, Asia
and South Pacific Design Automation Conf. (ASP-DAC), pp.529–534
(2007).

[14] Chen, Y.-G., Geng, H., Lai, K.-Y., Shi, Y. and Chang, S.-C.: Multi-
bit retention registers for power gated designs: Concept, design, and
deployment, IEEE Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), Vol.33, No.4, pp.507–518 (2014).

[15] Chen, Y., Xie, Y., Wang, Y. and Takach, A.: Minimizing leakage
power in aging-bounded high-level synthesis with design time multi-
Vth assignment, Asia and South Pacific Design Automation Conf.

(ASP-DAC), pp.689–694 (2010).
[16] Chen, Y.-G., Shi, Y., Lai, K.-Y., Hui, G. and Chang, S.-C.: Effi-

cient multiple-bit retention register assignment for power gated de-
sign: Concept and algorithms, Int’l Conf. Computer-Aided Design
(ICCAD), pp.309–316 (2012).

[17] Cheng, L., Chen, D. and Wong, M.D.: GlitchMap: An FPGA tech-
nology mapper for low power considering glitches, Design Automa-
tion Conf. (DAC), pp.318–323 (2007).

[18] Choi, E., Shin, C., Kim, T. and Shin, Y.: Power-gating-aware
high-level synthesis, Int’l Symp. Low Power Electronics and Design
(ISLPED), pp.39–44 (2008).

[19] Chueh, Y.-L. and Huang, C.-H.: Resistive random access memory,
US Patent App. 14/197,697 (2014).

[20] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K. and
Zhang, Z.: High-level synthesis for FPGAs: From prototyping to
deployment, IEEE Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), Vol.30, No.4, pp.473–491 (2011).

[21] Cong, J., Jiang, W., Liu, B. and Zou, Y.: Automatic memory parti-
tioning and scheduling for throughput and power optimization, ACM
Trans. Design Automation of Electronic Systems (TODAES), Vol.16,
No.2, p.15 (2011).

[22] Cong, J., Liu, B., Majumdar, R. and Zhang, Z.: Behavior-level ob-
servability analysis for operation gating in low-power behavioral syn-
thesis, ACM Trans. Design Automation of Electronic Systems (TO-
DAES), Vol.16, No.1, p.4 (2010).

[23] Cong, J., Liu, B. and Zhang, Z.: Behavior-level observability don’t-
cares and application to low-power behavioral synthesis, Int’l Symp.
Low Power Electronics and Design (ISLPED), pp.139–144 (2009).

[24] Cong, J., Liu, B. and Zhang, Z.: Scheduling with soft constraints,
Int’l Conf. Computer-Aided Design (ICCAD), pp.47–54 (2009).

[25] Cong, J. and Zhang, Z.: An efficient and versatile scheduling algo-
rithm based on SDC formulation, Design Automation Conf. (DAC),
pp.433–438 (2006).

[26] Constantinides, G.A.: Word-length optimization for differentiable
nonlinear systems, ACM Trans. Design Automation of Electronic Sys-
tems (TODAES), Vol.11, No.1, pp.26–43 (2006).

[27] Coussy, P. and Morawiec, A. (Eds.): High-level synthesis: From al-
gorithm to digital circuit, Springer (2008).

[28] Cromar, S., Lee, J. and Chen, D.: FPGA-targeted high-level bind-
ing algorithm for power and area reduction with glitch-estimation,
Design Automation Conf. (DAC) (2009).

[29] Czajkowski, T.S., Neto, D., Kinsner, M., Aydonat, U., Wong, J.,
Denisenko, D., Yiannacouras, P., Freeman, J., Singh, D.P. and
Brown, S.D.: OpenCL for FPGAs: Prototyping a compiler, Tech-
nical report, hgpu.org (2013).

[30] Dai, S., Tan, M., Hao, K. and Zhang, Z.: Flushing-enabled loop
pipelining for high-level synthesis, Design Automation Conf. (DAC),
pp.1–6 (2014).

[31] Dal, D. and Mansouri, N.: Power optimization with power islands
synthesis, IEEE Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), Vol.28, No.7, pp.1025–1037 (2009).

[32] Fallah, F. and Pedram, M.: Standby and active leakage current con-
trol and minimization in CMOS VLSI circuits, IEICE Trans. Elec-
tronics, Vol.88, No.4, pp.509–519 (2005).

[33] Fraer, R., Kamhi, G. and Mhameed, M.K.: A new paradigm for syn-
thesis and propagation of clock gating conditions, Design Automa-
tion Conf. (DAC), pp.658–663 (2008).

