HEMS における通信インタフェースの業務用機器への拡張

村上 隆史 $^{\dagger 1 \dagger 2, a)}$ 一色 正男 $^{\dagger 2, b)}$ 杉村 博 $^{\dagger 2, c)}$ 横山 悠平 $^{\dagger 2, d)}$

全世界的にエネルギーマネジメントの重要性が、叫ばれ続けているなか、日本国内においても、エネルギーの高効率利用は、20世紀後半より継続して高い関心を持ち続けている。特に 2011 年 3 月の東日本大震災以降は、エネルギーマネジメントの効率化を目的とし、Home Energy Management System (以下、HEMS)を中心にマルチベンダ相互接続を実現するための仕組み作りや商品化の加速が進んできている。ただし、HEMS の対象範囲での電気使用量は、エネルギー全体の 1/3 程度であり、エネルギーマネジメントをさらに有効にしていくためには、HEMS 以外のエネルギー機器へ拡張していくことが重要になる。業務用機器のネットワーク接続における課題は、標準化が十分に進んでおらず、マルチベンダ接続が困難な状況である。そこで、民生用途の HEMS で確立した技術の展開を検討し、業務用機器へ拡張時の課題を整理するとともに、ツールを用いて通信インタフェースの展開が可能であることを検証する。

Extension of the HEMS communication interface to equipment

TAKASHI MURAKAMI^{†1†2} MASAO ISSHIKI^{†2} HIROSHI SUGIMURA^{†2} YUHEI YOKOYAMA^{†2}

The importance of global energy management is being cried in the all over the world. Also in Japan, High-efficiency utilization of energy is very interesting from the end of the 20th century. Especially since the Great East Japan Earthquake of March 2011, the scheme to achieve a multi-vendor interoperability and the commercializing any kind products for energy are accelerating focusing around Home Energy Management System (below, HEMS). However, the electrical consumption in the scope of HEMS is about one third of the total energy. In order to enable more effective energy management, it is important to extend the scope other than HEMS. An issue in the network connection between the energy equipment other than HEMS is that the standardization is not sufficiently advanced and multi-vendor connection is a difficult situation. Therefore, we consider deploying the techniques established in HEMS of consumer applications and organizing some issues. And we verified that it is possible to extend communication interface from HEMS to range of other than HEMS by using a tool.

1. はじめに

地球温暖化による危機が顕在化してきている中,その一因として,近年世界的に電力需要が急速に拡大していることがあげられ,エネルギーに関する課題解決が急務な状況となっている.

対応策としては、機器単体での省エネは継続して進められてきているものの効果には限界がある。また、近年注目を集めている再生可能エネルギーについては、効果が大きい半面、安定した電力供給が困難で、導入量に限界がある。そのため、省エネ機器、再生可能エネルギーに加え、エネルギーを蓄えることができる蓄エネ機器を連携させることによって、全体最適の観点でエネルギー利用の効率を高める制御が重要ある。さらに、一般家庭をはじめとする需要家内においては、様々なメーカの機器が混在していることが一般的であり、マルチベンダ相互接続による機器間の連携が取れる仕組みは必須な状況である。

このような状況の中, 日本においても, 2011年3月の東日本大震災を契機に, Home Energy Management System (以

下, HEMS)を中心にエネルギーマネジメントの展開が広がっている。しかしながら、エネルギー全体のマネジメントを考慮すると、家庭における電気の使用は全体の 1/3 程度であり[1]、店舗、中小ビルなどの家庭領域以外のシステムへの拡張を検討していく必要がある。

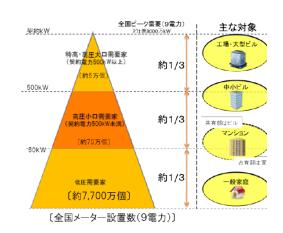


図 1 電気使用に関する分布

HEMS については、産官学一体となった取り組みによって、マルチベンダ環境下での相互接続を実現するために標準化とともに、市場の拡大が進みつつある。それに対し、家庭以外の場合、例えば店舗、中小ビル、マンション(共用部)などに適用することができる標準化された通信プロトコルは存在しているが、特に店舗などで用いられるシス

^{†1} パナソニック(株)

