
Vol. 44 No. 3 IPSJ Journal Mar. 2003

Regular Paper

Network Protocols for Mobile Agents by Mobile Agents

Ichiro Satoh†

This paper presents a framework for building network protocols for migrating mobile agents
over a network. The framework allows network protocols for agent migration to be naturally
implemented within mobile agents and to be constructed in a hierarchy as most data trans-
mission protocols are. These protocols are given as mobile agents and they can transmit other
mobile agents to remote hosts as first-class objects. Since they can be dynamically deployed
at remote hosts by migrating the agents that carry them, these protocols can dynamically
and flexibly customize network processing for agent migration according to the requirements
of respective visiting agents and changes in the environments. A prototype implementation
was built on a Java-based mobile agent system, and several practical protocols for agent mi-
gration were designed and implemented. The framework can make major contributions to
mobile agent technology for telecommunication systems.

1. Introduction

Mobile agent technology is an emerging tech-
nology that makes it much easier to design, im-
plement, and maintain telecommunication sys-
tems. Although this technology has been ex-
pected to be used in a variety of applications in
distributed system settings, there have few at-
tempts to apply it there. The reason for this is
a mismatch in network processing, in addition
to the problem of protecting against malicious
agents or malicious hosts. Many applications
often require application-specific network pro-
cessing for migrating agents over a network. For
example, a typical application of the technology
is network management, where an agent travels
to multiple nodes in a network to observe and
access the components locally. The itinerary
of such a monitoring agent seriously affects the
achievement of its tasks and the efficiency with
which they are accomplished. Moreover, a mo-
bile agent for electronic commerce may have to
be transformed into an encrypted bit stream be-
fore it can transfer itself over a network. How-
ever, existing mobile agent systems assume par-
ticular network infrastructures and cannot dy-
namically change their own network processing,
because it is statically embedded in them.

The goal of this paper is to propose a frame-
work for building configurable network proto-
cols for agents migration over a network and
to describe several practical network protocols
based on the framework. Our framework is
based on two key ideas. The first is to apply

† National Institute of Informatics/Japan Science and
Technology Corporation

active network technology to a network infras-
tructure for mobile agents. The second is to
construct network protocols for agent migra-
tion within the agents themselves. That is, our
mobile-agent-based protocols can transmit mo-
bile agents as first-class objects to their desti-
nations. Also, the protocols can be dynami-
cally and easily deployed by the migration of
the agents that support these protocols. The
framework can provide a useful testbed for im-
plementing and evaluating different types of
network processing for mobile agents.

Our framework makes several contributions
to network technologies, particularly active net-
working approaches. It can simplify and ad-
vance the development of network protocols.
This is because it introduces mobile agents as
the only constituents of a self-configurable net-
work system, so that users/programmers can
naturally define both network protocols and
packets in a single unified perspective of the
system and can easily and dynamically deploy
the protocols at remote nodes by migrating the
corresponding agents. It also allows active net-
works to be constructed on the basis of a layered
architecture, in which current active networks
are often designed within particular individual
protocol layers. The framework enables us to
build and test active network services across
more than one layer.

In this paper we describe the design goals of
our framework (Section 2), briefly review our
mobile agent system, which is a basis of the
framework (Section 3), present several mobile-
agent-based protocols for agent migration (Sec-
tion 4), show several examples of the frame-
work (Section 5), survey related work (Section

760



Vol. 44 No. 3 Network Protocols for Mobile Agents by Mobile Agents 761

Fig. 1 Agent hierarchy and inter-agent migration.

6), and show some conclusions and describe re-
search directions (Section 7).

2. Approach

This paper addresses the building of config-
urable network protocols for agents migration.
For a discussion of a description of the configu-
ration mechanism itself of mobile agent-based
components for operating mobile agents, in-
cluding agent migration over a network, readers
are referred to a previous paper 9).

