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Abstract: Now that billions of people carry sensor-enabled mobile devices (e.g., smartphones), employing powerful
capability of such commercial mobile products has become a promising approach for large-scale environmental and
human-behavioral sensing. Such a new paradigm of scalable context monitoring is known as opportunistic sensing,
and has been successfully applied to a broad range of applications. In this paper, we briefly introduce basic architecture
and building blocks on which these emerging systems are based, and then provide a survey of recent progress in the
opportunistic sensing technology.
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1. Introduction

The market of smartphones and wearable devices is steadily
expanding in a yearly basis. According to a recent survey, global
smartphone shipments have reached one billion in 2013 [1], and
the number of such new-generation mobile products in use will
no doubt continue to increase at a substantial pace. Consider-
ing the fact that mobile phones today are equipped with a variety
of sensors such as GPS, accelerometers, compasses, gyroscopes,
barometers, cameras, microphones, light/proximity sensors and
so on, they are no longer just a means of human communication
but also powerful sensing tools, which can faithfully capture hu-
man behavior and the context in which the user is involved. The
potential of sensor-enabled mobile phones have been proved in a
huge number of epoch-making commercial mobile applications
as well as extensive research work.

Since billions of people carry such mobile products with a rich
set of sensors, each of which has access to the Internet via cel-
lular or WiFi networks, we can see them as a huge sensor net-
work that spans across the world. This enables a totally different
way of observing and understanding physical phenomena in real
world. Here, let us take crowd density sensing as an example.
Measurement of crowd density had been, or is even still manu-
ally done by “human-wave tactics,” recruiting a number of field
workers who count the number of pedestrians passing a specific
region. Obviously, this approach is far from efficient in terms
of human effort and monetary cost. Another possible solution
is to deploy sensor devices in the area of interest to automati-
cally count the number of pedestrians. Vision-based pedestrian
tracking using CCTV cameras [2], [3] falls into this category. As
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well as camera devices, other types of sensors such as passive
infrared (IR) sensors [4], [5], laser range finders [6] and sensitive
floors [7] have been successfully applied to crowd counting and
tracking systems. Despite the minimal dependence on human in-
tervention, they have a severe limitation on coverage of moni-
toring since they need pre-installed sensing infrastructure. The
mobile sensing approach can effectively cope with such a cov-
erage issue. For example, Weppner et al. [8] have recently pro-
posed a Bluetooth-based solution for the crowd density sensing
problem. A small proportion of mobile phone users periodically
probe neighboring Bluetooth-enabled devices using a special mo-
bile application that runs on their own mobile phones. The neigh-
bor information is then reported to a centralized server with the
corresponding location information, so that the server can aggre-
gate the user-contributed data from multiple volunteers to roughly
estimate crowd density in each pre-defined region. A strong ad-
vantage of this approach is that it is not dependent on any sens-
ing infrastructure, except for a single central server. As far as
there are a sufficient number of volunteers who contribute the
local sensing results with their mobile phones, the system can
recognize the spatial distribution of pedestrian crowds with min-
imal human intervention. Such a recently emerged paradigm of
large-scale context monitoring is called opportunistic sensing, or
participatory sensing. The idea of opportunistic sensing has been
successfully applied not only for crowd density sensing but also
a wide range of applications such as environmental sensing [9],
monitoring of transportation systems [10], [11], [12] and obser-
vation of social network structure [13].

Continuous monitoring of human behavior and the current sit-
uation in the area of interest is not only being a core technology of
pervasive computing, but also has plenty of potential to optimize
our society as a whole. For example, the spatial distribution of
pedestrian crowds at a city scale is valuable information for dis-
aster control and urban planning as well as human navigation. In
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addition, trajectories and density of pedestrian crowds in a public
building (e.g., a shopping mall) can also be effectively utilized
for marketing, crowd control and intelligent energy management,
in which air conditioning or lighting systems are adaptively con-
troled according to the number of pedestrians in each region. An-
other promising application of such sensing technology is road
traffic monitoring. Recent studies have shown that traffic condi-
tions of a future time can be reasonably predicted by analyzing
the current and historical traffic conditions that are observed by
on-vehicle sensors [14]. Based on the prediction, driver naviga-
tion systems may actively control the traffic by globally optimiz-
ing the routes that are recommended to the users to reduce the
total amount of fuel consumption and carbon emission in the en-
tire city. We believe that opportunistic sensing technology is a
key enabler of such cyber-physical systems, in which data from a
huge number of heterogeneous sensors are analyzed to leverage
the results for optimization of human behavior, social infrastruc-
ture and resource utilization.

In this paper, we first introduce basic architecture and building
blocks, on which such emerging sensing systems are based. Then
we provide a survey of recent progress in the opportunistic tech-
nology and discuss future challenges in this hot research topic.
While there have been some survey papers on related technology,
they just briefly review a broad range of topics on mobile-phone-
based sensing in general [15], or provide tutorial and general dis-
cussion on opportunistic sensing [16]. Unlike these works, this
paper focuses on introducing various successful instances from
recent literature to show trends and state-of-the-art of opportunis-
tic sensing technology.