[34] Friedrich, J., Le, H., Starke, W., Stuechli, J., Sinharoy, B., Fluhr, E.J.,
Dreps, D., Zyuban, V., Still, G., Gonzalez, C., et al.: The POWER8
processor: Designed for big data, analytics, and cloud environments,
Int’l Conf. IC Design & Technology (ICICDT), pp.1–4 (2014).

[35] Gerstlauer, A., Haubelt, C., Pimentel, A.D., Stefanov, T.P., Gajski,
D.D. and Teich, J.: Electronic system-level synthesis methodologies,
IEEE Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD), Vol.28, No.10, pp.1517–1530 (2009).

[36] Ghiasi, S., Bozorgzadeh, E., Huang, P.-K., Jafari, R. and Sarrafzadeh,
M.: A unified theory of timing budget management, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
Vol.25, No.11, pp.2364–2375 (2006).

[37] Gonzalez, R., Gordon, B.M. and Horowitz, M.A.: Supply and thresh-
old voltage scaling for low power CMOS, IEEE Journal of Solid-
State Circuits, Vol.32, No.8, pp.1210–1216 (1997).

[38] Gu, Z., Wang, J., Dick, R.P. and Zhou, H.: Unified incremen-
tal physical-level and high-level synthesis, IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems (TCAD), Vol.26,
No.9, pp.1576–1588 (2007).

[39] Gu, Z.P., Yang, Y., Wang, J., Dick, R.P. and Shang, L.: TAPHS:
Thermal-aware unified physical-level and high-level synthesis, Asia
and South Pacific Design Automation Conf. (ASP-DAC), pp.879–885
(2006).

[40] Gurumani, S., Rupnow, K., Liang, Y., Cholakkail, H. and Chen, D.:

c© 2015 Information Processing Society of Japan 23

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

High level synthesis of multiple dependent CUDA kernels for FP-
GAs, Asia and South Pacific Design Automation Conf. (ASP-DAC),
pp.305–312 (2013).

[41] Gurumani, S., Tolar, J., Chen, Y., Liang, Y., Rupnow, K. and
Chen, D.: Integrated CUDA-to-FPGA synthesis with network-on-
chip, IEEE Symp. Field Programmable Custom Computing Machines
(FCCM), pp.21–24 (2014).

[42] Hauck, S. and DeHon, A.: Reconfigurable computing: The the-
ory and practice of FPGA-based computation, Morgan Kaufmann
(2010).

[43] Hsieh, C.-T., Cong, J., Zhang, Z. and Chang, S.-C.: Behavioral syn-
thesis with activating unused flip-flops for reducing glitch power in
FPGA, Asia and South Pacific Design Automation Conf. (ASP-DAC),
pp.10–15 (2008).

[44] Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson,
H. and Bose, P.: Microarchitectural techniques for power gating
of execution units, Int’l Symp. Low Power Electronics and Design
(ISLPED), pp.32–37 (2004).

[45] Huang, S.-H., Tu, W.-P. and Li, B.-H.: High-level synthesis for
minimum-area low-power clock gating, Journal of Information Sci-
ence and Engineering, Vol.28, No.5, pp.971–988 (2012).

[46] Jha, N.K.: Low power system scheduling and synthesis, Int’l Conf.
Computer-Aided Design (ICCAD), pp.259–263 (2001).

[47] Jiang, W., Zhang, Z., Potkonjak, M. and Cong, J.: Scheduling with
integer time budgeting for low-power optimization, Asia and South
Pacific Design Automation Conf. (ASP-DAC), pp.22–27 (2008).

[48] Kao, J.T. and Chandrakasan, A.P.: Dual-threshold voltage techniques
for low-power digital circuits, IEEE Journal of Solid-State Circuits,
Vol.35, No.7, pp.1009–1018 (2000).

[49] Khouri, K.S. and Jha, N.K.: Leakage power analysis and reduction
during behavioral synthesis, IEEE Trans. Very Large-Scale Integra-
tion Systems (TVLSI), Vol.10, No.6, pp.876–885 (2002).

[50] Khouri, K.S., Lakshminarayana, G. and Jha, N.K.: High-level syn-
thesis of low-power control-flow intensive circuits, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
Vol.18, No.12, pp.1715–1729 (1999).

[51] Khronos: The OpenCL specification (online), available from
〈https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf〉 (2014).

[52] Kultursay, E., Kandemir, M., Sivasubramaniam, A. and Mutlu, O.:
Evaluating STT-RAM as an energy-efficient main memory alterna-
tive, Int’l Symp. Performance Analysis of Systems and Software (IS-
PASS), pp.256–267 (2013).

