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Abstract: The Hospitals/Residents problem is a many-to-one generalization of the well-known Stable Marriage prob-
lem. Its instance consists of a set of residents, a set of hospitals, each resident’s preference list, each hospital’s pref-
erence list, and each hospital’s capacity (i.e., the number of available positions). It asks to find a stable matching
between residents and hospitals. In this paper, we consider the problem of deciding, given residents’ preference lists
and a matching, whether there are hospitals’ preference lists that make a given matching stable. We call this problem
Stable Hospital’s Preference List problem (SHPL). It is easy to see that there always exists a solution if we allow arbi-
trary preference lists of hospitals. Considering more suitable situations, we pose a restricted version, called k-SHPL,
in which there are only k kinds of preference lists of hospitals. We show that 1-SHPL is solvable in polynomial time,
while k-SHPL is NP-complete for any k such that 2 ≤ k ≤ n1−ε , where n is the number of residents and ε is any positive
constant. We also present four heuristics algorithms (first-fit algorithms) for 2-SHPL. We implement these algorithms
and present a computational study using random instances.
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1. Introduction

The Stable Marriage problem (SM) is a classical assignment
problem introduced by Gale and Shapley in 1962 [1]. Its instance
consists of a set of men, a set of women, and each person’s pref-
erence list that orders all the members of the opposite gender ac-
cording to his/her preference. A matching is a one-to-one corre-
spondence between men and women. For a matching M, a (man,
woman)-pair is said to be a blocking pair if each prefers the other
to his/her actual partner in M, and a matching with no blocking
pair is a stable matching. It is known that every instance has at
least one stable matching, and one of them can be found by a
polynomial time algorithm, called the Gale-Shapley algorithm or
Deferred Acceptance algorithm.

The Hospitals/Residents problem (HR) is a many-to-one gen-
eralization of the stable marriage problem [1]. In HR, men and
women correspond to residents and hospitals, and each hospital
has a capacity or a quota, which is an upper bound on the num-
ber of available positions it provides. (A formal definition of HR
will be given in Section 2.) A straightforward extension of the
Gale-Shapley algorithm can find a stable matching also for this
generalization [1], [3].

There are many applications of HR in real world assignment
systems, such as assigning primary school students to secondary
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schools and university students to supervisors. Among others,
one of the most famous applications is to assign graduating med-
ical students (residents) to hospitals [6], known as the National
Resident Matching Program (NRMP) in the US [9], the Canadian
Resident Matching Service (CaRMS) in Canada [7], the Scottish
Foundation Allocation Scheme (SFAS) in Scotland [10], and the
Japan Residency Matching Program (JRMP) in Japan [8].

The matching intermediary such as NRMP, SFAS, and JRMP
provides a mechanism for matching residents to hospitals ac-
cording to the preferences expressed by both parties. The en-
tire matching process is conducted by the matching intermediary
under tight security. In general, there are three steps in a match-
ing: Firstly, residents and hospitals submit their rank order lists
directly to the matching intermediary. Each resident submits, in
the resident’s order of preference, a list of the hospitals where
he/she has interviewed or will interview. Each hospital also sub-
mits, in its order of preference, a list of those residents who have
had its interview. Secondly, the matching intermediary compares
those rank order lists against each other, by using a computer-
ized matching program, and obtains a stable matching. Lastly,
the matching intermediary informs the residents and the hospitals
of the matching results.

However, there is a potential for the residents to raise a ques-
tion whether the matching informed by the matching intermedi-
ary is truly stable. Because the hospitals’ preference lists are not
accessible to the public, the residents cannot check how the hospi-
tals have ranked their applicants. So residents may doubt whether
a coalition of hospitals and the matching intermediary has manip-
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ulated the result in their favor. For example, when residents are
matched to hospitals listed relatively lower rank in their lists, res-
idents are not satisfied with the result and they may collectively
try to find witnesses for instability in the matching to claim the
invalidness of the result. We can partially solve this problem by
checking whether there are hospitals’ preference lists that make a
given matching stable.
Our contributions: In this paper, we consider the problem of de-
ciding, given residents’ preference lists and a matching, whether
there are hospitals’ preference lists that make the given matching
stable. It is not hard to see that such preference lists always ex-
ist if we allow arbitrary preference lists of hospitals, i.e., those in
which each hospital includes only assigned residents in its prefer-
ence list. Also, even if we require that each hospital’s preference
list be complete, namely, it includes all the residents, there still
always exists a solution, that is, those in which assigned residents
are located at the top of each hospital’s preference list. In this
paper, we consider more restricted variant where there are only k

