
Electronic Preprint for Journal of Information Processing Vol.23 No.2

Regular Paper

Dalvik Bytecode Acceleration Using Fetch/Decode
Hardware Extension

Surachai Thongkaew1,a) Tsuyoshi Isshiki1,b) Dongju Li1,c) Hiroaki Kunieda1,d)

Received: May 6, 2014, Accepted: November 10, 2014

Abstract: The Dalvik virtual machine (Dalvik VM) is an essential piece of software that runs applications on the
Android operating system. Android application programs are commonly written in the Java language and compiled
to Java bytecode. The Java bytecode is converted to Dalvik bytecode (Dalvik Executable file) which is interpreted
by the Dalvik VM on typical Android devices. The significant disadvantage of interpretation is a much slower speed
of program execution compared to direct machine code execution on the host CPU. However, there are many tech-
niques to improve the performance of Dalvik VM. A typical methodology is just-in-time compilation which converts
frequently executed sequences of interpreted instruction to host machine code. Other methodologies include dedi-
cated bytecode processors and architectural extension on existing processors. In this paper, we propose an alternative
methodology, “Fetch & Decode Hardware Extension,” to improve the performance of Dalvik VM. The Fetch & De-
code Hardware Extension is a specially designed hardware component to fetch and decode Dalvik bytecode directly,
while the core computations within the virtual registers are done by the optimized Dalvik bytecode software handler.
The experimental results show the speed improvements on Arithmetic instructions, loop & conditional instructions and
method invocation & return instructions, can be achieved up to 2.4x, 2.7x and 1.8x, respectively. The approximate size
of the proposed hardware extension is 0.03 mm2 (equivalent to 10.56 Kgate) and consumes additional power of only
0.23 mW. The stated results are obtained from logic synthesis using the TSMC 90 nm technology @ 200 MHz clock
frequency.

Keywords: Dalvik processor, Dalvik hardware extension, Android, Virtual Machine acceleration

1. Introduction

Android, a Linux based operating system, is currently one of
the most popular and highly rated open source mobile OS plat-
forms. It provides common standards for the communication and
connectivity to most mobile devices. It allows developers to de-
velop additional software and change and/or replace functionali-
ties without limitations. A typical Android Architecture is shown
in Fig. 1, which consists of a number of layers: Applications,
Application framework, Libraries, Android runtime and Linux
kernel. The most important part is the Android Runtime which
includes a set of core libraries that provides most of the func-
tionality available in the core libraries of the Java programming
language.

Every Android application runs in its own process, with its own
instance of the Dalvik virtual machine (VM) [4]. Dalvik VM is a
major component of the Android platform which is optimized for
low memory requirements and is designed to allow multiple VM
instances to run at the same time. The Java language is used to
program Dalvik VM, however unlike the stack-based Java VM,
Dalvik VM is a register-based architecture where the Java class
files generated by the Java compiler are further transformed into

1 Department of Communications and Computer Engineering, Tokyo In-
stitute of Technology, Meguro, Tokyo 152–8550, Japan

a) surachai.th@vlsi.ce.titech.ac.jp
b) isshiki@vlsi.ce.titech.ac.jp
c) dongu@vlsi.ce.titech.ac.jp
d) kunieda@vlsi.ce.titech.ac.jp

.dex format [5]. This .dex file is optimized for minimal memory
footprint. The Dalvik interpreter source code [6] of ARM v5TE
is shown in Figs. 2 and 3. The core of the original version was
implemented as a single C function (Fig. 2), but to improve per-
formance they rewrote it in assembly language (Fig. 3).

The original all-in-one-function of the C version still ex-
ists as the “portable” interpreter [7], and is generated using the
same sources and tools that generate the platform-specific ver-
sions. The architecture-specific configuration files determine
what goes into two generated output files (InterpC-<arch>.c
and InterpAsm-<arch>.S). Depending on the architecture,
instruction-to-instruction transitions may be done as either “com-
puted goto” or “jump table.” In the computed goto variant,
each instruction handler is allocated with a fixed-size area (e.g.,
64 bytes) and the “Overflow” code will be tacked on to the end.

Fig. 1 Android architecture.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 2 Typical Dalvik interpreter C source code.

Fig. 3 Typical Dalvik interpreter Assembly source code.

In the jump table variant, all of the instruction handlers are con-
tiguous and may vary in sizes. Therefore, as shown in Fig. 3,
the interpretation of one bytecode consists of many host machine
codes.

The interpretation starts fetching the first byte of the bytecode
to compute the corresponding handler address and then jumping
to that opcode handler. Inside the opcode handler, the remain-
ing bytecode is fetched, then each bytecode field is translated
into operand fetch, computation and writeback within the vir-
tual registers. Here, the bytecode size varies in lengths of 2, 4,
6 or 10 bytes, and thus affect the remaining bytecode fetching
process. The last part of the opcode handler deals with fetching
the first byte of the next bytecode, computing the correspond-
ing handler address and finally jumping to the next opcode han-
dler. As we can see here, each opcode handler that corresponds
to executing a single Dalvik bytecode requires many host ma-
chine codes, and therefore is much slower than executing native-
compiled codes. In order to accelerate the Dalvik VM execution,
several approaches are proposed that can be classified into three
categories as follows: software acceleration, dedicated bytecode
processor and co-processor, and architectural extension.
(1) Software acceleration: this approach utilizes software tech-

niques, such as Just-In-Time Compiler, to accelerate byte-
code interpretation on top of the existing VM.

(2) Dedicated bytecode processors and co-processors: these are
designed to execute a large portion of bytecodes directly as
part of machines’ native instruction set.

(3) Architectural extension: this approach utilizes dedicated
hardware logic added on top of an existing processor for ex-
ecuting the bytecode.

Our proposed technique in this paper is categorized as the ar-
chitecture extension, where we have added a dedicated hardware
logic for fetching and decoding Dalvik bytecode that is designed
to drastically reduce the operation steps in the opcode handler
software.

This paper is organized as follows. Section 2 discusses the
related works on VM accleration techniques in detail. Our pro-

posed hardware extensions and software optimization technique
is described in Section 3. Experimental results of our proposed
technique applied to our processor (TCT processor) and also on
an ARM processor is given in Section 4. Future works and con-
clusion are summarized in Sections 5 and 6 respectively.

2. Related Works

Related works cover the works associated with improving per-
formance of both the Dalvik VM and Java VM. There are similar-
ities between both the Dalvik VM and Java VM; both techniques
accelerate the speed of bytecode interpretation during the runtime
phase. The related works can be classified into 3 groups as men-
tioned in the introduction section.