Panasonic Corporation

^{†2} 神奈川工科大学

Kanagawa Institute of Technology

a) murakami.takashi@jp.panasonic.com

b) masao@kait.jp

c) sugimura@he.kanagawa-it.ac.jp

d) yokoyama.i.kait@gmail.com

テムにおいては、コスト等の課題もあり、独自プロトコルでのシステムを構築するケースが一般的である。そこで、家庭以外の需要家においても、すでに普及が進みつつある HEMS の技術を適用することで、マルチベンダ環境化において、より高効率なエネルギーマネジメントを実現することが重要である。

2. HEMS 技術の適用

2.1 ECHONET Lite 規格の特長

2012年2月にスマートハウス検討会より「HEMSにおける公知な標準インタフェース」として推奨を受けたECHONET Liteを搭載したコントローラ、エアコン、照明などの家電機器や、燃料電池、蓄電池、太陽光発電システムなどの設備系機器の普及が進みつつある。この HEMS で用いられている ECHONET Lite の主な特長として、以下の2点があげられる[2].

- IEEE, ITU などで国際標準として規定されている伝送 メディアをサービスの要件や, 設置環境の要件等に基 づいて, 選択することを可能としたトランスポートフ リーの通信プロトコル
- 機器の制御コマンドをオブジェクト指向によるモデル化により規定することで、数多くの機器の制御コマンドを規定するとともに、それらの機器へアクセスするためのインタフェースを統一した通信プロトコル

2.1.1 トランスポートフリーの通信プロトコル

ECHONET Lite 規格では、規定する範囲を OSI 参照モデルにおける 5 層~7 層に限定することとし、4 層以下はトランスポートフリーとした。 ECHONET Lite 規格の前身である ECHONET 規格を策定した 2000 年当時は、ホームネットワークで利用可能な標準伝送メディアがほとんど存在していなかったことから、第 1 層から第 4 層含め、すべての通信レイヤを規定した。しかし、ここ近年では、IEEE や ITU などで様々な国際標準仕様が規定されるようになり、これら国際標準仕様の伝送メディアの利用や、市場から安価な伝送メディアの調達を望む声の高まりを受け、OSI 参照モデルにおける 5 層~7 層に特化した通信プロトコルとして、ECHONET Lite 規格を新たに規定した。

ECHONET Lite 規格では、自由に伝送メディアを保有する技術に応じて、選択できるようになったため、機器のネットワーク対応がより容易なものとすることができた。新しい ECHONET Lite 規格と従来の ECHONET 規格の規格範囲の比較を図 2 に示す。

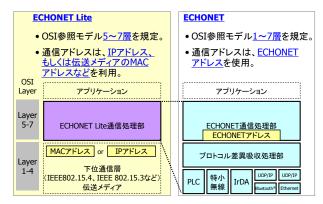


図 2 ECHONET Lite と ECHONET との比較

2.1.2 ECHONET Lite で用いる制御コマンド

エアコン、燃料電池、蓄電池、HP 給湯機などの創蓄省エネ機器は、メーカごとに制御するためのプログラム群やデータ群が異なる。そのため、マルチベンダ間の相互接続を考慮した場合、コントローラの制御プログラムは、メーカ毎に異なったプログラムが必要であり、実質マルチベンダ間の相互接続はとても困難な状況であった。そこで、機器の種別を「ECHONET オブジェクト」、各々の機器が持つ情報や機能を「ECHONET プロパティ」、各機能の操作方法を「ECHONET サービス」と定義して、3層構造で実際の家電機器・センサ類などをオブジェクト指向によりモデル化した。イメージ図を図3に示す。

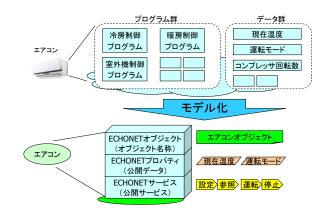


図 3 制御コマンドのモデル化

このようにモデル化した各機器の制御コマンドをエコーネットコンソーシアムでは「機器オブジェクト」と呼ぶ。 エコーネットコンソーシアムでは、設立当初の1997年より 機器オブジェクトの定義を進め、現在では96種類の創蓄省 エネ器やセンサ類などに関して定義済みである[3]。機器オブジェクトの代表例を表1に示す。