preference lists, and each hospital’s preference list is identical to
one of them. We call this problem k-SHPL (k-Stable Hospital’s
Preference List problem). This reflects the scenario where resi-
dents take examinations of k different subjects. According to the
results, k preference lists are constructed (possibly, by breaking
ties), and each hospital adopts one of them. We show that 1-SHPL
is solvable in polynomial time, while k-SHPL is NP-complete for
any k such that 2 ≤ k ≤ n1−ε , where n is the number of residents
and ε is any positive constant. We also present computational re-
sults for 2-SHPL. We provide four first-fit algorithms which do
not necessarily output a correct answer. We implement these al-
gorithms and compare their computation time and accuracy using
random instances.
Related work: For SM, Kobayashi and Matsui [4] have previ-
ously presented a similar issue and studied it in the context of
strategic issue: Given men’s complete preference lists and a
matching, they consider the problem of finding women’s com-
plete preference lists that make a given matching man-optimal

stable.
Organization of the paper: This paper is organized as follows.
In Section 2, we define the problem and present some notations.
In Section 3, we give complexity results for k-SHPL. In Sec-
tion 4, we present four first-fit algorithms. Finally, in Section 5,
we present a computational study.

2. Preliminaries

2.1 Hospitals/Residents Problem and Stable Hospital’s
Preference List Problem

We first give a formal definition of HR. An instance of HR is
as follows: (i) a set of residents R = {r1, r2, . . . , rn}; (ii) a set of
hospitals H = {h1, h2, . . . , hm}; (iii) a preference list of each r ∈ R,
in which r ranks a subset of H in a strict order; (iv) a preference
list of each h ∈ H, in which h ranks a subset of R in a strict or-
der; (v) capacities c j (1 ≤ j ≤ m), indicating the number of posts
that h j has. An example of HR instance is shown in Fig. 1 (the
hospital capacities are indicated in brackets).

We say that a resident r finds a hospital h acceptable if r’s pref-
erence list contains h, and h finds r acceptable if h’s preference

Residents’ preferences Hospitals’ capacities and
preferences

r1 : h2 h3 h1 h1 : (2) : r2 r3 r5 r1

r2 : h2 h1 h2 : (2) : r3 r5 r1 r2 r4

r3 : h3 h2 h1 h3 : (1) : r6 r4 r1 r3 r5

r4 : h2 h3

r5 : h2 h1 h3

r6 : h3

Fig. 1 HR instance I1.

Residents’ preferences Matching Hospitals’
capacities

r1 : h2 h3 h1 (r1, h2) h1 : (2)
r2 : h2 h1 (r2, h1) h2 : (2)
r3 : h3 h2 h1 (r3, h1) h3 : (1)
r4 : h2 h3 (r5, h2)
r5 : h2 h1 h3 (r6, h3)
r6 : h3

Fig. 2 SHPL instance I2.

list contains r. In instance I1, r2 finds both h1 and h2 acceptable,
and h1 finds r2, r3, r5 and r1 acceptable.

A matching M is a set of (resident, hospital) pairs (r, h) ∈ R×H

such that (r, h) ∈ M only if r and h find each other acceptable, no
resident is assigned to more than one hospital, and no hospital h j

is assigned more than c j residents. If (r, h) ∈ M, we say that r is
assigned to h, and h is assigned r. For any q ∈ R ∪ H, we denote
by M(q) the set of assignees of q in M. When there is no ob-
scurity we use M(r) to denote the single hospital assigned to the
resident r in M. A hospital h j is under-subscribed if |M(h j)| < c j

and is full if |M(h j)| = c j.
A pair (r, h) ∈ R×H is said to block a matching M, or is called

a blocking pair for M, if all the following conditions are satisfied:
(i) h and r find each other acceptable; (ii) either r is unmatched, or
prefers h to M(r); (iii) either h is under-subscribed, or h prefers
r to at least one of M(h). A matching is stable if it admits no
blocking pair.