2.1 Software Acceleration
For the software acceleration approach, a widely used byte-

code interpretation technique is the JIT (Just-in-time) compiler.
JIT compilation [8], [9] attempts to bridge the gap between the
two approaches to program translation: compilation and interpre-
tation. In the JIT compilation process, starting with the inter-
preter, some features of a static compiler are built into the sys-
tem. Typically, a JIT compiler will isolate some sections of the
code at run-time which are accessed more often and then com-
pile them to native code, aggressively optimizing the above in the
process. The sections of code that are to be statically compiled
can be identified in many ways and these sections of code are
commonly called hot-paths. Hot-path detection is done at either
the method level or at the trace (or a string of instructions which
start with a loop head) level. In method based JIT, as the name
suggests, the potential hot-paths are marked at the beginning of
each method implementation. However, the trace-based JIT com-
piler for a Dalvik VM [1] has been implemented on Android 2.2.
The trace-based JIT [10] compiler is the most prevalent and effec-
tive method which compiles the sections of the code that are most
likely to frequently be called. These could include certain obvi-
ous choices like targets of backward branches [11]. The trace is
ended when it forms a cycle in the buffer, executes another back-
ward branch, calls a native method or throws an exception [12].
These potential traces are profiled with some additional meta-data
to keep track of their execution counts.

Although JIT compilers are effective for desktop computers,
JIT compilers are not appropriate to provide acceleration mech-
anisms for mobile applications because they require extra re-
sources [13]. Typical compilers are more than 100 Kbytes in size,
and compiled code typically expands by a factor of six or eight
times, requiring a large RAM cache. A JIT compiler is typically
slow to initiate, resulting in pauses and user input disruptions. JIT
compilers also make heavy demands on the CPU during the com-
pilation phase which means greater memory requirements, more
processing power and ultimately more expenses.

2.2 Dedicated Bytecode Processor and Co-processor
The related works of dedicated bytecode processor and co-

processor techniques have not officially been found for Dalvik
VM but often found for Java VM; for instance, Sun’s picoJava
and JSTAR, etc.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Sun’s picoJava [14] is the Java processor most often cited in
research papers. The first version of picoJava was introduced in
1997. The processor was targeted at the embedded systems mar-
ket as a pure Java processor with restricted support of C. Simple
Java bytecode is directly implemented in hardware, and most of
them execute in one to three cycles. Other performance critical
instructions, for instance invoking a method, are implemented in
microcode. The picoJava stuck on the remaining complex in-
structions, such as creation of an object, and emulates this in-
struction. To access memory, internal registers and for cache
management, picoJava implements 115 extended instructions are
2-byte opcodes. These instructions are necessary to write system-
level code to support the JVM. The architecture of picoJava is a
stack-based CISC processor, which can be implemented within
440 Kgates (128K for the logic and 314K for the memory com-
ponent: 284x80 bits microcode ROM, 2x192x64 bits FPU ROM
and 2x16 KB caches).

Although Dedicated Java processors appear to offer acceptable
performance but they represent a significant overhead and addi-
tional integration and development complexity [13]. They do not
support existing applications or established operating systems,
they must always operate alongside another processor.

For Nazomi JA108 [15], previously known as JSTAR, a Java
co-processor sits between the native processor and the memory
subsystem. JA108 fetches Java bytecodes from memory and
translates them into native microprocessor instructions. JA108
acts as a pass-through when the core processor’s native instruc-
tions are being executed. The JA108 is targeted for mobile phone
usages to increase performance of Java multimedia applications.
The co-processor is available as a standalone package or with in-
cluded memory and can be operated up to 104 MHz. The re-
source usage for JSTAR is known to be approximately 30 Kgate
plus 45 Kbit for the microcode.

Java co-processors translate Java bytecode into the existing
core’s instructions. This acceleration process often requires a sig-
nificant hardware and software integration effort and is difficult
to incorporate into the existing OSs. Co-processors also require
extra space for the gates, and extra power to operate, and are ex-
pensive to manufacture. In addition, they tend to run relatively
slowly because they are loosely coupled with the core processor.

2.3 Architectural Extension
Unlike the dedicated bytecode processors explained in the pre-

vious subsection, its architectural extension is an approach in
which a dedicated bytecode hardware is extended on top of the
existing processors. Jazelle [16] is an hardware extension (of the
ARM 32-bit RISC processor) to execute Java bytecode, similar
to the Thumb state (a 16-bit mode to reduce memory consump-
tion) [17]. The Jazelle DBX (Direct Bytecode eXecution) is inte-
grated into the ARM processor. The hardware bytecode decoder
logic is implemented in less than 12 Kgate and 140 Java byte-
codes are executed directly in hardware, while the remaining are
emulated by sequences of ARM instructions. This solution also
uses code modification with quick instruction to substitute cer-
tain object related instructions after link resolution. All Java byte-
code, including the emulated sequences, are re-startable to enable

a fast interrupt response time. A new ARM instruction (BXJ),
puts the processor into Java State. Bytecodes are fetched and de-
coded in two stages, compared to a single stage in the ARM state.
Four registers of the ARM core are used to cache the top stack el-
ements. Stack spill and fill is handled automatically by hardware.
Additional registers are reused for the Java stack pointer, the vari-
able pointer, the constant pool pointer and locate variable 0 (the
pointer in method). Keeping the complete state of the Java mode
in ARM registers simplifies its integration into the existing oper-
ating system.

A Dalvik Accelerator [2] is a hardware extension to accelerate
execution in a Dalvik VM, an additional pipeline execution path
for direct execution of Dalvik bytecodes as native codes is added.
Thus, instruction Fetch and Decode stages for Dalvik bytecode
have been added in addition to the existing instruction Fetch and
Decode stages in a pipeline of the processor. A Dalvik Acceler-
ator and existing native code decoder are selected by a selector
according to value of status register to change executing modes
of the processor. A dedicated instruction which changes execu-
tion modes is added to a processor for the mode to be migrated
by controlling the status register. Each Dalvik bytecode which
has variable length is fetched in the Fetch stage. Then, the cor-
responding native instruction codes, which consist of 1 to 14 in-
structions, are generated in a Decode stage from the Dalvik byte-
code. Since such switching overhead is accumulated in execution
time, the execution speed decreased during frequent switching.
Therefore, two methods were proposed to eliminate the above
switching overhead. First is the bytecode prediction, whether a
Dalvik bytecode can be executed by hardware or not. If the in-
struction is not continued, the mode migration is avoided. The
second method, a register set which is used by a Dalvik VM and
a Dalvik Accelerator at the same time is duplicated in order for
the registers to be saved and restored independently. The above
implementation is called the “Register Window” to switch the re-
quired register sets.

ARM-Jazelle and Dalvik Accelerator are an enhanced single
processor solution that directly executes Java/Dalvik bytecode
alongside existing OSs, middle ware and application code. By
placing an additional instruction set (to support the architectural
extension) inside the processor, an architectural extension can
reuse all existing processor resources without the need to re-
engineer existing the architecture or add cost, power or budget
resources. An extended core can efficiently run both bytecode
and native code, giving developers the ability to leverage the ex-
isting base of applications and operating system expertise while
achieving a successful balance of Java portability and native per-
formance for their application.