表 1 機器オブジェクトの代表例

クラスグループ	機器の事例
センサ関連	人体検知センサ、電力量セン
	サ,開閉センサなど
空調関連機器	家庭用エアコン,換気扇,空
	気清浄機など
住宅関連機器	太陽光発電システム,燃料電
	池, 蓄電池, 給湯機, 各種ス
	マートメータ、照明など
調理・家事関連機器	冷凍冷蔵庫, オープンレンジ,
	IH 調理器,洗濯乾燥機など
健康関連機器	体重計
管理・操作関連機器	コントローラ, スイッチ
AV 関連機器	ディスプレイ, テレビ

2.2 店舗向けエネルギーマネジメントへの適用

HEMS 以外の領域への適用として、店舗向けエネルギーマネジメントを事例とし、店舗で用いられているショーケースへの適用を検討した。具体的には、2.1.2 で記載したオブジェクト指向のモデル化に基づいて、ショーケース、及びショーケース室外機の制御コマンドを規定した。

具体的には、業務用ショーケースを示す ECHONET オブジェクトを「0x03, 0xCE」、業務用ショーケース室外機を示す ECHONET オブジェクトを「0x03, 0xD4」と規定した.次に、ショーケース、及びショーケース室外機の持つ機能を ECHONET プロパティとして定義し、各 ECHONET プロパティに対応する ECHONET サービスを定義した。それぞれの ECHONET プロパティ、及び対応する ECHONET サービスの定義を表 2、表 3 にまとめる。なお、表 2、表 3 の「必須」欄に記載している「M」は、ショーケース、ならびにショーケース室外機が搭載することを必須とする ECHONET プロパティを示し、「O」は機器が保持する機能次第で搭載有無が変わるオプションの ECHONET プロパティであることを示す。

表 2 ショーケースの制御コマンド

	Z 23			
プロパティ	EPC	プロパティ	アクセス	必須
名称		内容	ルール	
動作状態	0x80	ON: 0x30	Set	О
		OFF: 0x31	Get	M
運転モード	0xB0	0x41 (冷却),	Set	M
		0x42 (非冷),	Get	M
		0x43 (霜取		
		り),0x44 (水		
		切り), 0x40		
		(その他)		
吐出温度計	0xBD	$0x81 \sim 0x7D$	Get	О
測値		(− 127 ~		
		125°C)		
庫内照明動	0xE0	0x30 (ON),	Set	О
作状態		0x31 (OFF)	Get	M
庫外照明動	0xE1	0x30 (ON),	Set	M
作状態		0x31 (OFF)	Get	M
コンプレッ	0xE2	0x30 (ON),	Set	О
サ動作状態		0x31 (OFF)	Get	О
庫内温度計	0xE3	$0x81 \sim 0x7D$	Get	M
測値		(127~125°C)		
冷凍能力値	0xE4	$0 \sim 0$ xFFFD	Get	О
		(0~65533)		
霜取りヒー	0xE5	$0 \sim 0$ xFFFD	Get	О
タ消費電力		(0~65533)		
ファンモー	0xE6	$0 \sim 0$ xFFFD	Get	О
タ消費電力		(0~65533)		
ヒーターモ	0xE7	0x30 (ON),	Get	M
ード		0x31 (OFF)		
-t: a	•	. > + + H 166 ~ 4		

表 3 ショーケース室外機の制御コマンド

我 5 クコー/ 八王/門及の間岬 5 ママー							
プロパティ	EPC	プロパティ	アクセス	必須			
名称		内容	ルール				
動作状態	0x80	ON: 0x30	Set	О			
		OFF: 0x31	Get	M			
特殊状態	0xAA	通常状態	Get	0			
		=0x40,除霜					
		状態=0x41					
運転モード	0xB0	0x41(冷却),	Set	M			
		0x42(非冷)	Get	M			
外気温度計	0xBE	$0x81 \sim 0x7D$	Get	О			
測値		(-127~125°C)					
コンプレッ	0xE2	0x30 (ON),	Set	О			
サ動作状態		0x31 (OFF)	Get	О			

3. HEMS 技術適用時の課題

3.1 システム構成

ショーケースやショーケース室外機などの店舗、中小ビルなどに設置されている機器に、HEMS 技術である ECHONET Lite を適応する場合に想定するシステム構成について、ショーケースを事例にして、図 4 に記載する. 新規の機器本体に ECHONET Lite 機能を搭載することも重要だが、既存のショーケース含め適用可能な機器の数を増やすためには、既存のシステムに ECHONET Lite 機能を適用することが重要となる. その場合、既存のシステムを東ねているローカルのコントローラ上に、ECHONET Lite 通信処理機能を搭載し、そのコントローラ上に仮想的なECHONET Lite の機器の機能を搭載するとともに、他の機器に対して、ネットワーク上に公開する方法が考えられる.