2. Architecture

Basic architecture of opportunistic sensing systems is illus-
trated in Fig. 1. Each phone which contributes to the sensing task
locally collects sensor measurement with its built-in sensors, and
applies some preprocessing to the raw sensor data. A typical pro-
cess in this phase is feature extraction, in which the sensor data

Fig. 1 Basic architecture of opportunistic mobile sensing.

are summarized into feature vectors with limited dimensions us-
ing some statistical criteria (e.g., mean, variance, etc.). This ef-
fectively reduces communication overhead accompanied by data
uploading to a server, and mitigates the risk of privacy leakage
from the contributed data. Because of the limited resources on
mobile devices, it is highly desirable that computational complex-
ity of the preprocessing task is as small as possible. Instead, the
remaining data processing will be usually offloaded to the central
server.

Optionally, the user-contributed data may undergo further pro-
cessing for privacy enhancement. It is known that, for some
kind of widely-used feature values, the original sensor data can
be roughly inferred by analyzing the feature vectors that are re-
ported to a server [17]. This may incur a serious privacy threat
for volunteers who contribute to the sensing service, especially
if the original sensor data contains privacy-sensitive information
(e.g., audio recordings during conversation). A variety of privacy
enhancement approaches have been proposed to cope with such
a threat and to incentivize the users to join the sensing service.
Section 5.1 provides detailed discussion on the privacy issues in
opportunistic sensing.

Some systems assume that neighboring mobile devices col-
laborate with each other via short-range wireless communication
(e.g., Bluetooth) for locally aggregating sensor data to mitigate
communication overhead accompanied by data uploading to a
server [18], or to reduce battery consumption by strategically bal-
ancing their sensing tasks [19].

After the preprocessing followed by the optional privacy en-
hancement process, the mobile phone uploads the resulting in-
formation to a server via wireless network. Most of the existing
mobile sensing systems assume that the user-contributed infor-
mation is collected to a server via cellular network. However,
the cellular-based communication often incurs some monetary
expenses to the users, which would be a discouraging factor for
voluntary contribution. If the application allows some delays in
collecting sensor data, each mobile phone can temporarily store
the data in its local storage, and upload them when it has access to
a WiFi access point. Such an opportunistic networking approach
effectively reduces “cost for contribution” and lowers the thresh-
old for user’s participation.

Finally, the server further analyzes the user-contributed data
to extract the information required by applications. Outlier fil-
tering and noise elimination algorithms can be applied in this
phase to enhance accuracy and robustness of the sensing results.
Then, local information from multiple mobile phones are aggre-
gated by appropriate decision fusion rules (e.g., majority voting)
to derive the final estimate. The order of the three processes at
server side can be changed depending on characteristics of the
user-contributed data and requirement of the applications. Then
the results of the analysis can be fed back to our society in various
manners (e.g., crowd control, energy management, urban plan-
ning and traffic monitoring/control), as illustrated in Fig. 1.

3. Building Blocks

Opportunistic sensing systems are grounded on existing works
on (individual) mobile sensing, such as localization, activity
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recognition, proximity sensing, sound recognition and visual
scene understanding. This section briefly surveys these building
blocks.

3.1 Localization
A significant proportion of mobile crowd sensing systems asso-

ciate user-contributed sensor information with the corresponding
geo-locations. For that purpose, the systems often require current
locations of mobile phones along with a variety of sensor data.
Although GPS is widely used for location acquisition of mobile
phones, GPS receivers are extremely power-hungry and thus their
continuous activation usually incurs unacceptable battery con-
sumption. An effective way to mitigate battery consumption is
strategically duty-cycling GPS receivers, so that the location er-
rors are bounded below a tolerable level. EnTracked [20] employs
accelerometers to distinguish movement state (i.e., stationary or
in-motion) of the users, while estimating user’s velocity based
on the estimated positions obtained by GPS. Then it combines
these information to determine the timing of the next position up-
date. EnLoc [21] interpolates between consecutive location read-
ings from GPS by predicting user’s movement based on the past
mobility patterns, which contributes to reduce instantaneous er-
rors. RAPS [22] dynamically activates GPS when the expected
position uncertainty exceeds a designated level and GPS fix is
likely available according to the history of localization attempts
at each area. Pedestrian dead reckoning (PDR) [23], [24], [25] is
an alternative solution for energy-efficient localization, in which
trajectory of a phone holder is estimated by detecting his walk-
ing steps and moving direction using accelerometers, compasses
and/or gyroscopes. To cope with rapid accumulation of position
errors due to sensor noise and irregular human motion, Comp-
Acc [25] extracts possible moving paths from Google Maps and
matches noisy PDR traces with those reference paths. Combina-
tion of PDR with the duty-cycled GPS is also a reasonable solu-
tion to achieve desired accuracy at smaller energy cost.