Let us formally define the Stable Hospital’s Preference List

problem (SHPL) introduced in Section 1. An instance of SHPL
consists of the set R of residents, the set H of hospitals, each res-
ident’s preference list, each hospital’s capacity, and a matching
M between R and H. It asks whether there exist hospitals’ prefer-
ence lists that make M stable. Figure 2 gives an example instance
of SHPL.
Problem: Stable Hospital’s Preference List problem (SHPL).
Instance: Residents, hospitals, each resident’s preference list,

capacities, and a matching M.
Question: Are there any hospitals’ complete preference lists

that make M stable?
k-SHPL is a variant of SHPL in which there are at most k kinds

of hospitals’ preference lists in a feasible solution.
Problem: k-Stable Hospital’s Preference List problem

(k-SHPL).
Instance: An instance of SHPL.
Question: Are there any hospitals’ complete preference lists

that make M stable, where there are at most k kinds of pref-
erence lists of hospitals?

We give some observation on SHPL. Suppose that a hospital h

is under-subscribed. If there is a resident r who is unassigned to
any hospital but includes h in her list, or prefers h to M(r), then
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Fig. 3 D(h) of SHPL instance I2.

(r, h) is a blocking pair no matter what preference list h may have
(because h wishes to hire one more resident without depending on
the preference order). If there is no such resident r, then h is never
included in a blocking pair no matter what preference list h may
have (because no resident has incentive to go to h). Therefore,
we may deal with such under-subscribed hospitals first, and may
consider only full hospitals in the main process. Hence, without
loss of generality, we assume in the following that all the hospi-
tals are full under the given matching M.

2.2 Acyclic Partitioning Digraphs
We show that k-SHPL can be reduced to the following prob-

lem k-Acyclic Partitioning Digraphs (k-APD). This property is
convenient and is used several times for developing algorithms
and showing hardness of k-SHPL.
Problem: k-Acyclic Partitioning Digraphs (k-APD).
Instance: A set of digraphs (where two digraphs may share

common vertices).
Question: Is there a partition of given digraphs into k subsets

such that, in each subset, the digraph constructed by taking
the union of digraphs in the subset does not contain a di-
rected cycle?

In the reduction, we construct a digraph D(h) corresponding
to each hospital h. D(h) is a bipartite graph D(h) = (VL,VR, E)
where each vertex of D(h) corresponds to a resident, and VL and
VR are bipartition of the vertices. VL includes all the residents
in M(h), and VR includes all the residents r such that (i) h is ac-
ceptable to r and (ii) r is unassigned in M or prefers h to M(r).
Finally, E includes all the arcs from VL to VR, i.e., D(h) is a com-
plete bipartite graph (if we ignore the direction of edges). Fig-
ure 3 illustrates three digraphs corresponding to the hospitals in
the instance I2 given in Fig. 2.

We can interpret D(h) in the following way: Let r1 ∈ VL and
r2 ∈ VR. By construction of D(h), we know that r1 is assigned to
h but r2 is not, while r2 desires to be assigned to h. Therefore, if
h prefers r2 to r1, then (r2, h) becomes a blocking pair for M. The
arc (r1, r2) ∈ E stands for this situation, that is, for the matching
M to be stable, r1 must precede r2 in h’s preference list. Hence,
h does not create a blocking pair for M if and only if the order of
residents in a preference list of h is consistent with arcs of D(h).

Consider c hospitals h1, h2, . . . , hc and their corresponding di-
graphs D(h1),D(h2), . . . ,D(hc). Construct the digraph D(h1,

h2, . . . , hc) by taking the union of arcs in D(h1),D(h2), . . . ,D(hc).
If D(h1, h2, . . . , hc) does not contain a directed cycle, then we
can obtain a linear list being consistent with all the arcs in
D(h1, h2, . . . , hc). If all hospitals h1, h2, . . . , hc have this list in
common, then these hospitals do not create a blocking pair. On
the other hand, if D(h1, h2, . . . , hc) contains a cycle, there is no
linear extension of the vertices of D(h1, h2, . . . , hc) and hence any

identical list for h1, h2, . . . , hc creates at least one blocking pair.
The correctness of the reduction is validated from these observa-
tions.