[53] Kund, M., Beitel, G., Pinnow, C.-U., Rohr, T., Schumann, J.,
Symanczyk, R., Ufert, K.-D. and Muller, G.: Conductive bridg-
ing RAM (CBRAM): An emerging non-volatile memory technol-
ogy scalable to sub 20nm, Int’l Electron Devices Meeting (IEDM),
pp.754–757 (2005).

[54] Landman, P.E. and Rabaey, J.M.: Power estimation for high level
synthesis, European Conf. Design Automation, pp.361–366 (1993).

[55] Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N.S.,
Aamodt, T.M. and Reddi, V.J.: GPUWattch: Enabling energy op-
timizations in GPGPUs, Int’l Symp. Computer Architecture (ISCA),
pp.487–498 (2013).

[56] Li, F., Chen, D., He, L. and Cong, J.: Architecture evaluation for
power-efficient FPGAs, Int’l Symp. Field-Programmable Gate Ar-
rays (FPGA), pp.175–184 (2003).

[57] Li, S., Li, A., Liu, Y., Xie, Y. and Yang, H.: Nonvolatile memory
allocation and hierarchy optimization for high-level synthesis, Asia
and South Pacific Design Automation Conf. (ASP-DAC) (2015).

[58] Lin, C., Xie, A. and Zhou, H.: Design closure driven delay relaxation
based on convex cost network flow, Design, Automation, and Test in
Europe (DATE), pp.63–68 (2007).

[59] Liu, H.-Y., Lee, W.-P. and Chang, Y.-W.: A provably good approxi-
mation algorithm for power optimization using multiple supply volt-
ages, Design Automation Conf. (DAC), pp.887–890 (2007).

[60] Lyuh, C.-G. and Kim, T.: High-level synthesis for low power based
on network flow method, IEEE Trans. Very Large-Scale Integration
Systems (TVLSI), Vol.11, No.3, pp.364–375 (2003).

[61] Lyuh, C.-G. and Kim, T.: Memory access scheduling and bind-
ing considering energy minimization in multi-bank memory systems,
Design Automation Conf. (DAC), pp.81–86 (2004).

[62] Ma, K., Li, X., Chen, M. and Wang, X.: Scalable power control for
many-core architectures running multi-threaded applications, ACM
SIGARCH Computer Architecture News, Vol.39, No.3, pp.449–460
(2011).

[63] Mallik, A., Sinha, D., Banerjee, P. and Zhou, H.: Low-power opti-
mization by smart bit-width allocation in a SystemC-based ASIC de-
sign environment, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems (TCAD), Vol.26, No.3, pp.447–455 (2007).

[64] Manzak, A. and Chakrabarti, C.: Variable voltage task scheduling al-
gorithms for minimizing energy, Int’l Symp. Low Power Electronics

and Design (ISLPED), pp.279–282 (2001).
[65] Martin, G. and Smith, G.: High-level synthesis: Past, present, and

future, IEEE Design & Test of Computers, Vol.26, No.4, pp.18–25
(2009).

[66] Martin, G., Bailey, B. and Piziali, A.: ESL design and verification: A
prescription for electronic system level methodology, Morgan Kauf-
mann (2010).

[67] Nepal, K., Li, Y., Bahar, R. and Reda, S.: ABACUS: A technique for
automated behavioral synthesis of approximate computing circuits,
Design, Automation, and Test in Europe (DATE), pp.1–6 (2014).

[68] Ni, M. and Memik, S.O.: Thermal-induced leakage power optimiza-
tion by redundant resource allocation, Int’l Conf. Computer-Aided
Design (ICCAD), pp.297–302 (2006).

[69] Nvidia: CUDA Compute unified device architecture programming
guide, Technical report, Nvidia (2007).

[70] Osborne, W.G., Coutinho, J.G.F., Luk, W. and Mencer, O.:
Power-aware and branch-aware word-length optimization, IEEE
Symp. Field Programmable Custom Computing Machines (FCCM),
pp.129–138 (2008).

[71] Papakonstantinou, A., Chen, D., Hwu, W., Cong, J. and Liang, Y.:
Throughput-oriented kernel porting onto FPGAs, Design Automation
Conf. (DAC), pp.1–10 (2013).

[72] Papakonstantinou, A., Gururaj, K., Stratton, J., Chen, D., Cong, J.
and Hwu, W.: FCUDA: Enabling efficient compilation of CUDA
kernels onto FPGAs, Symp. Application Specific Processors (SASP)
(2009).