2.1 Mobile Agents as First-Class Ob-
jects

Mobile agents are autonomous programs that
can travel between different computers. In
the framework presented in this paper, mobile
agents are computational entities like other mo-
bile agents. When an agent migrates, not only
the code of the agent but also its state can
be transferred to the destination. The frame-
work is built on a mobile agent system, called
MobileSpaces, presented in a previous paper 9).
The system is characterized by two novel con-
cepts: agent hierarchy and inter-agent mi-
gration. The former means that one mobile
agent can be contained within another mobile
agent. That is, mobile agents are organized in a
tree structure. The latter means that each mo-
bile agent can migrate to other mobile agents as
a whole, with all its inner agents, as long as the
destination agent accepts it, as shown in Fig. 1.
A container agent is responsible for automati-
cally offering its own services and resources to
its inner agents, and it can subordinate its in-
ner agents. Therefore, an agent can transmit
its inner agents to another location as first-class
objects 4), in the sense that mobile agents can
be passed to and returned from other mobile
agents as values. As a result, network protocols
for agent migration can be implemented within
mobile agents, so can be replaced by migrating
the corresponding the agents.

2.2 Layered Protocols for Agent Mi-
gration

Most protocols for data transmission, such as

the OSI model.☆, are often arranged in a hier-
archy of layers. Each layer presents an inter-
face to the layers above it and extends services
provided by the layer below it. The hierarchi-
cal structure of mobile agents enables network
protocols for agent migration to be organized
hierarchically. That is, each agent hierarchy
consisting of mobile agent-based protocols can
be viewed as a protocol stack for agent migra-
tion, as shown in Fig. 2, and agent migration
in an agent hierarchy is introduced as a basic
mechanism for accessing services provided by
the underlying layer. Mobile agent-based pro-
tocols in the bottom layer correspond to data-
link layered protocols in the OSI model. They
are responsible for establishing point-to-point
channels for agent migration between neighbor-
ing computers. The middle layer corresponds
to the network layer of the OSI model and offer
routing protocols for agent migration. The pro-
tocols transmit mobile agents beyond the chan-
nels between directly connected nodes. The
framework enables routing protocols for agent
migration to be performed by mobile agents.

3. MobileSpaces: An Extensible Mo-
bile Agent System

This section briefly reviews MobileSpaces,
which provides, in addition to mobile agent-
based applications, an infrastructure for build-
ing and executing mobile agents for network
processing. MobileSpaces is built on a Java
virtual machine and mobile agents are given
as Java objects. Its architecture is designed
based on a micro-kernel architecture and con-
sists of two parts: a core system and higher-
level components. The former offers only mini-
mal and common functions, independent of the
underlying environment. The latter is a collec-
tion of higher-level components outside the core
system that provide other functions, including
agent migration over a network, which may de-
pend on the surrounding environment.

3.1 Core System
Each core system is made as small as possible

for portability. It has only three functions:
Agent Hierarchy Management:
Each core system corresponds to the root

node of an agent hierarchy, which is maintained
as a tree structure in which each node contains
☆ This framework does not involve OSI protocols. The

OSI model is mentioned here merely to provide a
frame of reference for readers acquainted with the
model.



762 IPSJ Journal Mar. 2003

Fig. 2 Architecture of mobile-agent-based protocols for agent migration.

a mobile agent and its attributes. Agent migra-
tion in an agent hierarchy is performed simply
as a transformation of the tree structure of the
hierarchy.

Agent Execution Management:
Each agent can have more than one active

thread under the control of the core system.
The core system maintains the life-cycle state
of agents. When the life-cycle state of an agent
is changed for example, at creation, termina-
tion, or migration the core system issues certain
events to invoke certain methods in the agent
and its containing agents.

Agent Serialization and Security Man-
agement:
The core system has a function for marshal-

ing agents into bit streams and unmarshaling
them later. The current implementation of the
system uses a Java object serialization package
for marshaling the states of agents, so agents
are transmitted is accordance with the notion
of weak mobility 5). The core system verifies
whether a marshaled agent is valid or not, to
protect the system against invalid or malicious
agents, by means of Java’s security mechanism.

3.2 Mobile Agent Program
Each mobile agent consists of three parts:

a body program, context objects, and inner
agents. The body program is an instance of
a subclass of abstract class Agent. This class
defines fundamental callback methods invoked
when the life-cycle of a mobile agent changes
due to creation, suspension, marshaling, un-
marshaling, destruction etc., like the delegation
event model in Aglets 7). It also provides a com-
mand for agent migration in an agent hierarchy,
written as go(AgentURL destination). When
an agent performs the command, it migrates
itself to the destination agent specified by the
argument of the command in the same agent
hierarchy. An inner agent cannot access any
methods defined in its container agent, includ-

ing the core system. Instead, each container is
equipped with a context object that offers ser-
vice methods in a subclass of the Context class,
such as the AppletContext class of Java’s Ap-
plet. These methods can be indirectly accessed
by the inner agents of a container to get in-
formation about and interact with the environ-
ment, including the container, sibling agents,
and the underlying computer system.