3. Complexity Results

3.1 1-SHPL is Solvable in Polynomial Time
1-SHPL can be solved in polynomial time by the following al-

gorithm: Given an instance of 1-SHPL, we construct a digraph
D(h j) corresponding to each hospital h j (1 ≤ j ≤ m) and solve 1-
APD. Since k = 1, there is no necessity to partition the digraphs
into any subsets. We build one digraph D(h1, h2, . . . , hm) by tak-
ing the union of arcs in D(h1),D(h2), . . . ,D(hm) and then check
whether the digraph D(h1, h2, . . . , hm) contains a cycle. We output
“Yes” if and only if D(h1, h2, . . . , hm) is acyclic. This algorithm
can be implemented to run in O(mn2) time overall.
Theorem 1. 1-SHPL is solvable in O(mn2) time.

3.2 2-SHPL is NP-complete
Theorem 2. 2-SHPL is NP-complete even if each hospital’s ca-

pacity is one.
Proof. It is easy to see that 2-SHPL is in NP: Given hospitals’
preference lists, one can check whether it is a blocking pair for
each pair of a resident and a hospital. This can be done in poly-
nomial time. We show a polynomial time reduction from Acyclic
2-Coloring, which is already known to be NP-complete [5], to 2-
SHPL.
Problem: Acyclic 2-Coloring.
Instance: Directed graph G = (V, A).
Question: Can we color the nodes of G with 2 colors such that

no monochromatic directed cycle occurs?
We reduce Acyclic 2-Coloring to 2-SHPL. Let G = (V, A) be

a directed graph with V = {v1, v2, . . . , vn}, which is an arbitrary
instance of Acyclic 2-Coloring. We construct an instance I(G)
of 2-SHPL, namely, (i) the sets of residents and hospitals, (ii) a
matching, (iii) each hospital’s capacity, and (iv) each resident’s
preference list.

First of all, we introduce the n residents r1, r2, . . . , rn and the
same number of hospitals h1, h2, . . . , hn. A resident ri and a hos-
pital hi are associated with a vertex vi of G (1 ≤ i ≤ n). Next, we
construct a matching M = {(r1, h1), (r2, h2), . . . , (rn, hn)}. Then
we set each hospital’s capacity ci to one. Note that every hospital
is full under M.

We construct each resident’s preference list using 2-APD de-
fined in Section 2.2. For each i, we first construct a bipartite
digraph D(hi) = (VL

i ,V
R
i , Ai) corresponding to the hospital hi,

where each vertex of D(hi) corresponds to a resident. Recall
that the hospital hi of I(G) is associated with vertex vi of G.
Let vi1 , vi2 , . . . , vis be the direct successor of vi in G, i.e., there
is an arc (vi, vi j ) in A for each 1 ≤ j ≤ s. Then let VL

i = {ri},
VR

i = {ri1 , ri2 , . . . , ris }, and Ai include arcs from ri to each vertex
in VR

i . We finally construct residents’ preference lists from these
digraphs D(hi) using the reduction described in Section 2.2 in
the reverse direction: ri’s preference list includes a hospital h j if
and only if D(h j) contains vertex ri. (Note that, by construction,
D(hi) contains vertex ri in VL

i , and if D(h j) contains vertex ri for
j � i, then ri appears in VR

j .) In ri’s preference list, hi must be
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the bottom (i.e., the lowest rank) of the list, but the order of other
hospitals is arbitrary. It is not hard to see that this is a reverse
reduction of the one in Section 2.2 and hence if we regard the
set of digraphs D(h1),D(h2), . . . ,D(hn) as an instance I′(G) of 2-
APD, then I(G) is an yes-instance of 2-SHPL if and only if I′(G)
is an yes-instance of 2-APD. Therefore, to complete the proof,
we show that I′(G) is an yes-instance of 2-APD if and only if G

is an yes-instance of Acyclic 2-Coloring.
We first show the “if”-part. Since G is an yes-instance, there is

a 2-coloring of the vertices of G that yields no monochromatic di-
rected cycle. Let the used colors be integers 1 and 2. We construct
a solution of I′(G), i.e., a partition of digraphs to two subsets, in
the following way: If vi is colored with color c (c ∈ {1, 2}), then
we put D(hi) into the subset S c. We show that neither S 1 nor
S 2 induces a cycle. For, suppose that there is a cycle in S c, and
let the cycle be r1, r2, . . . , r�, r1 without loss of generality. Then,
there is an arc (ri, ri+1) in D(hi) for each 1 ≤ i ≤ � − 1 and an
arc (r�, r1) in D(h�). By construction of I′(G), arcs (vi, vi+1) for
1 ≤ i ≤ �−1 and (v�, v1) exist in G. Also, D(hi) for each 1 ≤ i ≤ �
is in S c because there is an arc emanating from ri in S c. Hence,
all vi for 1 ≤ i ≤ � are colored with color c. This means that there
is a monochromatic cycle v1, v2, . . . , v�, v1 in G, a contradiction.