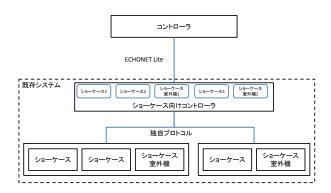


図 4 HEMS 技術適用時のシステム構成例

3.2 課題

エアコンなどの HEMS で用いる機器においては、基本的には一つの通信機能を保持した機器 (以下、ノードと呼ぶ)に一つの機器が搭載される構成になるが、図 4 に記載した通り、既存システムに対して、ECHONET Lite を適用させる場合、一つのノード上に、複数の機器が搭載しているように見える構成となる.

この場合,図4の事例においても、一つのノード上に、ショーケースが3台、ショーケース室外機が2台見える構成となるが、実際の機器の構成、すなわち、どのショーケースとどのショーケース室外機が、同一の冷媒配管で接続されているのか判断することが困難であり、適切な制御や、ユーザへの情報提供ができなくないケースが出てくることが明らかとなった。

3.3 機器の構成の判別方法

従来の HEMS に用いる機器では想定する必要がなかった機器の構成を把握するための仕組みが必要となる。具体的には、ショーケース用室外機とショーケースとの紐づけをするための情報を定義し、同一の値を持つショーケース用室外機とショーケースは同一の冷媒配管で接続されてい

ることを規則とする.

表 4 グループ情報プロパティ

プロパティ	EPC	プロパティ	アクセス	必須
名称		内容	ルール	
グループ情	0xCA	0x00 : 設定	Set	О
報		なし	Get	О
		$0x01\sim0xFD$		

なお、グループ情報プロパティについては、ショーケース、及びショーケース室外機に特有の機能ではなく、業務用パッケージエアコンなど同じ構成をもつ機器にも適応可能であり、同一のプロパティを定義することとした。

4. HEMS 技術適用の検証

4.1 システム構成

仕様の上では、ショーケース、ショーケース室外機といった HEMS 以外の領域で用いられている機器の制御コマンドを規定することで、HEMS 技術を用いた仕様設計が可能なことは明らかとなった。実際に適用できるかどうかについて、エミュレータを用いて検証を行う。なお、コントローラについては、神奈川工科大学において、HEMSの実験に用いているコントローラのツールを用いるものとし、ショーケース、及びショーケース室外機については、パナソニック株式会社において HEMS 開発を行う際に用いているツールを該当する機器のエミュレータとして用いるものとする。システム構成を図 5 に示す。構成として、ショーケース 5 台、ショーケース室外機 4 台が接続している事例で検証を実施した。

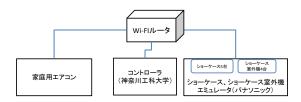


図 5 検証時のシステム構成図

なお、HEMS 技術の適用可否の判断基準の一つとするために、実機の ECHONET Lite に対応した家庭用エアコンも、同一のネットワークに設置した.

4.2 検証項目

HEMS 技術の適用可否の検証として、二つの検証を実施した。一つ目は、コントローラが、ショーケース、及びショーケース室外機を家庭用エアコンと同等の手段で、検出可能かどうか検証を実施した。二つ目は、3.2 で示した課題に対して、ECHONET Liteを用いて解決できているか検証を実施した。

4.2.1 ショーケース,及びショーケース室外機の検出 コントローラが HEMS 技術を適用して,ショーケース, 及びショーケース室外機を検出可能なことをコントローラの画面を用いて説明する。まず、コントローラの初期画面を図 6 に示す。コントローラ画面の左下の赤線で囲った部分に、コントローラが検出した機器のリストを表示する仕様となっている。