3. Proposed Solution and Architecture

According to the analysis of strengths and weaknesses of var-
ious techniques to optimize the efficiency of VM execution, we
have chosen to explore the architectural extension approach and
introduce new architecture and software optimization techniques
for a practical solution. The strength of ARM-Jazelle and Dalvik
Accelerator are hardware extensions in an existing processor
which are used for fetching, decoding and executing bytecode di-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Table 1 Comparison of hardware extension techniques.

rectly. However, both ARM-Jazelle and Dalvik Accelerator can
execute only simple Java/Dalvik bytecodes directly, while the re-
maining complex instructions, such as creation of instances and
invoking method need a large amount of complex accessing in
a virtual machine. Thus, the complex instructions are emulated
by handler software which is the sequence of native instructions.
Comparison of hardware extension techniques of ARM-Jazelle,
Dalvik Accelerator and our proposed techniques are summarized
in the Table 1.
• Fetch and decode of bytecodes are done on dedicated hard-

ware logic for all three cases.
• While ARM-Jazelle and Dalvik Accelerator contains ded-

icated hardware logic for executing simple bytecodes, our
technique utilizes optimized handler software to reduce the
software execution overhead while maintaining the hardware
overhead small. The drawback of our approach is the lim-
ited acceleration of simple bytecodes, whereas the strength
is that our technique can be utilized to accelerate complex
bytecodes as well.

In the next subsection, we summarize our overall proposed
techniques, and then explain each details in the following sub-
sections.

3.1 Summary of Architectural Features and Software Opti-
mization Techniques

Table 2 shows a typical Dalvik bytecode handler, which corre-
sponds to “move vA, vB” bytecode. The left column shows the
original SW handler codes and the right column shows the opti-
mized SW handler codes utilizing the proposed HW extensions.
As shown in the Table 2, each opcode handler consists of the fol-
lowing steps.
(0) At the entry of the opcode handler, the current byte code is

already fetched and decoded.
(1) Load source/destination operand addresses (vreg indices) to

physical registers.
(2) Fetch next byte code.
(3) Load source operands from memory and compute result.
(4) Write back result to destination operand address.
(5) Decode next bytecode and jump to the corresponding SW

handler address.
Our proposed HW extensions are designed to eliminate steps

1, 2 and 5 of the above SW opcode handler codes, which are sum-
marized as follows:
• Dalvik bytecode fetch logic (DFE) for one cycle bytecode

fetch operation on frequently used 2-byte and 4-byte byte-
codes (eliminate step 2). For 6-byte and 10-byte bytecodes,
it requires additional cycles to fetch from 4-byte wide pro-
gram memory.

Table 2 Typical Dalvik bytecode execution with proposed technique.

Table 3 The goto instruction execution with proposed technique.

• Dalvik bytecode decode logic (DDC) for calculating the
corresponding SW handler address (eliminate step 5) and
preloading source/destination operand address (Vreg in-
dices) to physical registers (eliminate step 1).

Steps 3 and 4 are executed in native mode, where eliminated
steps 1, 2 and 5 are executed in the explained HW extensions in
Dalvik mode. Switching from Dalvik mode to native mode is
done automatically by the Dalvik HW logic, whereas switching
from native mode to Dalvik mode is done by BXD instruction
that is added to the native mode instruction set.

Table 3 shows a special Dalvik bytecode handler for goto in-
struction whose task is simply to jump to the bytecode location
specified by the constant offset value. This goto bytecode handler
consists of the following steps.
(1) Compute the location of the goto target bytecode (add offset

value to the current Dalvik program counter).
(2) Fetch next byte code.
(3) Decode next bytecode and jump to the corresponding SW

handler address.
While steps 2 and 3 are eliminated by the proposed Dalvik

fetch logic (DFE) and Dalvik decode logic (DDC), another HW
extension called “Goto instructions controller” is added to elimi-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 4 Behavior of the proposed processor architectural framework.

Fig. 5 Change to execute Dalvik instruction (BXD).

nate step 1 as well, thereby totally elimination the need to switch
to native mode in this case.

We extended hardware to our existing in-house processor
which is a Tightly-Coupled-Thread (TCT) processor [18], [19].
The TCT Processor is a Harvard architecture, 4-stage pipelines,
32-bit RISC with load-store architecture. The four pipeline stages
are instruction fetch (FE), instruction decode (DC), execute and
memory-read access (EX), and (register or data memory) write
back (WB). Multiplication and division operations are imple-
mented in the ALU using multi-cycle modules. Behavior of the
proposed processor architectural framework is shown in Fig. 4.

The data processing begins with the examination of proces-
sor modes (either Dalvik or TCT mode). If it is TCT mode,
the processor will process as a normal procedure in 4 pipeline
stages, which are fetch, decode, execute and write back. On the
other hand, if it is Dalvik mode, the processor will fetch Dalvik
bytecode, set processor mode, decode Dalvik bytecode, preload
Dalvik operand and compute handler address respectively. The
processor can switch from TCT mode to Dalvik mode via partic-
ular instruction of the TCT processor which is a change to exe-
cute Dalvik bytecode (BXD) instruction as shown in Fig. 5. The
principle function of this instruction is to configure the processor
status (PS) signal and then Dalvik bytecode is fetched at Dalvik
the Program Counter (DPC) in the next cycle. The BXD instruc-
tion also performs a test on the save pc bit. If the save pc bit is
set, the processor then will store the current PC for returning to
main TCT mode. If it is not, the current PC will not be stored for
returning to the Dalvik handler in TCT mode.

The mode switching from Dalvik to TCT is done automati-
cally by Dalvik bytecode fetch logic (DFE: explained in section

Fig. 6 Proposed mode switching.

Fig. 7 Processor pipeline structure with Dalvik hardware extension.

Fig. 8 Block diagram of Dalvik hardware extension.

3.3), and therefore, the overall process of the processor can now
operate in dual modes. The first mode is TCT instruction execu-
tion with 4-stage pipelined (TCT mode) and the second mode is
Dalvik bytecode execution (Dalvik mode). This processor could
be called “a 2 in 1 processor” as shown in Fig. 6. The PS mode is
set to TCT automatically by DFE for executing the Dalvik han-
dler and then PS is set to Dalvik by the BXD instruction for
switching back to fetch the next Dalvik bytecode. The imple-
mentation of proposed hardware is shown in Figs. 7 and 8. The
proposed extension is an acceleration in executing Dalvik byte-
code to the existing processor without degrading the original ar-
chitecture.