The “only if”-part is almost the same as the “if”-part. Suppose
that there is a partition of digraphs D(h1),D(h2), . . . ,D(hn) into
two subsets S 1 and S 2 so that there is no induced directed cycle
in each subset. We will construct a solution of G as follows: If
D(hi) is included in S c (c ∈ {1, 2}), then we color the vertex vi
with color c. We show that this coloring creates no monochro-
matic cycle. For, suppose that there is a monochromatic directed
cycle v1, v2, . . . , v�, v1. Since these vertices are colored with the
same color c, D(hi) for each 1 ≤ i ≤ � is classified into the subset
S c. Since D(hi) for each 1 ≤ i ≤ �−1 contains the arc (ri, ri+1) and
D(h�) contains the arc (r�, r1), S c induces a cycle r1, r2, . . . , r�, r1,
a contradiction. �

3.3 k-SHPL for k ≥ 3 is NP-complete
Theorem 3. For any k such that 3 ≤ k ≤ n1−ε , where ε is any

positive constant, k-SHPL is NP-complete even if every hospital’s

capacity is one.

Proof. It is easy to see that k-SHPL is in NP: Given hospi-
tals’ preference lists, one can check whether it is a blocking pair
for each pair of a resident and a hospital. This can be done in
polynomial time. We give a polynomial time reduction from k-
Coloring to k-SHPL. It is known that k-Coloring is NP-complete
for any constant k ≥ 3 [2]. Also, it is not hard to see that NP-
completeness holds for k being as large as n1−ε for any positive
constant ε.
Problem: k-Coloring.
Instance: Graph G = (V, E).
Question: Can we color the vertices of G with k colors such

that the endpoints of every edge are colored differently?
Let G = (V, E) be an undirected graph with V = {v1, v2, . . . , vn},

which is an arbitrary instance of k-Coloring. We construct an in-
stance I(G) of k-SHPL, namely, (i) the sets of residents and hos-
pitals, (ii) a matching, (iii) each hospital’s capacity, and (iv) each
resident’s preference list.

First of all, we introduce the following n residents r1, r2, . . . , rn

and the same number of hospitals h1, h2, . . . , hn. A resident ri and
a hospital hi are associated with a vertex vi (1 ≤ i ≤ n) of G. Next,
we construct a matching M = {(r1, h1), (r2, h2), . . . , (rn, hn)}.
Then we set each hospital’s capacity ci to one. Note that every
hospital is full under M.

To construct each resident’s preference list, we again use k-
APD. For each i, we construct a bipartite digraph D(hi) =
(VL

i ,V
R
i , Ai) corresponding to the hospital hi, where each vertex

of D(hi) corresponds to a resident. Let vi1 , vi2 , . . . , vis be the neigh-
bors of vi in G. Then let VL

i = {ri}, VR
i = {ri1 , ri2 , . . . , ris }, and Ai

include arcs from ri to each vertex in VR
i . We finally construct

residents’ preference lists from these digraphs D(hi) in exactly
the same manner as we have done in the proof of Theorem 2, and
we obtain an instance I(G) of k-SHPL. Let I′(G) be the instance
of k-APD, which is the set of digraphs D(h1),D(h2), . . . ,D(hn).
By the same argument as in the proof of Theorem 2, it suffices to
show that I′(G) is an yes-instance of k-APD if and only if G is an
yes-instance of k-Coloring.

We first show the “if”-part. Since G is an yes-instance, there is
a proper k-coloring of vertices of G. Let the used colors be inte-
gers 1, 2, . . . , k. Then we construct a solution of I′(G) using this
proper coloring: If vi is colored with color c (c ∈ {1, 2, . . . , k}),
then we put D(hi) into the subset S c. We show that none of
S 1, S 2, . . . , S k induces a directed cycle. For, suppose that there is
a cycle in S c, and let the cycle be r1, r2, . . . , r�, r1 without loss of
generality. Since D(h1) contains arc (r1, r2), there is edge (v1, v2)
in G. Since there is an arc emanating from r1 in S c, D(h1) is in
S c. For the same reason, D(h2) is also in S c. Hence both v1 and
v2 are colored with color c. This is a contradiction because edge
(v1, v2) breaks the condition for proper coloring.