[73] Papakonstantinou, A., Gururaj, K., Stratton, J., Chen, D., Cong,
J. and Hwu, W.: Efficient compilation of CUDA kernels for high-
performance computing on FPGAs, ACM Trans. Embedded Comput-
ing Systems (TECS), Vol.13, No.2, pp.25:1–25:26 (2013).

[74] Papakonstantinou, A., Liang, Y., Stratton, J., Gururaj, K., Chen, D.,
Hwu, W. and Cong, J.: Multilevel granularity parallelism synthe-
sis on FPGAs, IEEE Symp. Field Programmable Custom Computing
Machines (FCCM) (2011).

[75] Pedram, M.: Low power design methodologies and techniques: An
overview, Microprocessor Report, Vol.486 (1999).

[76] Pouchet, L.-N., Bondhugula, U., Bastoul, C., Cohen, A.,
Ramanujam, J. and Sadayappan, P.: Hybrid iterative and model-
driven optimization in the polyhedral model, Technical Report 6962,
INRIA Research Report (2009).

[77] Powell, M., Yang, S.-H., Falsafi, B., Roy, K. and Vijaykumar, T.:
Gated-Vdd: A circuit technique to reduce leakage in deep-submicron
cache memories, Int’l Symp. Low Power Electronics and Design
(ISLPED), pp.90–95 (2000).

[78] Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides,
K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray,
J., et al.: A reconfigurable fabric for accelerating large-scale data-
center services, Int’l Symp. Computer Architecture (ISCA), pp.13–24
(2014).

[79] Raghunathan, A. and Jha, N.K.: Behavioral synthesis for low power,
Int’l Conf. Computer Design: VLSI in Computers and Processors,
pp.318–322 (1994).

[80] Raghunathan, A. and Jha, N.K.: SCALP: An iterative-improvement-
based low-power data path synthesis system, IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems (TCAD), Vol.16,
No.11, pp.1260–1277 (1997).

[81] Raghunathan, A., Jha, N.K. and Dey, S.: High-level power analysis
and optimization, Springer (1998).

[82] Raje, S. and Sarrafzadeh, M.: Variable voltage scheduling, Int’l
Symp. Low Power Design, pp.9–14 (1995).

[83] Ranganathan, P.: Recipe for efficiency: Principles of power-aware
computing, Comm. ACM, Vol.53, No.4, pp.60–67 (2010).

[84] Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nesic,
N., Wang, X. and Westling, P.: High-resolution stereo datasets
with subpixel-accurate ground truth, German Conference on Pattern
Recognition, pp.31–42 (2014).

[85] Scheffer, L.: A roadmap of CAD tool changes for sub-micron inter-
connect problems, Int’l Symp. Physical Design (ISPD), pp.104–109
(1997).

[86] Shang, L., Dick, R.P. and Jha, N.K.: High-level synthesis algo-
rithms for power and temperature minimization, High-Level Synthe-
sis, pp.285–297, Springer (2008).

[87] Showerman, M., Enos, J., Pant, A., Kindratenko, V., Steffen, C.,
Pennington, R. and Hwu, W.-M.: QP: A heterogeneous multi-
accelerator cluster, LCI Int’l Conf. High-Performance Clustered
Computing (2009).

[88] Stammermann, A., Helms, D., Schulte, M., Schulz, A. and Nebel,
W.: Binding, allocation and floorplanning in low power high-
level synthesis, Int’l Conf. Computer-Aided Design (ICCAD), p.544
(2003).

[89] Tan, M., Dai, S., Gupta, U. and Zhang, Z.: Mapping-Aware

c© 2015 Information Processing Society of Japan 24

IPSJ Transactions on System LSI Design Methodology Vol.8 12–25 (Feb. 2015)

Constrained Scheduling for LUT-Based FPGAs, Int’l Symp. Field-
Programmable Gate Arrays (FPGA), pp.1–10 (2015).

[90] Tan, M., Liu, B., Dai, S. and Zhang, Z.: Multithreaded Pipeline Syn-
thesis for Data-Parallel Kernels, Int’l Conf. Computer-Aided Design
(ICCAD), pp.718–725 (2014).

[91] Tang, X., Zhou, H. and Banerjee, P.: Leakage power optimization
with dual-Vth library in high-level synthesis, Design Automation
Conf. (DAC), pp.202–207 (2005).

[92] Téllez, G.E., Farrahi, A. and Sarrafzadeh, M.: Activity-driven clock
design for low power circuits, Int’l Conf. Computer-Aided Design
(ICCAD), pp.62–65 (1995).