Another drawback of GPS is a lack of availability in indoor
environments, where radio signals from GPS satellites are ob-
structed by the structure of buildings. WiFi-based localiza-
tion [26], [27], [28] has been well investigated to complement
GPS and widely used for indoor positioning of mobile/wearable
devices. It basically requires a calibration phase, in which re-
ceived signal strength from multiple WiFi access points are mea-
sured at each location in the building to construct a radio map.
Once the above calibration is completed, location of mobile de-
vices can be identified by matching the radio signature observed
by the device with those in the radio map. Furthermore, the re-
cent trend of configuration-free localization mitigates effort in the
calibration process [29], [30]. As well as radio signals from WiFi
access points, ambient sound [31], GSM [32], [33] and FM broad-
cast radios [34], [35] have also been proved to serve as effective
location signatures in indoor environments. SurroundSense [36]
employs environmental signatures like ambient sound, accelera-
tion, color and light, which can be sensed by cameras and mi-
crophones in mobile phones. Combining these optical, acoustic
and motion attributes with WiFi signatures, it can robustly distin-
guish adjacent locations that are separated only by a wall. While

most of such fingerprint-based localization systems successfully
work with off-the-shelf mobile devices, they have a drawback of
vulnerability to environmental change. Thus the reference finger-
prints need to be regularly updated to maintain reasonable posi-
tioning accuracy. PDR also provides an alternative solution for
indoor positioning. In Ref. [37], errors in the PDR traces are
mitigated by fusing received signal strength from WiFi access
points and floor map information. References [23], [38] intro-
duce particle-filter-based approaches that match the original PDR
traces with floor maps to provide accurate indoor positioning.

Unfortunately, there has not been any localization technology
that can provide fine-grained location in a ubiquitous manner re-
gardless of the phone’s context (e.g., indoor or outdoor, etc.) and
availability of infrastructure. Currently, the most reasonable and
widely accepted approach for location acquisition is to combine
different types of techniques according to the surrounding situa-
tion and accuracy requirement by applications.

3.2 Activity Recognition Using Motion Sensors
Physical activities (e.g., walking, running, sitting, driving, etc.)

of people in the area of interest strongly help understanding the
situation and characteristics of the environment. So far, a con-
siderable amount of research effort has been made to capture
such human behavior by accelerometers, compasses and gyro-
scopes, which are commonly available in commercial mobile
devices. Activity recognition systems are basically composed
of two phases; (i) feature extraction from raw sensor data and
(ii) inference by machine-learning-based classifiers, which take
the feature values as input and output an estimated activity.

In order to fully extract information from raw sensor data, fea-
ture values are usually defined both in time and frequency do-
mains. Typical features in the time domain include mean, stan-
dard deviation, variance, interquartile range (IQR), mean absolute
deviation (MAD), correlation between axes, entropy and kurto-
sis [39], while frequency-domain features (e.g., energy in specific
frequency bands) are extracted by applying Fourier Transform or
Discrete Cosine Transform to the raw sensor data. Selection of
feature values is a key process in design of activity recognition
systems, since inappropriate features never contribute to accuracy
improvement, or even may harm the system performance.

After the feature extraction is completed, the system estimates
the current activity of the target person using activity classifiers,
which are built beforehand based on a set of training data (i.e.,
feature values annotated with the corresponding activities). The
classification algorithm should be carefully selected considering
accuracy requirement and constraint on computational resources.
k-NN [40] calculates distance between the observed feature val-
ues and those in the training data set to find k nearest instances.
Then the estimated activity is determined based on the majority of
corresponding activities for those k training data. Despite the ease
of implementation, classification by k-NN is computationally ex-
pensive; its computational complexity increases in proportion to
the number of training data. Decision tree [41] is one of the most
popular approaches because of its small computational complex-
ity in the inference phase. It organizes a set of inference rules
in the form of hierarchical tree structure, in which each node is
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associated with a condition for the feature values. Support Vector
Machine (SVM) [42] is another popular approach to feature clas-
sification for activity recognition. SVMs employ kernel functions
to project training data to a higher dimensional space in order to
find a linear decision boundary to separate those data. The hidden
Markov model (HMM) [43] is a probabilistic model, in which a
sequence of observable variables (i.e., feature values) is gener-
ated by a sequence of hidden Markov states. Thus it provides a
reasonable solution if sensor data has some temporal dependen-
cies. Bayesian approaches provide an effective way to cope with
uncertainty in the feature values. A common idea is to find an
activity that maximizes a posteriori probability, which is calcu-
lated based on a pre-defined likelihood model. Naı̈ve Bayes [44]
is the simplest form of such Bayesian approaches, in which each
feature value is assumed to be conditionally independent, given
a specific activity. While this assumption may not necessarily
hold in practical scenarios, it has been shown that Naı̈ve Bayes
can achieve reasonable classification performance in a variety of
applications.