We next show the “only if”-part. Suppose that there is
a partition of digraphs D(h1),D(h2), . . . ,D(hn) into k subsets
S 1, S 2, . . . , S k so that there is no induced directed cycle in each
subset. We will construct a k-coloring of G as follows: If D(hi)
is included in S c (c ∈ {1, 2, . . . , k}), then we color vertex vi with
color c. We show that this is a proper coloring. For, suppose not
and there is an edge (vi, v j) in G such that vi and v j are colored
with the same color c. Then D(hi) and D(h j) are classified into
the subset S c and there is an arc (ri, r j) in D(hi) and (r j, ri) in
D(h j) by construction. This implies that S c induces a length-two
cycle ri, r j, ri, a contradiction. �

4. First-Fit Algorithms for 2-SHPL

In this section, we describe four first-fit algorithms for solving
2-SHPL. Considering the observation in Section 2.2, 2-SHPL is
the problem of partitioning digraphs D(h) for hospitals h into two
subsets A and B so that digraphs classified into the same sub-
set do not induce a directed cycle. The concept of first-fit type
algorithms is as follows: We determine a processing order of di-
graphs first. According to this order, we process digraphs one by
one. When processing the current digraph D(h), we first try to put
it into the subset A. If it is successful, i.e., it creates no directed
cycle in A, we do so. Otherwise, we try to put D(h) to B. If it
is successful, we do so. Otherwise, putting D(h) to either of A

and B creates a cycle, so we give up here. The performance of
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first-fit depends on the order of processing digraphs determined
at the beginning of the algorithm. We propose two algorithms in
this respect. FirstFit1 determines this order randomly.

FirstFit1

1 construct a complete bipartite digraph D(h) for each h

2 sort D(h) randomly
3 for ( the first D(h) to the last D(h) ) do
4 add D(h) to group A

5 if ( group A contains a cycle ) then
6 delete D(h) from group A and add it to group B

7 if ( group B contains a cycle ) then
return NO and halt

8 return YES

Note that first-fit algorithms are popular for the bin packing
problem [2]. It is well-known that the first-fit for bin packing
problem generally performs well when we process items in the
decreasing order of their sizes; intuitively, small items are flexi-
ble and we can use them to fill small gaps at the later stages of
the algorithm. Therefore, it is natural to employ this strategy.
Our second algorithm FirstFit2 determines the order of D(h) in
descending order of its number of edges.

FirstFit2

1 construct a complete bipartite digraph D(h) for each h

2 sort D(h) in descending order of its number of edges
3 for ( the first D(h) to the last D(h) ) do
4 add D(h) to group A

5 if ( group A contains a cycle ) then
6 delete D(h) from group A and add it to group B

7 if ( group B contains a cycle ) then
return NO and halt

8 return YES

Notice that the above first-fit algorithms have one-sided error,
i.e., if the true answer is NO, then the first-fit algorithms always
output NO, but if the true answer is YES, they may output the
wrong answer. In other words, while a YES answer is guaranteed
to be accurate, a NO answer is uncertain. To reduce the error rate
of such one-sided error randomized algorithms, it is common to
repeat the same algorithm many times and answer YES if at least
one execution outputs YES, and answer NO otherwise.

To see the effect of such repetitions, we propose FirstFit3,
which repeats the main process of FirstFit1 t times and outputs
YES if and only if at least one execution is successful.

FirstFit3

1 construct a complete bipartite digraph D(h) for each h

2 for ( t times ) do
3 sort D(h) randomly
4 for ( the first D(h) to the last D(h) ) do
5 add D(h) to group A

6 if ( group A contains a cycle ) then
7 delete D(h) from group A and add it to group B

8 if ( group B contains a cycle ) then goto 3
9 return YES and halt
10 return NO

We also propose another reordering method; we update the list
by moving D(h), which has caused a cycle in both of the two
groups, to the head of the list in the next run. This strategy is
based on the idea that such D(h) is critical and inflexible for our
purpose, which suggests we should process it in an earlier stage
of the algorithm. We call this algorithm FirstFit4.