3.2 Internal Registers
3.2.1 Dalvik Program Counter (DPC)

Dalvik Program Counter (DPC) acts as pointer to fetch the
next bytecode. By adding the above program counter, switching
between Dalvik and TCT can be rapidly done without any typi-
cal saving and restoring program counter before switching mode,
since each mode has its own program counter.
3.2.2 Bytecode Buffer (Bytecode Buff) and Buffer Pointer

(Buff Ptr)
Bytecode buffer (Bytecode Buff), which is located on the

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

pipeline boundary between fetch (FE) and decode (DC) stages,
has a width of 12 bytes and acts as an instruction register in na-
tive processor mode (32-bit instruction) and as temporary byte-
code storage for Dalvik mode. In Dalvik mode, bytecode fetch
occurs on the 4-byte word boundary from PMEM (P data in
Fig. 8) which is the same for native mode, where the fetched
P data and Bytecode Buff is appropriately shifted and combined
to generate the current bytecode and the next Bytecode Buff
data (NXT Bytecode Buff). Shift operation on P data and Byte-
code Buff is controlled by a buffer pointer (Buff Ptr in Fig. 8)
which keeps track of how many bytes reside in Bytecode Buff.

As we will explain in the following subsections, Dalvik byte-
code fetch logic (DFE) automatically performs the 4-byte fetch
from PMEM as long as Bytecode Buff contains 8 or less bytes
after decoding, and Dalvik bytecode decode logic (DDC) auto-
matically performs the decoding as long as fetched P data and
Bytecode Buff contains the entire data of the current bytecode.
With this scheme, 2-byte and 4-byte bytecodes can be fetched in
one cycle, whereas 6-byte and 10-byte bytecodes require an ad-
ditional one or two cycles, depending on how many bytes reside
in Bytecode Buff.

3.3 Dalvik Bytecode Fetch Logic (DFE)
Two principle operations of Dalvik bytecode fetch logic (DFE)

are fetching Dalvik bytecode of variable length formats and
switching to TCT mode. The Dalvik bytecode have unit size of
1, 2, 3, 5 times larger than 2 bytes (2, 4, 6, and 10 bytes). The ma-
jority of the instruction sizes are 2 and 4 bytes. A 4 bytes fetching
is implemented in DFE, this allows a faster execution than those
of 2 bytes fetching. The Dalvik DFE will activate the PS mode
signal instantly for fetching TCT instruction in the next cycle. If
Dalvik bytecode fetching meets the requirements to execute one
Dalvik instruction then the processor mode is changed to TCT
immediately by default.

3.4 Dalvik Decode Logic (DDC)
The DDC block consists of 4 components, which are Dalvik

bytecode classifier, operand address preloader, Dalvik handler
address computing unit and goto-instructions controller, respec-
tively. They are described as follows:
3.4.1 Dalvik Bytecode Classifier

Dalvik bytecode classifier categorizes the instruction into 2
main groups based on the length of the instruction and the type
of operand loading in Dalvik handler. The length of the instruc-
tion is divided into 4 types, they are 2, 4, 6 and 10 bytes and after
the classifier indicates the length and type of the instruction, the
operand address preloader and the bytecode buffer pointer will be
loaded with an appropriate value accordingly.
3.4.2 Operand Address Preloader

Since Dalvik virtual registers (vreg) are mapped to memory
space in the Dalvik VM, it requires two steps to access one Dalvik
VM operand on vreg. The first step is a taking Dalvik register
addresses (vreg indices) from Dalvik instruction, which is read-
ing Dalvik register addresses from program memory to physical
registers. The second step is loading the register values from
data memory (Dalvik virtual register) to physical registers. For

this reason, various Dalvik operand addresses (vreg indices) are
written into physical registers before accessing the Dalvik virtual
registers during Dalvik handler is being executed. The operand
address preloader hardware processes as first step, which is tak-
ing Dalvik register addresses (vreg indices) from Dalvik instruc-
tion to physical registers. The second step (loading operand val-
ues) will be done in optimized handler. Therefore, the addition of
the operand address preloader into the processor will increase the
speed of interpretation. The operand address preloader hardware
processes the first step, that is, writing the Dalvik register ad-
dresses (vreg indices) to physical registers. The multi-port regis-
ter file is used in the proposed technique in order to write various
Dalvik operand addresses into various physical registers within
one cycle. The writing of Dalvik operand addresses to physical
registers in different handler were categorized by the type of han-
dler source code [6] and format of Dalvik instruction [20] in order
to make a minimal size of preloader.
3.4.3 Dalvik Handler Address Computing Unit

The handler address computing unit will compute the handler
address using technique called “compute goto.” This technique
will define the size of handler code in the fixed size of 64 bytes
and overflow code will be attached at the end of handler table.
Therefore, the computation of the base address of each handler
can be done with obtained fetched opcode and then multiply by
64, which can be implemented by the simple shift-left hardware.

The computed handler address in the decode stage is delivered
via a direct feedback path to TCT fetch logic (FE) as shown in
Fig. 8. This allows the first TCT instruction of the Dalvik byte-
code handler to be fetched without causing any pipeline bubbles
when switching from Dalvik to TCT mode.
3.4.4 Goto Instructions Controller

The goto-instructions controller (as shown in Fig. 9) is the al-
ternative hardware on the TCT processor to obtain faster byte-
code interpretation for the goto-instruction group. When pro-
cessor is decoding goto-instructions in the decode stage, the
goto-instructions controller sends value of the destination address
which obtained from goto-instructions to Dalvik bytecode fetch
logic (DFE). The DFE will fetch the Dalvik instruction from des-
tination address which obtained from goto-instructions controller
promptly send them to the Dalvik decode unit (DDC). When the

Fig. 9 Proposed goto instructions controller.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Table 4 Native Instruction comparison between TCT & TCT+DXT.

goto-instruction is being decoded, goto instruction controller will
activate PS mode signal to Dalvik mode. This implies that it is
unnecessary to use handler in execution for the goto-instruction
group that means the goto-instruction is able to work directly with
the extended hardware. This finding is confirmed by the number
of goto-handler is 1 in Table 4 after the optimization. Moreover,
the designed goto-instructions controller works accordingly with
bytecode buffer and buffer pointer. When the goto-instructions
are encountered, the bytecode buffer will be flushed and next in-
struction is loaded from jump address to the bytecode buffer au-
tomatically. However, the goto-instruction controller can accel-
erate only the goto-instructions group interpretation, the condi-
tional branch instructions (if-eg, if-ne. . . etc.) will be executed
with optimized handler.

The goto-instructions controller hardware was implemented in
the original TCT processor [18], [19] which can run properly at
200 MHz. It could be the alternative to apply with the modern
mobile-class processor, the Dalvik goto-instruction group can be
executed by optimized handler and along with proposed Fetch
& Decode hardware extension without the goto-instructions con-
troller hardware in case of the modern mobile-class processor
does not match up with the designed goto-instructions controller.