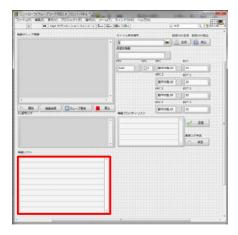
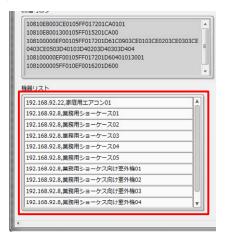



図 6 コントローラの初期画面

次に、ECHONET Lite を用いて機器を検出する手段として、コントローラはマルチキャストで、ノードプロファイルクラス(ECHONET オブジェクト:0x0EF001)の自ノードインスタンスリスト S(ECHONET プロパティ:0xD6)宛てに、読み出し要求を送信する。ノードプロファイルクラスは、ノードの通信機能に関する機能を定義したクラスであり、自ノードインスタンスリスト S プロパティは、自ノード上に搭載している ECHONET オブジェクト群を格納するプロパティである

ノードプロファイルクラスは、ECHONET Lite に対応する機器はすべて保持しているクラスであり、同一ネットワークに接続するすべてのノードは、コントローラに対して応答することとなる。具体的には、ショーケース,及びショーケース室外機のエミュレータは、ショーケース 5 台、及びショーケース室外機 4 台示す ECHONET オブジェクトを列挙して応答し、エアコンは、エアコン 1 台を示す ECHONET オブジェクトにて応答する。検出した結果を図7に示す。

図 7 機器の検出結果を示すコントローラ

図 7は、コントローラ画面の左下の機器リストを拡大したものだが、HEMS 用のコントローラは、家庭用エアコン1 台に加えて、今回新たに定義した業務用ショーケース 5台、業務用ショーケース室外機 4 台を検知していることが分かる.

4.2.2 ショーケースの構成の識別

ショーケースのシステム構成を識別するためのグループ情報を設定するための方法として,以下の方式のいずれかが考えられる.

- ショーケース向けコントローラを用いて,予め設定する場合
- ECHONET Lite を用いて、コントローラがショーケース向けコントローラ上の仮想機器に対して、設定する場合

まず、予め設定する場合について、検証を実施する。コントローラは、検出して機器リストに格納した機器に向けて、2.2 及び3.3 に記載した「業務用ショーケースクラスのグループ情報プロパティ宛で」、及び「業務用ショーケース室外機クラスのグループ情報プロパティ宛で」に、読み出し要求を送信する。コントローラは、ショーケース、ショーケース室外機のエミュレータがそれぞれの要求に対する応答を受信すると、グループ情報を識別する。コントローラがショーケース、及びショーケース室外機のグループ情報を識別した結果を図8に示す。

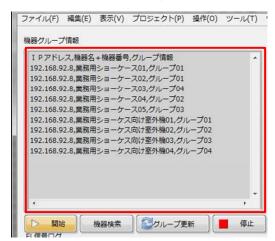


図8 ショーケース、ショーケース室外機の構成識別結果図8は、コントローラ画面の左上の表示領域を拡大したものである。この結果より、「業務用ショーケース1、業務用ショーケース2、業務用ショーケース室外機1」、「業務用ショーケース4、業務用ショーケース室外機2」、「業務用ショーケース5、業務用ショーケース室外機3」、「業務用ショーケース3、業務用ショーケース室外機4」が、同じ冷媒配管で接続されたショーケースのシステムであることが分かる。

次に、コントローラがショーケース向けコントローラ上

の仮想機器に対して設定する場合、コントローラは検出して機器リストに格納した機器に向けて、2.2 及び3.3 に記載した「業務用ショーケースクラスのグループ情報プロパティ宛て」、及び「業務用ショーケース室外機クラスのグループ情報プロパティ宛て」に、書込み要求を送信する。その際、ショーケース、ショーケース室外機のエミュレータが受信したメッセージのログを表5に示す。