FirstFit4

1 construct a complete bipartite digraph D(h) for each h

2 sort D(h) randomly
3 for ( t times ) do
4 for ( the first D(h) to the last D(h) ) do
5 add D(h) to group A

6 if ( group A contains a cycle ) then
7 delete D(h) from group A and add it to group B

8 if ( group B contains a cycle) then
9 update the sorting order by moving D(h)

to the head and goto 4
10 return YES and halt
11 return NO

To evaluate the accuracy of the first-fit algorithms, we need a
correct answer for randomly generated instances. The following
exact algorithm ExactAlg, which performs exhaustive search, is
used to determine the correct answer of instances.

ExactAlg

1 construct a complete bipartite digraph D(h) for each h

2 for ( each partition of D(h)s into two groups ) do
3 if ( neither of the 2 groups has any cycle ) then

return YES and halt
4 return NO

5. Computational Experiments

All algorithms have been coded in Java using Eclipse 2013.
All the experiments were run on personal computer with Pentium
processor with 2.0 GHz clock speed, equipped with Windows 7.
Below, we first provide some details on the random instances.
Then we subsequently discuss the performance of first-fit algo-
rithms.

5.1 Instance Generation
We show how to generate instances of SHPL. Recall that

an instance of SHPL is given by each resident’s preference list,
each hospital’s capacity, and a matching. In order to generate in-
stances, we first need to decide which data structures we use for
all these elements and how we set each element of instance to ran-
domized value. For the convenience of implementation, we use
instances such that the number of residents is exactly three times
that of hospitals.

Firstly, we use n×m ranking matrix P for residents’ preference
lists. The n rows and m columns of the matrix P represent n resi-
dents and m hospitals respectively. The element of the ith row and
jth column, denoted by P[i, j], indicates the position of hospital
h j in resident ri’s preference list. As each resident’s preference
list is an incomplete list, i.e., a resident is allowed to accept only
a subset of the hospitals, we set P[i, j] to a special null symbol if
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(a) Random instances (type1) (b) Random instances (type2)

Fig. 4 Proportion of YES instances.

hospital h j is unacceptable to resident ri.
Next, to present a matching, we use an array A of length n,

where A[i] is the hospital assigned to resident ri. We set A[i] to
a null symbol when we need to indicate that resident ri is not as-
signed to any hospital. Similarly, capacities of hospitals can be
presented by an array C of length m, where C[ j] indicates the
capacity of hospital h j.

We create an instance of SHPL as follows: We first initialize to
P[i, j] = j. Then, to make each resident’s preference list ordered
differently than others, we shuffle randomly each row of P[i, j].
We then pick a random number s between 1 and m uniformly and
set elements P[i, j] ( j ≥ s + 1) to the null symbol, so that each
resident’s preference list forms an incomplete list of size s. Also,
to make a matching A, we select a hospital j uniformly at ran-
dom such that P[i, j] is not null on each resident’s preference list,
and set A[i] to the hospital j. Finally, we set C[ j] to the number
of those residents who are assigned to hospital h j. If an instance
made in this way has a hospital h in which |M(h)| = 0, we discard
the instance and make another one all over again.

Figure 4 (a) shows the proportion of yes-instances in randomly
generated 1,000 instances in the above manner, according to the
number of hospitals. As shown in Fig. 4 (a), the proportion of
yes-instances decreases gradually as the number of hospitals as-
cends stepwise. To generate harder instances, we want to seek for
such an instance generator that outputs yes-instances and NO in-
stances in the proportion of 50 to 50. For this purpose, we modify
the above simple generator (type1) to obtain the following modi-
fied generator (type 2). The key difference between the two types
of generators is how to decide the size of each resident’s pref-
erence lists L(r). In type1-generator, we decide the size of each
resident’s preference list uniformly at random, while in type2-
generator, we decide it by the following formula, which is ob-
tained by trial and error:

L(r) =

[
log m + 3 log 5 − 4 log 3

log 5 − log 3

]
for m = 3, 4, 5, . . . (1)

Figure 4 (b) shows the proportion of yes-instances of those gen-
erated by type2-generator. We can see that the proportion is not
perfectly 50:50, but is better than type1-generator.