3.5 Dalvik Handler Optimization
Together with the previously explained hardware extensions,

software handler codes need to be optimized to remove redun-
dant operations already implemented in extended hardware logic.
This software handler optimization process is already outlined in
Table 2 previously. Here, we will use Figs. 10 and 11 to explain
the optimized handler codes.

The Figs. 10 and 11 show the typical example of handler soft-
ware optimization. Figure 10 is a original Dalvik handler on
the TCT processor that handles const/16 instruction which con-
sists of 13 instructions before the optimization takes place. The
1st step optimization is a reduction of 8 instructions in the ex-
tended Dalvik fetcher and Decoder by removing the instruction

Fig. 10 Original Dalvik handler.

Fig. 11 Software handler after 2nd step optimization.

that fetches remained bytecode, fetches next bytecode, computes
next handler address and jump to next opcode handler. More-
over, Fig. 11 shows the preloader can reduce 3 instructions (SHR,
MOV and SHL) on the 2nd step optimization. A comparison be-
tween the original Dalvik handler and the optimized Dalvik han-
dler is shown in Table 4. The result confirms that the Dalvik in-
struction interpretation on TCT processor with Dalvik hardware
extension (DXT) uses less number of instructions than those of
the original TCT processor due to the proposed Dalvik hardware
extension. For example, the move vA, vB instruction is inter-
preted with 16 instructions on the original TCT processor but
it needs only 5 instructions interpretation on the TCT processor
with proposed Dalvik hardware extension.

3.6 Mode Switching Overhead Elimination Technique
According to the move vA, vB (Dalvik instruction) is used as

an example in Table 2, this section will also use move instruction
to explain the overhead elimination. Table 5 shows the sequence
of Dalvik and TCT instructions,which are processed in the TCT
processor with proposed hardware extension. The symbol col-
umn shows the instruction type (D = Dalvik, T = TCT) and
sequence number of instructions, the instructions column shows
the sequence of Dalvik and TCT instructions. The [T 1 to T 9]
are TCT instructions in the optimized handler of move Dalvik
instruction [D 0], [D 10] (const/16 vAA, #+BBBB) is the next
Dalvik instruction and [T 11 to T n] are TCT instructions in the
optimized handler of const/16 Dalvik instruction [D 10]. The op-
eration rough steps of Dalvik bytecode execution in the processor
with proposed hardware extension can be described as follows:
(1) Enter to Dalvik mode for fetch and decode bytecode.
(2) Switch to TCT mode which can be done by Dalvik fetch

logic (DFE).
(3) Enter to TCT mode to execute Dalvik handler.
(4) Switch to Dalvik mode which can be done by BXD instruc-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Table 5 Sequence of instruction execution.

Table 6 Switching overhead elimination.

tion in TCT Decode logic (DC).
From those steps, one concern with our proposed HW exten-

sion scheme of having Dalvik mode for fetch and decode together
with native (TCT) mode for SW handling is the overhead for
mode switching, since each Dalvik bytecode execution requires
switching from Dalvik mode to native mode and then back to
Dalvik mode again. Here, we propose two techniques for elimi-
nating the mode switching overheads as follows:
• Dalvik to Native mode switching controlled by Dalvik byte-

code fetch logic (DFE).
• Native to Dalvik mode switching implemented by BXD

instruction in SW handler, where delay-slot instruction
scheduling technique is applied to hide mode switching la-
tency.

3.6.1 Dalvik to TCT Mode Switching Overhead Elimination
The Dalvik to TCT mode switching overhead elimination can

be summarized as follows:
• Mode switch from Dalvik to TCT activates after the whole

bytecode has been fetched within one to three cycles (it de-
pends on size of Dalvik instruction and the remaining byte-
codes in Bytecode-buffer).

• Mode switch from Dalvik to TCT is activated at fetch stage
in Dalvik bytecode fetch logic (DFE).

• The first TCT instruction of handler is fetched immediately
with TCT fetch logic (FE) at the next cycle.

• Dalvik Handler address is computed in Dalvik Decode logic
(DDC) and sent to TCT fetch logic (FE) simultaneously.

As shown in Table 6, the DFE activates TCT mode while [D 0]
is being fetched at cycle 0, then the first instruction of move in-
struction handler [T 1] is fetched immediately by TCT fetch logic

and [D 0] decoded by Dalvik Decode logic (DDC) at cycle 1.
Here, the DFE can eliminate the next Dalvik instruction fetch-
ing at cycle 1, then the remaining TCT instructions [T 2 to T 9]
are executed continuously until to the end of handler in the TCT
mode. The Dalvik instruction is processed only in DFE and DDC
stages.
3.6.2 TCT to Dalvik Mode Switching Overhead Elimination

The TCT to Dalvik mode switching overhead elimination can
be summarized as follows:
• BXD instruction is recognized at decode stage in order to

implement mode switch from native to Dalvik.
• Mode switch needs to take effect at fetch stage (since fetch

logic is different for the two modes).
• Our TCT processor has one cycle latency between fetch and

decode stages, thus 1 delay-slot scheduling is applied to hide
the pipeline structural hazard.

• In general, if there is N-cycle latency between the first
pipeline stage and the decode stage, we can still utilize the
N delay-slots on this mode switch instruction to hide the N-
cycle pipeline hazard.

As shown in Table 6 the BXD instruction [T 8] is placed at
one instruction before end of handler in order to hide one cycle
latency between fetch and decode stages. Here, the 1 delay-slot
scheduling is applied to our proposed technique. The BXD in-
struction actives mode switch from TCT to Dalvik by TCT de-
code logic (DC) in decode stage and the last instruction of han-
dler [T 9] is also fetched by TCT fetch logic (FE) in fetch stage
at cycle 9th, then next Dalvik instruction [D 10] will be fetched
immediately by Dalvik fetch logic (DFE) in Davik mode at cy-
cle 10.

This delay-slot scheduling technique is applicable to all han-
dler codes except in the following cases. That is, for conditional
branch handlers (if-eq, if-ne, etc.), conditional branch instruction
exists at the end of the handler code which forces the BXD in-
struction to be placed at the end of the handler, and thus the delay
slot cannot be utilized. In the future, we plan to extend our BXD
instruction such that the condition check instruction can be placed
in the delay slot.

4. Experimental Results

In the experiment, we have evaluated the performance of
Dalvik bytecode interpretation by applying the proposed tech-
niques to TCT processor and ARM (V5TE) processor.

4.1 Evaluation of TCT Processor Dalvik Extension
The existing TCT processor was compared to the TCT pro-

cessor plus extended Dalvik fetch and decode hardware. The
methodology and procedure of the experiment is shown in
Fig. 12, they are explained as follows.