3.3 Proximity Sensing
There has been a body of research on capturing social relation-

ship among people (e.g., friend, families, etc.) based on sensor
data contributed by a crowd of mobile phone users. Proximity
patterns, or encounter information between mobile devices take
an important role in discovering such social network structure.

Because of its ease of implementation and availability in a
wide range of commercial products, the device discovery mech-
anism of Bluetooth has been successfully utilized for phone-to-
phone proximity sensing in a variety of ubiquitous computing
applications [13], [45], [46]. While Bluetooth has a shorter ra-
dio transmission range (typically about 10 m) compared to the
ad-hoc mode of WiFi, and thus basically consumes lower energy,
continuous proximity sensing still rapidly drains battery in mo-
bile devices. eDiscovery [47] copes with this problem by adap-
tively adjusting the frequency of probing based on the number of
neighbors that are detected by the recent probes.

Use of audio tones is also a reasonable option to obtain accu-
rate proximity information. Since ambient noise usually concen-
trates in lower frequency components below 2 kHz, audio tones
with higher frequencies can be robustly detected by applying Fast
Fourier Transform (FFT) to the recorded audio samples. Refer-
ence [48] reports that the amplitude of audio signals steeply de-
clines around 5 m from the transmitter phone, which effectively
mitigates false positives in proximity sensing.

As well as just detecting phone-to-phone proximity, recent lit-
erature shows that audio tones also enable accurate distance mea-
surement between mobile phones. Peng et al. [49] and Liu et
al. [50] estimate distance between a pair of mobile phones based
on propagation delays of audio beacons that are transmitted by
each phone. Qiu et al. [51] enable 3-dimensional relative local-
ization between smartphones equipped with two microphones.
While they incur some additional overhead to cope with clock off-
set between the phones, they enable contact probing with much
finer resolution and help accurate detection of social interactions
among mobile phone users.

3.4 Sound Recognition
Sound recorded by microphones in mobile phones also con-

tains a substantial amount of cues about human behavior, social
interaction and current situation in the environment. For exam-
ple, energy in the audio spectrum reflects the level of ambient
noise, which has strong correlation with crowd density in the en-
vironment [52]. Speech recognition [53] and speaker identifica-
tion [54] techniques further analyze detailed characteristics of the
audio clips to capture people’s verbal communication. As the
first step of audio analysis, an audio clip is usually divided into
a sequence of fixed-length frames. Then FFT is applied to these
frames to calculate power of each frequency component (i.e., au-
dio spectrum), from which a variety of features are extracted.
SoundSense [55] is a pioneering work that enables detailed anal-
ysis of audio clips with the limited computational resources of
mobile phones. It effectively combines the following 8 features
from existing audio analysis literature to classify audio frames
into three categories; speech, music and ambient sound:
( 1 ) Zero Crossing Rate (ZCR) [56]: The number of zero cross-

ings within a single frame in the time domain waveform.
( 2 ) Low Energy Frame Rate [57]: The number of frames in a

frame window whose root mean square (RMS) power is less
than 50% of the average RMS power over the entire window.

( 3 ) Spectral Flux (SF) [57]: L2-norm of the spectral amplitude
difference vector of two adjacent frames.

( 4 ) Spectral Rolloff (SRF) [58]: The frequency bin below which
93% of the distribution is concentrated.

( 5 ) Spectral Centroid (SC) [58]: Centroid of the spectral power
distribution.

( 6 ) Bandwidth [58]: The width of the range of the frequencies
that the signal occupies.

( 7 ) Normalized Weighted Phase Deviation [59]: The phase de-
viations of the frequency bins in the spectrum weighted by
their magnitude.

( 8 ) Relative Spectral Entropy (RSE) [60]: The Kullback-Leibler
divergence between the frequency domain of the current
window of frames and previous 500 frames.

SoundSense constructs a decision tree based on all the features
above to assign an estimated category to each audio frame. Fi-
nally it also applies smoothing to the sequence of outputs from
the decision-tree-based classifier to correct instantaneous errors
in the classification results.

For further analysis beyond sound classification, Mel Fre-
quency Ceptral Coefficient (MFCC) [61] has been utilized in a va-
riety of sound recognition applications (e.g., speech recognition).
Human sound perception has fine-grained resolution for low fre-
quency components, while being less sensitive to higher frequen-
cies. MFCC divides the audio spectrum into frequency bins with
different sizes to mimic this characteristic. SoundSense, which is
mentioned above, also employs MFCC to find audio events from
the set of classified audio frames. Despite its powerful audio rep-
resentation capability and applicability to various types of anal-
ysis, calculation of MFCC features is computationally intensive
and not suitable for real-time processing on mobile devices.
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3.5 Visual Scene Understanding
Utilizing cameras on mobile devices is also a powerful means

of situation recognition. Scene understanding based on images
and videos have been a central research topic in the computer
vision community. One of the important problems which are
closely related to opportunistic sensing is human detection from
monocular images. A number of techniques have been proposed
in terms of features, models and general architectures [62] for ro-
bust human detection. As well as human bodies, other objects
or scenes in general can be recognized once their visual model
is constructed [63], [64], [65]. Most of existing scene recogni-
tion models basically assume outdoor environment, and accurate
indoor scene recognition have been an open problem for a long
period of time. Quattoni et al. [66] recently developed a scheme
to cope with this challenging problem, which can classify indoor
scenes into pre-defined categories (e.g., office, store, etc.).