[93] Vittoz, E.A.: Low-power design: Ways to approach the limits, Int’l
Solid-State Circuits Conf. (ISSCC), pp.14–18 (1994).

[94] Wakabayashi, K.: C-based behavioral synthesis and verification anal-
ysis on industrial design examples, Asia and South Pacific Design
Automation Conf. (ASP-DAC), pp.344–348 (2004).

[95] Wang, Z. and Hu, X.S.: Power aware variable partitioning and in-
struction scheduling for multiple memory banks, Design, Automa-
tion, and Test in Europe (DATE), p.10312 (2004).

[96] Wu, Q., Pedram, M. and Wu, X.: Clock-gating and its application
to low power design of sequential circuits, IEEE Trans. Circuits
and Systems I: Fundamental Theory and Applications, Vol.47, No.3,
pp.415–420 (2000).

[97] Xilinx: All programmable abstractions, Xilinx (online), available
from 〈http://www.xilinx.com/products/design-tools/
all-programmable-abstractions.html#software-based〉
(accessed 2014-11-06).

[98] Xilinx: Vivado design suite, Xilinx (online), available from
〈http://www.xilinx.com/products/design-tools/vivado.html〉
(accessed 2014-11-7).

[99] Xilinx: Zynq-7000 all programmable SoC, Xilinx (online), available
from 〈http://www.xilinx.com/products/silicon-devices/soc/
zynq-7000/〉 (accessed 2014-10-31).

[100] Zhang, Z. and Chen, D.: Challenges and opportunities of ESL design
automation, Int’l Conf. Solid-State and Integrated Circuit Technology
(2012).

[101] Zheng, H., Gurumani, S.T., Rupnow, K. and Chen, D.: Fast and ef-
fective placement and routing directed high-level synthesis for FP-
GAs, Int’l Symp. Field-Programmable Gate Arrays (FPGA), pp.1–10
(2014).

[102] Zuo, W., Li, P., Chen, D., Pouchet, L.-N., Zhong, S. and Cong,
J.: Improving polyhedral code generation for high-level synthe-
sis, Int’l Conf. Hardware/Software Codesign and System Synthesis
(CODES+ISSS) (2013).

[103] Zuo, W., Liang, Y., Rupnow, K., Li, P., Chen, D. and Cong, J.:
Improving High Level Synthesis Optimization Opportunity Through
Polyhedral Transformations, Int’l Symp. Field-Programmable Gate
Arrays (FPGA) (2013).

Zhiru Zhang is an assistant professor in
the School of ECE at Cornell Univer-
sity and a member of the Computer Sys-
tems Laboratory. His current research
focuses on high-level design automation
for heterogeneous computing. His work
has been recognized with the Best Paper
Award from TODAES and a best paper

nomination at ICCAD. In 2006, he co-founded AutoESL Design
Technologies, Inc. to commercialize his Ph.D. dissertation re-
search on high-level synthesis. AutoESL was acquired by Xilinx
in 2011 and the AutoESL tool was rebranded as Vivado HLS after
the acquisition.

Deming Chen is an associate professor
in the ECE department of University of
Illinois at Urbana-Champaign. His re-
search interests include high-level synthe-
sis, nano-centric CAD techniques, GPU
optimization, reconfigurable computing,
hardware/software co-design, and compu-
tational biology. He is an associate edi-

tor for TCAD, TODAES, TVLSI, TCAS-I, JCSC, and JOLPE.
He obtained various awards, including five Best Paper Awards,
ACM SIGDA Outstanding New Faculty Award, and IBM Faculty
Award.

Steve Dai is a Ph.D. student in Computer
Systems Laboratory at Cornell University
working with Professor Zhiru Zhang. He
received his B.S. in Electrical Engineer-
ing from University of California, Los
Angeles (UCLA) in 2011 and his M.S. in
Electrical Engineering from Stanford Uni-
versity in 2013. He is broadly interested in

electronic design automation, with emphasis on high-level syn-
thesis and parallel programming for reconfigurable computing.

Keith Campbell is a Ph.D. student work-
ing in the Coordinated Science Labora-
tory at the University of Illinois at Urbana-
Champaign with Professor Deming Chen.
He received his B.S. in Electrical Engi-
neering from the Illinois Institute of Tech-
nology in 2008. His current research
focuses on the intersection of high-level

synthesis and circuit validation and reliability. Other research
interests include compiler design, high-level programming lan-
guage design, and alternative computer architectures.

(Invited by Editor-in-Chief: Hiroyuki Tomiyama)

c© 2015 Information Processing Society of Japan 25