The Java applications are converted to Dalvik bytecodes and
stored to program memory of both processors then these byte-
codes will be interpreted by TCT platform interpreter. The Dalvik
interpreter for TCT platform will be generated from Dalvik
source code [6]. The process in generating platform-specific
code can be processed by using configuration file and genera-
tion tool [21] that is provided by Google. After generating TCT

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 12 Proposed evaluation methodology.

platform interpreter, particular role assignment of registers on the
interpreter must be done to allow the interpreter to work cor-
rectly according to Dalvik Virtual Machine specification. The
role assignment of registers are as follows, R5 (interpreted frame
pointer) is used for accessing locals and argument, R6 is thread
pointer and R8 is the interpreted instruction base pointer. We can
use generated interpreter in TCT processor for interpreting the
Dalvik bytecode afterwards. However, the TCT processor with
Dalvik hardware extension must optimize the assembly code in
each handler before we can apply as we mentioned in proposed
solution.

Since TCT processor and Dalvik hardware extension have been
developed by Language for Instruction Set Architectures (LISA)
on Synopsys Processor Designer [22], the Synopsys Processor
Debugger software [23] will be used to measure the processing
efficiency of both processors. The Synopsys Processor Debugger
allows us to observe, debug and profile the executed application
source code including the state of the processor by visualizing all
processor resources and the output which provided by the exe-
cuted application.

The efficiency comparison of both processors, are focused in 3
areas, they are as follow: arithmetic and logic, loop and condition,
and method invocation and return. Java application for evaluating
the efficiency of the arithmetic and logic is from Google source
code (012-math) [6] which verifies the accuracy of Dalvik Virtual
Machine. The evaluations of arithmetic and logic are divided into
2 types, they are: 32 bits and 64 bits data processing. Java appli-
cation that processes 32 bits is transformed to Dalvik bytecode,
consists of 24 Dalvik instructions size 74 bytes and those instruc-
tions aim to process with integer operands; for example, add-int,
mul-int, shl-int and xor-int etc. Another Java application pro-
cesses 64 bits is transformed to Dalvik bytecode which consists
49 Dalvik instructions size 152 bytes and those instructions aim
to process with long operands; for example, add-long, mul-long,
shl-long and xor-long etc. Likewise, Java application for evaluat-
ing the efficiency of loop and condition is obtained from Google
source code (090-loop) [6] as well. Loop and condition program
will be transformed to be 40 Dalvik instructions size 112 bytes.
This program includes 2 for-loops, conditions and instructions
that are for increasing the value of counters in loop; for exam-
ple, goto, if-ge, if-ltz and add-int etc. The Java application for

Fig. 13 codePointCountImpl bytecode.

Table 7 TCT processor evaluation result.

evaluating the efficiency of method invocation and return, are ob-
tained from java library because java.lang.String.java [24] is con-
sidered as fundamental class that is frequently used. The chosen
codePointCount in the referred class to evaluate Dalvik bycode
consists of 4 methods as follows; the String.codePointCount,
Character.codePointCountImpl, Character.isHighSurrogate and
character.isLowSurrogate. The invoke instruction in the code-
PointCount method will invoke the codePointCountImpl method
which is main principal process and Dalvik instruction of this
method is shown in Fig. 13.

As noted, this method has 2 invoke and 2 return instructions in
for-loop (goto, if-ge), thus, this method will invoke the isHigh-
Surrogate and isLowSurrogate method indefinitely to the end of
loop and then return to process on codePointCount method. For
this purpose, the number of instructions and the code size of
Dalvik instructions are obtained from the String.codePointCount,
Character.codePointCountImpl, Character.isHighSurrogate and
character.isLowSurrogate are 14 instructions 52 bytes, 21 instruc-
tions 70 bytes, 8 instructions 28 bytes and 8 instructions 28 bytes
respectively.

The results of interpretation of all applications/methods are
shown in the Table 7 which will be explained as follows. This
Table 7 shows the number of Dalvik instructions that is actually
interpreted while processing but may not be the whole instruction
number of each method. Therefore, in this table shows how many
instructions and how many cycles that Dalvik instructions is in-
terpreted with native instructions; for example, the arithmetic and
logic (32-bit) application are processed with 490 cycles in TCT
processor by using 486 TCT instructions interpreted 24 Dalvik

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 14 Performance comparison.

instructions. But the processing in TCT processor with Dalvik
hardware extension is used only 180 TCT instructions and 290
cycles.

The evaluation graph in Fig. 14 shows the efficiency compar-
ison between 2 types of processor. TCT processor with pro-
posed Dalvik hardware extension can process loop & condition
2.7 times faster than TCT processor due to Dalvik instruction in-
terpretation in goto-instruction group is able to execute directly
in the designed goto instructions controller. The evaluation of
arithmetic and logic of 32 and 64 bits processing, TCT processor
with proposed Dalvik hardware extension can process 2.4 and
1.9 times faster than TCT processor respectively. The reason of
64 bits processes slower is the accessing of 2 or 3 pairs of 32-bit
register, which are used for computing 64-bit result, additional
instructions are required to improve the 64-bit scheme. The mea-
suring efficiency of process of invoke and return instruction can
be checked the results from the parent method (CodepointCount).
It proved that TCT processor with proposed Dalvik hardware ex-
tension can process 1.8 times faster than TCT processor because
of invoke and return instructions is complex instruction so a nu-
merous numbers of TCT instruction are used up to 69 and 23
instructions in interpretation as you can see in Table 4.

4.2 Evaluation of ARM (V5TE) Processor Dalvik Extension
The proposed techniques are simple to apply to other proces-

sors which can be done with just in 2 steps. The 1st step is the
hardware extension and the 2nd step is the Dalvik handler opti-
mization. We assumed that Dalvik Fetch and Decode hardware
have already extended into ARM (V5TE) processor. In the 2nd
step, we optimized Dalvik handler of ARM processor in Android
open source code [6]. As indicated in the Dalvik handler opti-
mization section, the instructions which fetch remained bytecode,
fetch next bytecode, compute handler address and jump to opcode
handler can be replaced by the instruction (BXD) for entering to
Dalvik mode and utilizing Dalvik fetch and Decode hardware.
Utilizing Dalvik operand address preloader in this 2nd step, more
instructions related to loading Dalvik operands can be removed.
A comparison between the original ARM (V5TE) handler and the
optimization handler is shown in Table 8.

For the instance, Dalvik instruction (move vA, vB) is inter-
preted with 8 ARM instructions on the original ARM proces-
sor but it needs only 3 ARM instructions interpretation on the
ARM processor with proposed Dalvik hardware extension. An

Table 8 Native Instruction Comparison between ARM (V5TE) &
ARM+DXT.

Fig. 15 Dalvik bytecode test program.

Table 9 ARM (v5TE) processor evaluation result.

efficiency comparison between the original ARM processor and
the ARM processor with proposed Dalvik hardware extension
was conducted based on the summation of native instructions and
cycles which interprets all bytecodes on typical Java application
program. The number of cycles can be obtained from the simula-
tion of each handler on ARM RealView Debugger (RVDS) [25].
On this evaluation, a simple Java program which count to 10 is
used as a test program. This program consists of 6 Dalvik instruc-
tions (size 18 bytes) and the instructions are const/4, const/16, if-
ge, add-int/lit8 and goto as shown in Fig. 15.