表 5 グループ情報設定時の受信ログ

#ELCemu	2.0				送信元	送信先		グループ情報
0	RECV	1	SET要求受信	-	05:FF:01	03:CE:01	60	01:CA:01:04
0	RECV	1	SET要求受信	-	05:FF:01	03:CE:02	60	01:CA:01:03
1000	RECV	1	SET要求受信	-	05:FF:01	03:CE:03	60	01:CA:01:03
2000	RECV	1	SET要求受信	-	05:FF:01	03:CE:04	60	01:CA:01:02
0	RECV	1	SET要求受信	-	05:FF:01	03:CE:05	60	01:CA:01:01
1000	RECV	1	SET要求受信	-	05:FF:01	03:D4:01	60	01:CA:01:04
1000	RECV	1	SET要求受信	-	05:FF:01	03:D4:02	60	01:CA:01:03
1000	RECV	1	SET要求受信	-	05:FF:01	03:D4:03	60	01:CA:01:02
1000	RECV	1	SET要求受信	-	05:FF:01	03:D4:04	60	01:CA:01:01

表 5 の「送信先」の行に、該当するショーケース 1~シ ョーケース 5, 及びショーケース室外機 1~ショーケース室 外機4が格納されている。また、グループ情報の行では、 二番目の値 0xCA は、グループ情報の ECHONET プロパテ ィコードを示し、最後の数値が、設定されるグループ情報 の値となる。今回のケースでは、「業務用ショーケース 5、 業務用ショーケース室外機 4」、「業務用ショーケース 4、業 務用ショーケース室外機 31、「業務用ショーケース 2、業務 用ショーケース 3,業務用ショーケース室外機 2」,「業務用 ショーケース 1,業務用ショーケース室外機 1」が、同じ冷 媒配管で接続されたショーケースのシステムであるという 設定をコントローラから、ショーケースのシステムに行っ ている. 最後に、コントローラ用ツールは設定状況を確認 するために、「業務用ショーケースクラスのグループ情報プ ロパティ宛て」、及び「業務用ショーケース室外機クラスの グループ情報プロパティ宛て」に, 読出し要求を送信する. その際、ショーケース、ショーケース室外機のエミュレー タが受信したメッセージのログを表 6に示す.

表 6 グループ情報設定後の確認時のログ

#ELCemu	2.0				送信元	送信先		グループ情報
2000	RECV	1	GET要求受信	<u> </u>	05:FF:01	03:CE:01	62	01:CA:00
0	SEND	1	GET応答送信	-	03:CE:01	05:FF:01	72	01:CA:01:04
1000	RECV	1	GET要求受信	-	05:FF:01	03:CE:02	62	01:CA:00
0	SEND	1	GET応答送信	-	03:CE:02	05:FF:01	72	01:CA:01:03
1000	RECV	1	GET要求受信	-	05:FF:01	03:CE:03	62	01:CA:00
0	SEND	1	GET応答送信	-	03:CE:03	05:FF:01	72	01:CA:01:03
1000	RECV	1	GET要求受信	-	05:FF:01	03:CE:04	62	01:CA:00
0	SEND	1	GET応答送信	-	03:CE:04	05:FF:01	72	01:CA:01:02
1000	RECV	1	GET要求受信	-	05:FF:01	03:CE:05	62	01:CA:00
0	SEND	1	GET応答送信	-	03:CE:05	05:FF:01	72	01:CA:01:01
1000	RECV	1	GET要求受信	-	05:FF:01	03:D4:01	62	01:CA:00
0	SEND	1	GET応答送信	-	03:D4:01	05:FF:01	72	01:CA:01:04
1000	RECV	1	GET要求受信	-	05:FF:01	03:D4:02	62	01:CA:00
0	SEND	1	GET応答送信	-	03:D4:02	05:FF:01	72	01:CA:01:03
1000	RECV	1	GET要求受信	-	05:FF:01	03:D4:03	62	01:CA:00
0	SEND	1	GET応答送信	-	03:D4:03	05:FF:01	72	01:CA:01:02
1000	RECV	1	GET要求受信	-	05:FF:01	03:D4:04	62	01:CA:00
0	SEND	1	GET応答送信	-	03:D4:04	05:FF:01	72	01:CA:01:01

表 6の「GET 要求受信」と示す列の「送信先」の行に、該当するショーケース 1~ショーケース 5,及びショーケース室外機 1~ショーケース室外機 4 が格納されている。それぞれの要求に対し、「GET 応答送信」と示す列のグルー