4. Mobile-Agent-Based Protocols for
Agent Migration

Since this framework can treat mobile agents
as first-class objects, various types of network
processing for mobile agents can be imple-
mented as special mobile agents, called ser-
vice agents, running on the core system of Mo-
bileSpaces. These service agents are hierarchi-
cally organized as a protocol stack.
• Each service agent is designed to provide its

service to its inner mobile agents. There-
fore, each service agent in a lower layer can
be viewed as a service provider for agents
in an upper layer. The movement of an
agent to a service agent in a lower layer
in the same agent hierarchy corresponds to
the process of applying the network service
of the service agent to the moving agent.

• Each runtime system permits one service
to be provided by one or more service
agents. That is, different network pro-
tocols can be supported by different ser-
vice agents. Moving agents or upper-layer
protocols can dynamically select a suitable
agent for their requirements and migrate
their inner agents to the selected agent.

• Since service agents for performing proto-
cols are still mobile, the protocols can be
dynamically deployed at hosts by migrat-
ing the agents to the hosts.

Next, we present several basic protocols for
agent migration. Since these protocols are given



Vol. 44 No. 3 Network Protocols for Mobile Agents by Mobile Agents 763

as abstract classes in the Java language, we can
easily define further application-specific proto-
cols by extending these basic protocols.

4.1 Point-to-Point Channels for Agent
Migration

Our framework enables point-to-point agent
migration to be provided by mobile agents,
called transmitters, instead of by the core sys-
tem. Transmitter agents correspond to a data-
link layer or a network layer and are respon-
sible for establishing point-to-point channels
for agent migration between the source host
and destination host through a (single-hop or
multiple-hop) data transmission infrastructure,
such as TCP/IP. They conceal the variety in
the underlying network infrastructure and ex-
change their inner agents with coexisting agents
running to remote computers through their pre-
ferred communication protocols. Furthermore,
transmitter agents are implemented as mobile
agents so that they can be dynamically added to
and removed from the system by migrating and
replacing the corresponding agents, to keep up
with changes in the network environment. Af-
ter an agent arrives at a transmitter agent from
the upper layer, the arriving agent indicates its
final destination. The transmitter suspends the
arriving agent (including its inner agents), then
requests the core system to serialize the state
and code of the arriving agent. Next, it sends
the serialized agent to a coexisting transmitter
agent located at the destination. The transmit-
ter agent at the destination receives the data
and then reconstructs the agent (including its
inner agents) and migrates it to the destination
or to specified agents that offer upper-layer pro-
tocols.

Since each runtime system can be equipped
with more than one transmitter agent, upper-
layer protocols can dynamically select a suit-
able agent in their requirements and migrate
their inner agents to the selected transmitter
agents. We have already implemented several
transmitter agents based on data communica-
tion protocols widely used on the Internet, such
as TCP, HTTP, and SMTP. Authentication
services normally available in secure commu-
nications infrastructure include this function-
ality. Therefore, we implemented transmitter
agents, which can exchange agents with each
other through Secure Socket Layer (SSL), one of
the most popular secure communication proto-
cols in the Internet. We provide a virtual class
in Java that can be specialized to create trans-

mitter agents for various protocols. Therefore,
we can easily build point-to-point channels on
other secure communication protocols for data
transmission.

4.2 Application-Specific Routing for
Agent Migration

A mobile agent often has to visit multiple
hosts to perform its task, so it has to create
an application-specific and network-dependent
itinerary. On the other hand, channels between
transmitter agents support point-to-point agent
migration. Therefore, we need mechanisms
to migrate an application-specific mobile agent
among multiple hosts so it can perform its
tasks. However, it is difficult to determine the
itinerary at the time the agent is designed or
instantiated. In addition, even if an agent were
optimized for a particular network, it might not
be reusable in another one. Therefore, we intro-
duce two approaches for determining and man-
aging the itinerary of agents, which are built on
transmitter agents running on hosts.