The function of each instruction is explained as follows. The
const/4 instruction assigns the default value (0) to counter (v0),
the const/16 instruction assigns the end value (10) of counter to
v1, the if-ge instruction verify the condition of counter, the add-
int/lit8 instruction increases counter value by one, the goto in-
struction repeatedly jumps to the const/16 instruction and the pro-
gram is terminated by return-void instruction. Table 9 is the eval-
uation result based on the cycle count of instructions in handler
with the latency of BXD and the cycle count of bytecode fetching

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

for both ARM configurations.
As we explained in the proposed architecture Section, the pro-

cessor with proposed HW extension runs in two modes (Native
and Dalvik), One Dalvik instruction is fetched by DFE and the
optimized handler (including the BXD instruction) is executed
by Native mode. The ARM Realview Debugger could not give
us the cycle count of Dalvik bytecode fetching and the latency of
BXD instruction. The cycle count of Dalvik bytecode fetching in
the Dalvik bytecode fetch logic (DFE) is 1 to 3 cycles. On this
test program the cycle count of every instructions are 1 cycle be-
cause the instruction size of them are 2 to 4 bytes. Thus, on this
test program 1 cycle is applied to the bytecode fetching for ARM
processor with proposed hardware extension and the latency of
BXD instruction is 1 cycle (2 cycles for conditional branch han-
dlers) in the same way as proposed hardware.

All instructions in the test program are run in 10 loops except
const/4 and return-void instructions are run in 1 pass. A total of
42 Dalvik instructions will be interpreted by ARM instructions
while running this program. The results of the tests are shown on
the last line of Table 5. To interpret 42 Dalvik instructions, the
original ARM processor needs 387 ARM instructions and 607
cycles, the ARM processor with proposed Dalvik hardware ex-
tension (DXT) needs only 119 ARM instructions within cycles
of optimized instructions in handler, 52 cycles of BXD latency
and 42 cycle of bytecode fetching. On the test program, the pro-
posed Dalvik hardware extension is able to speedup the interpre-
tation by 2.2 times (approximately). However, the efficiency of
Dalvik bytecode interpretation obtained from the proposed hard-
ware extension will depend on the Java application program. If
the Java application program contains many simple instructions
(ALU, Loop & Condition), the result is the Dalvik bytecode in-
terpretation will have a higher efficiency. On the other hand, the
loaded interpretation of complex instruction (invoke, return and
instance-obj) shows only a small increases in efficiency. For ex-
ample, the interpretation speedup of const/4, if-ge and goto (sim-
ple) instructions are increased to 3x, 2.7x and 11x respectively but
the interpretation speedup of return-void (complex) instruction is
only 1.2x.

4.3 The Proposed Hardware Synthesis
The Synopsys Design Compiler [26] is used for synthesis TCT

processor with Dalvik hardware extension by using TSMC 90 nm
technology with tcbn90lphplvttc library at 200 MHz. We show
the result of synthesis TCT processor before and after extended
Dalvik hardware in Table 10.

From Table 10, the total area of Dalvik hardware extension
is slightly increased by 0.3 mm2 or equivalent to 10.56 Kgate
(NAND) [3]. Moreover, it consumes the total power which also
has a minor increase at only 0.23 mW. The Dalvik hardware
extension slightly uses more resources because less complicated

Table 10 Synthesis comparison result.

hardware are being utilized as much as possible.

5. Future Work

The knowledge extension and development of our proposed
techniques have 2 directions as follows;
(1) The focus on the efficiency development of the better Dalvik

bytecode interpretation which we have the concept in hard-
ware development to support Dalvik bytecode interpretation
directly in case of the instruction is not so complicated. Af-
terwards, it will be integrated to the proposed technique so
it can extremely accelerate the speed of the Dalvik bytecode
interpretation.

(2) The proposed techniques can apply to other popular Virtual
Machines; such as, Java Virtual Machine and Parrot Vir-
tual Machine. The proposed techniques utilize the hybrid
solution which the adopted hardware and software can be
processed together and it is easy to do so. We could state
that using the existing software of Virtual Machine may in-
voke minor adjustments and the proposed hardware can be
adapted to another processor easily without degrading the
existing characteristics.

6. Conclusion

We proposed a new method to enhance the efficiency of Dalvik
bytecode interpretation in Android Operating System by using
hybrid technique which is the hardware extension into the exist-
ing processor and operate with Dalvik handler software perfectly.
The achievement that we acquired was the Dalvik hardware ex-
tension enabled existing processor interpreted Dalvik bytecode to
the maximum speed up to 2.7x @200 MHz by consuming the ad-
ditional area of 0.03 mm2 and power increment of 0.23 mW. The
new solution that we proposed also has many other distinctive
features; such as, the Dalvik hardware that we designed to have
less complications. It is simple to expand in any processor with-
out degrading the original characteristics in them. Another thing
is the Dalvik hardware can easily process together with existing
Dalvik handler software with a few adjustments. The experiment
result provides us the ideas to significantly improve the efficiency
of Dalvik bytecode interpretation in the future. The key is the
designing extension of the existing Dalvik hardware to support
the basic instructions and integrate the proposed techniques that
we presented to support the complicated instruction of Dalvik.
For this reason, processor will process completely and extremely
faster. Moreover, it not only presenting the efficiency develop-
ment of Dalvik bytecode interpretation but we also proposed fu-
ture techniques to apply to other Virtual Machines to have a better
performance. In addition, this mentioned application can be used
with both stack based Virtual Machine and register based Virtual
Machine; for example, Java VM and Parrot VM by slightly mod-
ifying the existing Virtual Machine. Furthermore, it could be said
that our Dalvik hardware has particular feature is Virtual Machine
Independent.

Acknowledgments This work is supported by VLSI Design
and Education Center (VDEC), the University of Tokyo and
Synopsys, Inc.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

References

[1] Cheng, B. and Buzbee, B.: A JIT Compiler for Android’s Dalvik VM,
Google, available from 〈http://dl.google.com/googleio/2010/android-
jit-compiler-androids-dalvik-vm.pdf〉 (accessed 2014-03-09).

[2] Ohta, A.,Yoshizane, D. and Nakajo, H.: Cost Reduction in Migrat-
ing Execution Modes in a Dalvik Accelerator, Proc. 1st IEEE Global
Conf. Consumer Electronics, pp.502–506 (2012).

[3] Taiwan Semiconductor Manufacturing Company Limited: TSMC
90nm Core Library Application Note, Release 1.2 (2006).