プ情報の行の最後の数値が、各ショーケースに設定されているグループ情報の値となる。表 5 で設定された値を各ショーケース、各ショーケース室外機が応答していることが分かる。また、応答を受信したコントローラが、ショーケース、及びショーケース室外機のグループ情報を識別した結果を図 9 に示す。

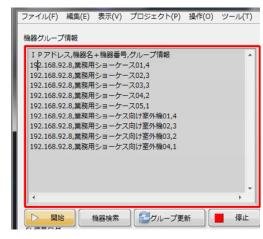


図 9 ショーケースのシステムへの設定結果確認

図 9 は、コントローラ画面の左上の表示領域を拡大したものである。この結果より、「業務用ショーケース 5、業務用ショーケース 4、業務用ショーケース 4、業務用ショーケース 2、業務用ショーケース 2、業務用ショーケース 3、業務用ショーケース室外機 2」、「業務用ショーケース 1、業務用ショーケース室外機 1」が、同じ冷媒配管で接続されたショーケースのシステムとして設定に成功していることが確認できる。

5. おわりに

5.1 考察

ECHONET Lite という HEMS にて使用している技術を用いて HEMS 以外の領域においても、通信インタフェースという観点で、拡張可能なことを今回の検証で確認することができた.

表 2 に記載したショーケースの制御コマンド,及び表 3 に記載したショーケース室外機の制御コマンドは,エコーネットコンソーシアムにおいて,標準化提案を行い,「APPENDIX ECHONET 機器オブジェクト詳細規定 Release F」として公開済みである。また,表 4 に記載したグループ情報についても,ショーケース関連だけでなく,業務用パッケージエアコン、及び業務用パッケージエアコン室外機において,追加して定義し,同様に,「APPENDIX ECHONET 機器オブジェクト詳細規定 Release F」として公開済みである。

5.2 今後の展開

今回は、上述したように、通信インタフェースという観

情報処理学会研究報告 IPSJ SIG Technical Report

点で、HEMS 技術の適用を確認できたものであり、実際に グローバルに機能を搭載し、市場に展開していくためには、 実施すべき取組みが残っている.

一点目は、標準化の観点では、現状はエコーネットコンソーシアムで標準仕様を策定し、仕様を公開した段階であり、今後グローバルに適用を図る上では、国際標準化提案は必須である。具体的には、他の機器の制御コマンド(ECHONET オブジェクト)と同様に、IEC TC100への提案を検討する。

二点目は、実際のシステム構成では、図 4 に示すシステム構成のように、ショーケース向けコントローラとショーケース間において通信が発生する。実運用に向けては、ショーケース向けコントローラとショーケース間において発生する通信による時間の遅延の影響有無についても、確認していくことが必要となる。

三点目は、実機器への実装という点を考慮する必要がある。具体的には、コントローラ上の実装についても、HEMS技術を適用させていく必要がある。今後、HEMS以外の領域のエネルギーマネジメントを実施するためには、家庭用エアコン、冷蔵庫といった従来のHEMSの対象としていた機器以外の機器への対応を容易にしていかなければならない。また、安価な組込み機器に実装していかなければならないことから、制御対象となる機器の追加を容易なものにするだけでなく、対象となる機器を追加していくにあたり、ROM/RAMの増加量を抑えるような設計、実装が求められる。今後は、様々なエネルギーマネジメントシステム、サービスに対応可能なように、コントローラ側の設計についても考慮していく予定である。

参考文献

1) HEMS データ利用サービス市場におけるデータ取扱マニュアル a Bi

http://www.meti.go.jp/committee/kenkyukai/shoujo/smart_house/pdf/00 5 s09 00.pdf

- 2) 村上隆史: 4-2. ECHONET Lite 規格とサービス事例の紹介 (4. 垂直統合型 M2M, <特集>M2M サービスを支える情報通信技術),電子情報通信学会誌, Vol.96, No.5, pp.318-323 (2013)
- 3) APPENDIX ECHONET 機器オブジェクト詳細規定 Release F http://www.echonet.gr.jp/spec/pdf_spec_app_f/SpecAppendixF.pdf
- 4) ECHONET Lite 規格 Ver.1.11 第2部

http://www.echonet.gr.jp/spec/pdf_v111_lite/ECHONET-Lite_Ver.1.11_02.pd