In addition to scene recognition, image analysis technology
has also been successfully applied to human activity recognition,
which we have discussed in Section 3.2. Detailed analysis and a
survey in this direction can be found in Ref. [67].

4. Applications

The idea of opportunistic sensing has been successfully applied
to a wide range of applications. This section picks up some of
successful instances from the recent literature on opportunistic
sensing technology.

4.1 Environmental Sensing
Advantage of opportunistic sensing is its ease of achieving

wide coverage. Thus it is in nature suitable for large-scale en-
vironmental monitoring. Ear-phone [9] is a participatory sens-
ing system that monitors environmental noise pollution in urban
areas, aiming at better awareness of noise levels and aid in the
development of pollution mitigation strategies. It employs mi-
crophones in mobile phones to measure a loudness characteristic
and builds a noise map by collecting the data to a centralized
server with the phone’s current location (obtained by GPS). To
recover an accurate noise map from user-contributed data that
are typically incomplete and randomly distributed in space and
time, it effectively applies a set of algorithms for compressive
sensing. Common Sense [68] applies the idea of opportunistic
sensing to large-scale air quality monitoring. It employs a cus-
tom external sensor device equipped with commercial carbon
monoxide, nitrogen oxides, ozone gas sensors as well as light,
temperature, relative humidity, and orientation sensors. The de-
vice also has an 802.15.4 interface to collaborate with other sen-
sors via a local low-energy wireless network, and also can con-
nect to mobile phones via Bluetooth for visualization and data
uploading purposes. The collected data are annotated with the
corresponding location and a timestamp, and then uploaded to a
server for dissemination, visualization and analysis over the web.
MAQS [69] enables fine-grained indoor air quality sensing by in-
tegrating smartphones and portable CO2 sensors. Instead of us-
ing sensors for various types of air pollutants, it proposes a novel
air quality sensing method based on air exchange rates (i.e., how
quickly the air is cycled through a room), which can be detected

only by CO2 sensors. Since people in the same room share sim-
ilar air quality, it introduces zone-based collaborative sensing, in
which multiple phones in vicinity share a single CO2 sensor to
save energy consumption. Unlike other opportunistic sensing sys-
tems, MAQS does not employ any centralized server. Instead, it
shares the sensing data via the local network between the sensors
and mobile phones.

4.2 Transportation
Monitoring of road traffic and public transportation systems

is another promising applications that fully exploit high spatio-
temporal coverage of opportunistic sensing.

CarTel [10] provides a novel mobile sensing platform to col-
lect, process, deliver and visualize data from a collection of sen-
sors equipped in vehicles. Cars temporarily store collected sensor
data in their local databases, and opportunistically deliver them to
a web-based portal when connection with e.g., WiFi access points
is established. The portal visualizes these sensor data in a user-
friendly manner, and allows mobile sensing applications to query
it without awareness of spatial distribution and mobility of real
sensors. The authors also provide a variety of case studies using
CarTel, including analysis of driving patterns and road traffic (i.e.,
commute time analysis and traffic hot spot detection using col-
lected GPS traces, as well as image acquisition from in-vehicle
cameras). Nericell [11] enables monitoring of road and traffic
condition using off-the-shelf smartphones instead of dedicated
on-board sensors. To this goal, it provides a collection of sens-
ing components to detect quality of the roads (e.g., potholes and
bumps) and driving behavior (e.g., braking and honking) using
the phone’s accelerometer, microphone, GSM radio and/or GPS
receiver. In order to reduce communication overhead, the analy-
sis of sensor data is performed locally on the phone using energy-
efficient and computationally inexpensive algorithms. Zhang et
al. [70] estimate drivers’ refueling activity in urban area based
on GPS traces collected from taxicabs. By analyzing the spatio-
temporal trajectory information, their system provides real-time
estimates of waiting times of gas stations and an indicator of
overall gas usage. These information can be effectively utilized
for user refueling recommendation, planning of gas station de-
ployment and macro-scale economic decisions based on energy
consumption analysis. GreenGPS [71] maps fuel consumption on
city streets to allow drivers to find the most fuel-efficient routes.
It obtains fuel consumption measurements using the OBD-II in-
terface (i.e., a standard interface to vehicle on-board sensors), and
collects them to a centralized server by an opportunistic sensing
approach. The authors show through their field experiments that
the routes recommended by the GreenGPS system enable on av-
erage 10% savings in fuel consumption, compared to the routes
constructed by different criteria. ParkNet [72] collects occupancy
of road-side parking space by opportunistic sensing. It assumes
that each vehicle is equipped with a GPS receiver and a ultra-
sonic rangefinder, which is used to sense availability of parking
spot during driving on a city road. The data is then aggregated at
a central server to build a real-time map of parking availability.
Janecek et al. [73] leverage anonymized signaling data collected
from a cellular mobile network to infer vehicle travel times and
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road congestion. They first estimate travel times and detect a
presence of congestion using coarse-grained signaling data that
can be collected from all the mobile phones, and then perform
detailed analysis on fine-grained data from “active” phones (i.e.,
mobile phones engaged in a voice call or data connection) to lo-
calize the congestion. An advantage of their system is that it does
not require any active sensing (e.g., uploading GPS traces) by mo-
bile phone users and can use mobile cellular network as a large-
scale mobility sensor.