4.2.1 Forwarder Agent Approach
The first approach provides a function simi-

lar to that of routers. We introduce a service
provider, called a forwarder agent, for redirect-
ing moving agents to new destinations. Each
forwarder agent stays at a host. When receiv-
ing agents, it redirects the agents to their des-
tinations through point-to-point channels es-
tablished among multiple nodes, as shown in
Fig. 3. Each forwarder agent holds a table de-
scribing part of the network structure, and can
be dynamically deployed at nodes and coor-
dinate with other forwarder agents to redirect
moving agents to their destinations. However,
if the destinations are not reachable, it tries to
transfer the agents to other forwarder agents
running on intermediate nodes as near the des-
tinations as possible. Each forwarder agent will

Fig. 3 Routing agents for forwarding another agent
to the next nodes.



764 IPSJ Journal Mar. 2003

Fig. 4 Navigator agent for traveling among nodes
with its inner agent.

repeat the entire process in the same way until
it arrives at the destination.

4.2.2 Navigator Agent Approach
The second approach is similar to the notion

of an active packet (also called a programmable
capsule) in active network technology. Exist-
ing mobile agents can move from one node to
another under their own control, just as ac-
tive packets can define their own routing. We
propose a service provider, called a navigator,
for conveying inner agents over a network, as
shown in Fig. 4. Each navigator agent is a con-
tainer of other agents and travels with them in
accordance with a list of nodes statically or al-
gorithmically determined, or dynamically based
on the agent’s previous computations and the
current environment. That is, a navigator agent
can migrate itself to the next place as a whole
with all its inner agents. Each navigator has a
routing mechanism for managing a routing ta-
ble consisting of nodes that the navigator agent
needs to visit. It maintains a list of nodes to be
visited and provides methods for dynamically
adding and removing elements from this list.

4.2.3 Discussion
The interaction between a forwarder or nav-

igator agent and its inner agents is based on
event-based communication. Upon receiving
agents, a forwarder propagates certain events
to its visiting agents instructing them to do
something during a given time period. After
the events have been processed by the inner
agents, the forwarder navigator transmits an-
other forwarder agent running at the next host.
Upon arriving at a place, a navigator propa-
gates certain events to its inner agents. Af-
ter the events have been processed by the inner
agents, the forwarder or navigator continues on
its itinerary. Since the two approaches can hide
the description of an agent’s itinerary from its
behavior, mobile agents become independent of

the network structure and the modularity and
reusability of application-specific mobile agents
are enhanced.

Our forwarder and navigator agents are use-
ful in the authentication of mobile agents. This
is because each forwarder can limit the forward-
ing range of its inner agents and receive only
those agents moved by authorized forwarder
agents. Therefore, each node can explicitly re-
ject any agents from unauthorized hosts. Each
navigator agent can define its own reachable
nodes and each node can accept only autho-
rized navigator agents. That is, when an agent
is moved by a navigator agent whose reachable
nodes are limited, it can travel only among the
reachable nodes of the navigator agent.

4.3 Protocol Distribution
Given a dynamic network infrastructure, a

mechanism is needed for propagating mobile
agents that support protocols to where they
are needed. The current implementation of our
framework provides the following three mech-
anisms: (1) mobile agent-based protocols au-
tonomously migrate to nodes at which the pro-
tocols may be needed and remain there in a
decentralized manner; (2) mobile agent-based
protocols are passively deployed at nodes that
may require them by using forwarder agents
prior to using the protocols as distributors of
protocols; and (3) moving agents can carry
mobile agent-based protocols inside themselves
and deploy the protocols at nodes that the
agents traverse. This mechanism can improve
performance in the expected common case of
agent migration, i.e., a sequence of agents that
follow the same path and require the same pro-
cessing. All the mechanisms are basically man-
aged by mobile agents, instead of by the run-
time system and thus can be customized easily.