[4] Bornstein, D.: Dalvik VM Internals, Google I/O Conf. 2008 Presenta-
tion Slides, available from 〈http://sites.google.com/site/io/dalvik-vm-
internals〉 (accessed 2014-03-09).

[5] Google Android: Dalvik Executable Format, available from
〈https://source.android.com/devices/tech/dalvik/dex-format.html〉
(accessed 2014-03-09).

[6] The Android Open Source code, available from 〈https://source.
android.com/source/index.html〉 (accessed 2014-03-09).

[7] Porting Android to Devices, available from 〈https://source.android.
com/devices/index.html〉 (accessed 2014-03-09).

[8] Suganuma, T., Yasue, T., Kawahito, M., Komatsu, H. and Nakatani,
T.: A dynamic optimization framework for a Java just-in-time com-
piler, Proc. 16th ACM SIGPLAN Conf. Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’01), pp.180–195
(2001).

[9] Aho, A., Lam, M., Sethi, R. and Ullman, J.: Compilers: Principles
techniques and tools, Vol.1009, Pearson/Addison Wesley (2007).

[10] Gal, A. et al.: Trace-based Just-In-Time Type Specialization for Dy-
namic Languages, Proc. ACM SIGPLAN Conf. Programming Lan-
guage Design and Implementation, pp.465–478 (2009).

[11] Gal, A., Probst, W. and Franz, M.: An effective jit compiler for
resource-constrained devices, Proc. 2nd International Conf. Virtual
Execution Environments, VEE ’06, pp.144–153, ACM (2006).

[12] Inoue, H., Hayashizaki, H., Wu, P. and Nakatani, T.: A trace-based
java jit compiler retrofitted from a method-based compile, Proc. 9th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’11, pp.246–256, IEEE Computer Society (2011).

[13] Steve, S.: Accelerating to meet the challenge of embedded Java, White
paper of ARM Limited, Cambridge, UK (2001).

[14] Puffitsch, W. and Schoeberl, M.: picoJava-II in an FPGA, Proc. 5th
International Workshop on Java Technologies For Real-Time and Em-
bedded Systems, JTRES ’07, Vol.231, pp.213–221, ACM (2007).

[15] M. Schoeberl: Hardware Support for Embedded Java, available from
〈http://www.jopdesign.com/doc/chap javahw.pdf〉 (accessed 2014-03-
09).

[16] Jazelle-ARM Architecture Extensions for Java Applications, available
from 〈http://cadal.cse.nsysu.edu.tw/seminar/seminar file/
sywang 0917.pdf〉 (accessed 2014-03-09).

[17] ARM: The Architecture for the Digital World, Technical Reference.
[18] Urfianto, Z., Isshiki, T., Khan, A. and Li, D.: A Multiprocessor SoC

Architecture with Efficient Communication Infrastructure and Ad-
vanced Compiler Support for Easy Application Development, IEICE
Trans. Fundamentals, Vol.E91-A, No.4, pp.1185–1196 (2008).

[19] Isshiki, T., Urfianto, Z., Khan, U., Li, D. and Kunieda, H.: Tightly cou-
pled thread: A new design framework for multiprocessor system-on-
chips, Proc. DA Symposium 2006 IPSJ Symposium Series, Vol.2006,
No.7, pp.115–120 (2006).

[20] Android: Bytecode for the Dalvik Virtual Machine, available from
〈https://source.android.com/devices/tech/dalvik/dalvik-bytecode.
html〉 (accessed 2014-03-09).

[21] Android-platform, Dalvik Porting Guide, available from
〈https://groups.google.com/forum/#!topic/android-platform/
-4epsQnp1CM〉 (accessed 2014-03-09).

[22] Synopsys, Inc.: Processor Designer Reference Manual, F-2011.06
(June 2011).

[23] Synopsys, Inc.: Processor Designer: Debugger Reference Manual, F-
2011.06 (June 2011).

[24] Source code for the Java library classes, available from
〈http://grepcode.com/file/repository.grepcode.com/java/root/jdk/
openjdk/6-b14/java/lang/Class.java〉 (accessed 2014-03-09).

[25] ARM RealView Debugger User Guide, Version 4.0 (2008).
[26] Synopsys, Inc.: Design Compiler User Guide, Version D-2010.03-

SP2 (2010).

Surachai Thongkew received his B.E.
degree from Sripatum University and
M.E. degree from Asia Institute of Tech-
nology, Thailand, in 1999 and 2002 re-
spectively. He was a lecturer at De-
partment of Computer Engineering in
Sripatum University. Since 2010 he has
been studying for his Ph.D. degree in De-

partment of Communications and Computer Engineering, Tokyo
Institute of Technology. His interests include MPSoC hard-
ware/software co-design and VLSI architecture design for Virtual
Machine.

Tsuyoshi Isshiki has received his B.E.
and M.E. degrees in electrical and elec-
tronics engineering from Tokyo Institute
of Technology in 1990 and 1992, respec-
tively. He received his Ph.D. degree in
computer engineering from University of
California at Santa Cruz in 1996. He is
currently an Associate Professor at De-

partment of Communications and Computer Engineering in
Tokyo Institute of Technology. His research interests include
MPSoC programming framework, high-level design methodol-
ogy for configurable system, bit-serial synthesis, FPGA archi-
tecture, image processing, fingerprint authentication algorithms,
computer graphics, and speech synthesis. He is a member of
IEEE CAS, IPSJ and IEICE.

Dongju Li received her Ph.D. degree in
Electrical and Electronics from Tokyo In-
stitute of Technology in 1998. She is cur-
rently an Associate Professor at Depart-
ment of Communications and Computer
Engineering, Graduate School of Science
and Engineering, Tokyo Institute of Tech-
nology. Her current research interests in-

clude embedded algorithm for fingerprint authentication, finger-
print authentication solution for smart phone, VLSI architecture
design and methodology and SOC design for multimedia appli-
cations such as fingerprint and video CODEC. She is a member
of IEEE CAS and IEICE since 1998.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Hiroaki Kunieda was born in Yokohama
in 1951. He received his B.E., M.E. and
Dr. Eng. degrees from Tokyo Institute of
Technology in 1973, 1975 and 1978, re-
spectively. He was a Research Associate
in 1978 and an Associate Professor in
1985, at Tokyo Institute of Technology.
He is currently a Professor at Department

of Communications and Computer Engineering in Tokyo Insti-
tute of Technology. He has been engaged in researches on Dis-
tributed Circuits, Switched Capacitor Circuits, IC Circuit Simula-
tion, VLSI CAD, VLSI Signal Processing and VLSI Design. His
current research focuses on fingerprint authentication algorithms,
VLSI Multimedia Processing including Video CODEC, Design
for System On Chip, VLSI Signal Processing including Recon-
figurable Architecture, and VLSI CAD. He is a member of IEEE
CAS, SP society, IPSJ and IEICE.

c© 2015 Information Processing Society of Japan