Zhou et al. [12] developed a system to predict waiting time at
bus stops based on opportunistic sensing by bus passengers. It
automatically recognizes whether the user is on a bus by locally
analyzing audio recordings from microphones in his/her mobile
phones. Then the system identifies the current location of the bus
based on a sequence of cell towers which the phones connect to.
This effectively mitigates energy consumption on mobile phones,
compared to the use of GPS. Maekawa et al. [74] enable car-
level localization and congestion estimation for intelligent nav-
igation of railway passengers. They collect radio connectivity
and received signal strength (RSS) from neighboring phones by
Bluetooth-based proximity sensing. The basic idea for localiza-
tion is that the RSS steeply declines at boundaries of adjacent
passenger cars. By clustering the network topology based on the
RSS values, the system can recognize relative car-level location
between passengers, which can then be converted to absolute po-
sition with support of a small number of passengers who manu-
ally report their correct location. The RSS information is also uti-
lized for car congestion estimation since the radio signal is more
likely to be obstructed by human bodies as the number of passen-
gers in the car increases.

4.3 Crowd Behavior and Social Relationship
We have shown in Sections 3.1 and 3.2 that low-cost sensors in

mobile devices have been successfully utilized to recognize loca-
tion and activity of individual mobile phone users. Aggregating
the behavior information of those individual users by the frame-
work of opportunistic sensing, the system can obtain behavior of
a collection of people (i.e., crowds) as well as social interactions
between multiple phone users.

As mentioned in Section 1, Weppner et al. [8] proposed a
crowd density estimation system based on Bluetooth-based prox-
imity sensing by a small proportion of mobile phone users. A
major challenge of this approach is that the ratio of people who
carry a discoverable Bluetooth device may be low in practical
scenarios. To cope with the issue, they define relative features
that do not directly depend on the absolute number of devices in
the environment and introduce machine-learning-based approach
to classify the crowd density in the environment into multiple
categories. Nishimura et al. [52] proposed a participatory sens-
ing system, which is capable of detecting smoothness of pedes-
trian flows as well as crowd density, aiming to build a congestion
map in public space (as in Fig. 2). Built-in accelerometers in mo-
bile phones are leveraged to detect characteristics of pedestrian’s
walking motion which changes according the presence of con-
gestion and smoothness of the surrounding pedestrian flow. In
addition, magnitude of ambient audio noise is also detected by

Fig. 2 Crowd density estimation by opportunistic sensing [52].

microphones to support the crowd density recognition. By in-
corporating the information from two different sensors and then
aggregating the reports from multiple mobile phones, the system
classifies the situation in pre-defined areas into four categories.
Kannan et al. [75] developed a distributed system to count the
number of mobile phone users in the area of interest. It em-
ploys audio tones, in which the list of detected phones is encoded
into a set of frequency components. By repeatedly exchanging
and updating these tones between neighboring devices using mi-
crophones and speakers in mobile phones, it accurately counts
the number of unique phones in the environment. Isaacman et
al. [76] modeled macro-scopic human mobility between different
metropolitan areas by extensive analysis of Call Detail Records
(CDRs) from a cellular network. Since human mobility substan-
tially depends on the geography of the city people live in, the
mobility model should take into account both the geography and
individual user mobility patterns. To this goal, they sample the
spatial and temporal probability distributions from CDR to build
a model which is capable of generating sequences of locations
and times of synthetic people. Such a mobility model can be
effectively utilized for evaluation of mobile computing systems;
e.g., to predict geographical coverage of opportunistic sensing
applications. Kjærgaard et al. [77] detect pedestrian flocks (i.e.,
a group of pedestrians who move together for a certain period
of time) in indoor environments. Their system extracts features
from acceleration, compass and WiFi measurements and applies a
clustering algorithm to these features to find the pedestrian flocks.
The analysis of such flocking behavior helps evacuation manage-
ment and development of socially-aware applications.