4.4 Current Status
The framework presented in this paper and

its mobile agent-based protocols were imple-
mented on MobileSpaces in the Java language.
They can be run on any computer with a
JDK 1.2-compatible Java runtime system. The
framework provides several useful libraries for
constructing network protocols within mobile
agents. Several mobile agent-based protocols
were developed, in addition to the protocols
presented in the next section. They include
agents for establishing channels through TCP,
HTTP, and SMTP, forwarder and navigator
agents for traveling among multiple computers
according to their own static routing tables and



Vol. 44 No. 3 Network Protocols for Mobile Agents by Mobile Agents 765

Table 1 Performance of agent migration.

Latency Throughput
protocol (msec) (agents/sec)
transmitter agent 25 7.2
forwarder agent 38 6.0
navigator agent 42 5.6

SNMP agents at each computer. The current
implementation of this framework was not built
for performance. However, in order to com-
pare two routing protocols, the forwarder agent
protocol and the navigator agent protocol, we
measured the per-hop latency and the through-
put of a single node in agents per second in a
network consisting of ten PCs (Intel Pentium
III-600MHz with Windows 2000 and JDK 1.3)
connected by 100-Mbps Ethernet via a switch-
ing hub.

Table 1 shows the basic performance of
agent migration over a network. We mea-
sured the latency through two computers and
the throughput of a single node in agents per
second. In both cases, we migrated minimal
agents, which consist only of the common call-
back methods invoked at the changes of their
life-cycle states by the core system☆. They cor-
respond to a null RPC and their data size is
about 2.5 Kbytes (zip-compressed).

The first result shows the cost of agent mi-
gration between two simple transmitter agents,
whose code is shown in the Appendix. Each
transmitter agent can exchange the code and
state of its inner agent with every other agent
through an application-level protocol for agent
transmission over a TCP channel. The mar-
shaled agent consists of its serialized state, its
code, and its attributes, such as name and ca-
pability, and is packed and compressed into a
bit-stream. The latency shows the sum of the
marshaling, zip-based compression, TCP con-
nection opening, transmission, security verifica-
tions, decompression, and unmarshaling. Next,
we measured the cost of sequentially relaying
a minimal agent from forwarder agent to for-
warder agent while running eight computers.
The second result shows the average of one-hop
transmission based on the forwarder agents.
Each forwarder agent determines the comput-
ers that their inner agents will visit at their
next hops, according to their own routing tables

☆ The moving agent is a simple implementation of
the DefaultEventListener interface presented in
Ref. 9).

maintained by periodically polling the routing
table of the SNMP agent, and then delegates a
transmitter agent to dispatch their inner agents
to the computers. The third result shows the
cost of one-hop agent migration by using a sim-
ple navigator agent which has an itinerary list
of eight computers and migrates itself and its
inner agent to the computers sequentially by
combining with the above transmitter agents.
We present the code of the navigator agents in
the Appendix.

We believe that the latency of agent mi-
gration in our framework is reasonable for a
high-level prototypes of adaptive protocols for
agent migration, instead of data communica-
tion. However, we anticipate further reduc-
tions in the latency costs, because the costs
in the above table are basically dependent on
the protocols rather than the MobileSpaces sys-
tem and all the protocols used in these experi-
ments were made as simple as possible, since
our intention was to show the basic costs of
our framework. The results of throughput mea-
surements are limited by the MobileSpaces sys-
tem and the underlying operating system.☆☆.
Also, when these approaches migrate more than
one mobile agent over a network, the conges-
tion of each computer is occasionally unbal-
anced at some computers, because our agent-
based protocols are performed asynchronously.
The current throughput is fast enough for mi-
grating application-specific agents. We com-
pare two routing protocols: the forwarder agent
approach and the navigator agent approach. In
this experiment we found that the former was
better, because the latter needs to transfer two
mobile agents to the destination. Although the
former needs more agent migration in agent hi-
erarchies than the latter, the overhead of agent
migration in a hierarchy is less than a few mil-
liseconds.

Some readers may want to correlate the
transmitter agent with protocols in the data-
link layer of the OSI and the forwarder and
navigator agents with protocols in the net-
work layer of the model. The performance of
our mobile agent-based protocols is inferior to
that of existing protocol implementations for
data transmission, including OSI-based proto-
cols. However, the goal of the framework is to

☆☆ The performance of the current implementation is
dependent on the cost of thread creation in the un-
derlying operating system.



766 IPSJ Journal Mar. 2003

provide an infrastructure for dynamically and
easily customizing network processing for agent
migration and the performance of the protocols
is sufficient for the migration of application-
specific agents, which are programmable enti-
ties rather than passive data.