5.2 Computational Results
We conducted two experiments. The first one compares the

performance of FirstFit1 and FirstFit2 to see the effect of the
initial processing order of digraphs. As mentioned earlier, ev-
ery first-fit algorithm has one-sided error, i.e., they may output a
wrong answer NO when the true answer is YES. Hence, our pur-
pose of this experiment is to investigate the proportion that each
first-fit algorithm outputs the correct answer when it is given yes-
instances. To do this, we generate instances by our generator and
check the answer by ExactAlg. We used only instances which
ExactAlg outputs YES. Figure 5 shows the accuracy of FirstFit1
and FirstFit2 (i.e., the rate these algorithms output YES) accord-
ing to the number of hospitals. The number of hospitals varies
from 3 to 12, and the number of residents is three times that of
hospitals as mentioned before. For each size, we generated 1,000
instances in the way described in Section 5.1, and applied First-
Fit1 and FirstFit2 to them. As shown in Fig. 5, FirstFit2 has an
accuracy higher than that of FirstFit1. This means that, similarly
to the case of the bin packing problem, processing larger digraphs
earlier would be effective.

Next, we verify the number of iterations that each of First-
Fit3 and FirstFit4 outputs a correct answer. It is natural that as
the number of iterations increases, the accuracy of the algorithm
grows higher. Our purpose of this experiment is to compare the
effectiveness of reordering the processing order of digraphs; we
investigate the average number of iterations needed for each of
FirstFit3 and FirstFit4 to output YES when they are given yes-
instances. Figure 6 shows the result according to the number
of hospitals. The number of hospitals varies from 3 to 24, and
the number of residents is three times that of hospitals as in the
previous experiment. This time, however, we used only type2-
generator since the rate of yes-instances generated by type1-
generator decreases as the number of hospitals grows (see Fig. 4).
Furthermore, when the size of the instance grows, the compu-
tation time of ExactAlg (for checking its correct answer) grows
exponentially, and it was impossible to generate 1,000 different
yes-instances within reasonable time. Therefore, for each size,
we generated 10 yes-instances and applied FirstFit3 and FirstFit4
to them 100 times, i.e., we conducted 1,000 trials for each size.
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(a) Proportion of correct answer of random instances (type1) (b) Proportion of correct answer of random instances (type2)

Fig. 5 The Proportion of correct answer of FirstFit1 and FirstFit2.

Fig. 6 The average number of iterations needed to output YES of random instances (type2).

(a) FirstFit3 (b) FirstFit4

Fig. 7 The distribution of the number of iterations.

Also, to see the distribution of the number of iterations of this
experiment, we take the case where the number of hospitals is
24 in Fig. 6, and give histograms in Fig. 7. The result shows that
FirstFit4 finds a correct answer in a smaller average number of
iterations than FirstFit3.

6. Conclusion

In this paper, we studied the problem of deciding, given resi-

dents’ preference lists and a matching, whether there are hospi-
tals’ preference lists that make a given matching stable. We were
motivated to consider a restricted variant of the problem k-SHPL
where there are only k preference lists and each hospital’s pref-
erence list is identical to one of them. We proved that 1-SHPL
is solvable in polynomial time and for a constant k ≥ 2, k-SHPL
is NP-complete even if every hospital’s capacity is one. We also
presented computational results for 2-SHPL. We provided first-
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fit algorithms and implemented them. By computational experi-
ments, we compared the efficiency of first-fit algorithms in terms
of the ways of ordering digraphs, i.e., the initial ordering and the
reordering in repetitions. As a result, we concluded that a de-
scending order is more efficient than a random order in the initial
ordering, and moving the critical digraph to the top is more ef-
ficient than random reordering when we repeat the first-fit algo-
rithm.
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Editor’s Recommendation
IPSJ Kansai-Branch chose the recommended papers out of the

papers presented at IPSJ Kansai-Branch Convention. Session
chairpersons and Committee members of the convention nomi-
nated four candidates from the 83 papers presented in the Con-
vention 2013, and each of the candidates was reviewed by two
referees. After careful discussion among the committee mem-
bers, we finally selected two papers to be recommended.

This paper proposes an algorithm for solving the hospi-
tals/residents problem, and we found significant novelty of the
algorithm in the research area. Therefore we have decided to rec-
ommend that this paper would be submitted to Journal of Infor-
mation Processing.
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