4.4 Situation Recognition and Semantic Reasoning
Opportunistic sensing is also an effective approach to under-

standing characteristics of geographic region or specific location.
ConvenienceProbe [78] analyzes trajectory data offered by mo-
bile phone users to identify retail trade areas, which is critical
information for determining the optimal store location, finding
competing stores and planning outdoor advertisements. Chon et
al. [79] designed a framework for automatically recognizing cat-
egories of places (e.g., store, restaurant, etc.) based on oppor-
tunistically captured images and audio clips from smartphones.
For this purpose, they fully exploit existing visual/audio analysis
technology such as scene recognition, optical character recogni-
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tion and speech recognition to find “hints” for categorizing the
places (e.g., words spoken by people, text written on signs, and
objects recognized in the environment). These hints are asso-
ciated with the corresponding location data obtained by GPS or
WiFi localization, and then analyzed by a centralized server. The
characteristics of previously unseen places are learned using topic
models, in which a collection of hints extracted from raw sensor
data are grouped by the visited places to find their distributions.
Once a topic model is established, it can be used to categorize the
subsequent sensor data. iSee [80] detects and localizes specific
events (e.g., presence of smokers or graffiti in public places) by
participatory sensing with mobile phones. Unlike other systems
introduced above, iSee employs users’ manual input as virtual

sensors. When a user finds a designated event, he reports it using
a mobile application by swiping on his smartphone’s touchscreen
in the direction of the event, as well as offering the current GPS
reading. The presence and locations of the events are then iden-
tified at a server by accumulating the reports from a number of
volunteers over time.

5. Research Challenges

5.1 Privacy
User-contributed sensor data in opportunistic sensing systems

often contains some privacy sensitive information. Basically, the
users put some trust in system administrators who operate a cen-
tralized server that they never reveal the contributed data to other
parties, nor use the data for other purposes than those originally
stated. However, once the data is exposed to a malicious party
by some reason, it incurs serious privacy threats. For example,
many opportunistic sensing systems require the data to be anno-
tated with the corresponding location information, from which
the user’s home, work place and daily routines can be easily in-
ferred. Audio recordings and pictures can contain a rich amount
of private information, including conversation, the surrounding
situation and other persons who the user is interacting with. A
simple solution to mitigate these threats is that sensing applica-
tions on mobile phones allow users to configure types, sampling
frequency and granularity of sensor data they contribute to the
server. Users may also explicitly specify sensitive sensor data that
they do not intend to upload (e.g., locations of their home or work
place). However, the resulting privacy level significantly depends
on the knowledge of the users themselves on possible attacks by
malicious users, and thus it may still happen that privacy-sensitive
information is revealed in a way that the users have never in-
tended. Alternative ways of privacy enhancement are to put bo-
gus data or random noise onto the sensor data before uploading
to a server, so that the statistical trends of a collection of user-
contributed data are still preserved [17]. A common challenge of
these approaches is to ensure a certain security level while min-
imizing the impact on performance of the system. While users
can also control their privacy levels by adjusting the amount of
noise that is added in the perturbation process, larger noise leads
to less accuracy or coarse granularity in inference by the server.
Finding the best trade-off point between privacy and performance
is still an open problem. The interested readers may refer to
Ref. [81], which provides extensive survey on state-of-the-art of

privacy preservation technology for mobile sensing systems.

5.2 Data Collection
Utility of opportunistic sensing systems is directly dependent

on the number and spatial distribution of volunteers who con-
tribute to the sensing service with their mobile devices. This fact
has motivated the research community to develop incentive mech-
anisms, so that the users willingly help sensing tasks and con-
tribute valuable information. A possible way to stimulate active
participation of users is to pay a small amount of money as a re-
ward for one’s contribution. Yang et al. [82] modeled an incentive
mechanism under limited budget for the micropayment by game
theory, and showed how to compute the equilibrium, at which
the utility of the platform is maximized while none of the users
can improve its utility by unilaterally deviating from its current
strategy. They also proposed an auction-based incentive mecha-
nism where users have more control over the payment they will
receive. As well as the amount of data, its quality is also an im-
portant factor to maintain performance of the system, since some
malicious users may upload bogus or significantly noisy data to
degrade accuracy of inference by the system. To address this is-
sue, Huang et al. [83] designed a reputation system, where the
application server can evaluate the trustworthiness of contributing
devices so that corrupted sensor data or malicious contributions
are identified. The results can be utilized to enhance robustness
of the systems e.g., by lowering the weights of malicious data in
the computation of summary statistics. While these works have
made important progress in the data collection problem, there still
remain a number of problems to be solved such as efficient col-
laboration of incentive and reputation models and reasonable bal-
ancing between incentives/reputations and privacy.

5.3 Data Analysis
Intelligent analysis of sensor data is also an important chal-

lenge. Classification is one of the most popular approaches for
recognizing the current context based on sensor measurements.
While we have shown some of major classification algorithms
in Section 3.2 as enablers of human activity recognition, they
can also be applied to a wider range of applications. To build
a machine learning model for such classification tasks, the sys-
tem needs a sufficient amount of training data, which is com-
posed of sensor measurements associated with the corresponding
context labels (e.g., human activity, sound events, location cate-
gories, etc.). Traditionally, such annotated training data have been
collected by developer of the system through some measurement
campaigns. However, it requires substantial human burden, and
may not scale as the system aims to support plenty of contexts for
fine-grained situation recognition. In addition, robustness of the
resulting model usually depends on the amount and diversity of
the training data, which would be limited in such a traditional ap-
proach. A possible solution to build a robust model with minimal
cost would be collaborative learning, in which mobile users con-
tribute their sensor data as training samples [17], [84]. As with
opportunistic sensing, this approach also incurs privacy concern
and requires incentive/quality control mechanisms for data col-
lection. Although Pickle [17] successfully addresses the privacy
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issue for some of popular machine learning algorithms, further
analysis should be made to apply the idea of collaborative learn-
ing to practical sensing systems.

Automatically detecting meaningful patterns from collected
sensor data would also be a promising direction of opportunis-
tic sensing technology. Most of existing systems rely on models
and classifiers that are trained beforehand, and thus are not able to
recognize new objects, situations and events, which have not been
seen in the training phase. Some recent works on mobile sens-
ing try to remove this limitation by analyzing similarity between
the user-contributed data. A common idea on which they are
grounded is that the meaningful measurement patterns should be
observed multiple times or by a number of mobile users. Sound-
Sense [55] employs unsupervised adaptive learning techniques to
discover and learn new types of sound events from the phone’s au-
dio recordings. Then it ranks potential sound events with respect
to frequency and duration of occurrences to identify significant
sounds for each user. UnLoc [85] applies a clustering algorithm
to the sensor data collected from a number of mobile phones to
automatically find identifiable ambient signatures in a building.
For example, an elevator imposes a distinct pattern on a smart-
phone’s accelerometer, while a corridor-corner may overhear a
unique set of WiFi access points. They envision such ambient
signatures as “landmarks” and use them to correct errors of in-
door localization. Such automatic analysis mechanisms allow the
sensing system to evolve its own capability in an autonomous
manner and dramatically enhance their adaptability.

Another challenge is effective utilization of historical sensor
data. Since the number of volunteers who contribute to oppor-
tunistic sensing would be usually limited in practical scenarios,
it may often happen that the sensor data collected from a spe-
cific area is extremely few in a certain time range. It significantly
harms performance of the system especially if their purpose is
real-time monitoring of some physical phenomena (e.g., traffic
flow, crowd density, noise level, etc.). In terms of robustness
of the sensing systems, it must be desirable that reasonable ac-
curacy can be maintained even with the limited spatio-temporal
coverage of user-contributed data. In addition, some applications
require future conditions in designated locations rather than the
current status. For example, users of vehicle navigation systems
would like to know traffic conditions at the time when the com-
puted routes are actually driven. An effective way to address these
requirements is to build an empirical model based on historical
sensor data. Herring et al. [14] estimate real-time traffic flows and
predict future traffic conditions based on spatially and temporally
sparse GPS trajectories collected from a small amount of probe
vehicles. They build historical distributions of travel time on each
road segment and adaptively update these distributions using a
probabilistic framework that represents dependency among the
road segments. Yuan et al. [86] combine GPS logs collected from
taxicabs and other context information available on the Internet
(e.g., weather conditions) to build a detailed traffic model, which
takes various external factors into account. The basic idea of uti-
lizing historical data would be also effective for other types of
sensing systems such as crowd flow sensing and environmental
monitoring. In order to fully take advantage of such historical

data, appropriate statistical models should be designed, consider-
ing requirement of applications (e.g., spatial and temporal gran-
ularity, accuracy, etc.), characteristics of the target phenomena to
be monitored as well as types, acquisition frequency and quality
of the sensor data.

6. Conclusion

In this paper, we have provided a survey of state-of-the-art on
opportunistic sensing, in which a large number of mobile phones
or other types of mobile devices contribute their sensor data via
networks to achieve real world sensing at large scale. We have
first briefly introduced basic architecture and building blocks on
which the opportunistic sensing systems grounded, and then in-
troduced some of important instances from the recent literature.
Finally, we have discussed future challenges on this attracting re-
search topic.

The ease of achieving wide coverage with minimal infras-
tructural cost is a strong advantage of opportunistic sensing,
and would continue to stimulate further investigation and de-
velopment of a plenty of potential novel applications. On the
other hand, it may not be able to completely replace the exist-
ing infrastructure-based sensing systems, since its resolution of
monitoring is in general less precise than those with pre-installed
sensing infrastructure. We believe that seamless collaboration
of pervasive opportunistic sensing and fine-grained sensing by
infrastructure-based systems which are opportunistically avail-
able in the environment would be a reasonable direction of future
real-world sensing.
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