5. Examples

This section describes three practical exam-
ples of this framework to demonstrate how it
can be used.

5.1 Example: Locating Mobile Agents
When an agent wants to interact with an-

other agent, it must know the current loca-
tion of the target agent. Therefore, we need
a mechanism for tracking a moving agent. An
extension of our forwarder agent offers such a
mechanism shown in Fig. 5. Just before an
agent moves into another agent, it creates and
leaves a forwarder agent behind. The forwarder
agent inherits the name of the moving agent
and transfers any subsequently visiting agent to
the new location of the moving agent. There-
fore, when an agent wants to migrate to another
agent that has moved elsewhere, it can migrate
into the forwarder agent instead of the target
agent. The forwarder agent then automatically
transfers it to the current location of the target
agent. Several schemes for efficiently locating
mobile agents have been explored in the field of
process/object migration in distributed operat-
ing systems. Our forwarder agents can easily
support most of these schemes, because they are
programmable entities and can flexibly negoti-
ate with each other through data transmission
protocols such as TCP/IP.

5.2 Agent Migration in Mobile Com-
puting

Mobile agent technology has the potential to
mask disconnections in some cases. This is be-
cause, once a mobile agent is completely trans-
ferred to a new location, the agent can continue
its execution at the new location, even when the
new location is disconnected from the source lo-
cation. However, the technology often cannot

Fig. 5 Forwarder agents for locating moving agents.

solve network failures in the process of agent
migration. That is, agents can be migrated
from the source to the destination when all the
links from the source to the destination are es-
tablished at the same time. However, mobile
computers do not have a permanent connection
to a network and are often disconnected for long
periods of time. When a mobile agent on a mo-
bile computer wants to move to another mobile
computer through a local-area network, both
computers must be connected to the network
at the same time.

To overcome this problem, relay agents are
constructed by extending the forwarder agent
approach to the notion of store-and-forward mi-
gration, as shown in Fig. 6. This notion is simi-
lar to the process of transmitting electronic mail
by using SMTP. When an agent requests a re-
lay agent on the source host to migrate to its
destination, the relay agent makes an effort to
transmit the moving agent to the destination
through transmitter agents. If the destination
is not reachable, the relay agent automatically
stores the moving agent in its queue and then
periodically tries to transmit the waiting agent
to either the destination or a reachable interme-
diate host as close to the destination as possible.
The relay agent to which the moving agent is
transferred will repeat the process in the same
way until the agent arrives at the destination.
When the next host on the route to the destina-
tion is disconnected, the moving agent is stored
in its current place until the host is reconnected.
When a mobile computer is attached to a net-
work, its relay agent multicasts a message to re-
lay agents on other connected computers. After
receiving a reply message from the relay agents
at the destinations of agents stored in its queue,
the relay agent tries to transfer those agents to
their destinations.

5.3 Example: Encrypting Mobile
Agents

For security reasons, an agent should be en-
crypted before migrating itself over the Inter-

Fig. 6 Relay agent for tolerant network
disconnection.



Vol. 44 No. 3 Network Protocols for Mobile Agents by Mobile Agents 767

net. Since each navigator agent can treat its
inner agents as first-class data, it can trans-
form them and then carry them to their destina-
tions. Our current implementation provides a
special navigator agent, called a safe-box agent,
which can be viewed as a cash transport truck.
Each agent is a container of other agents and
has a secret-key based cryptographic procedure
inside itself. When an agent visits a safe-box
agent the agent receives another agent, the safe-
box agent automatically serializes and encrypts
the visiting agent under a secret key. Next,
it migrates itself to the destination as a whole
with all its inner agents and its cryptographic
procedure except for its secret keys. After ar-
riving at the destination, the safe-box agent
still keeps its inner agents inside it. When
the destination provides its privacy to the visit-
ing safe-box agent, the agent decrypts its inner
agents. We can implement safe-box agents in-
dependently of any cryptographic algorithms,
because the algorithms should be selected ac-
cording to the requirements of the application.
Each safe-box agent has an interface for hiding
the differences between secret-key based cryp-
tographic algorithms and can support any al-
gorithms that can satisfy the interface. A non-
standardized cryptographic algorithm can be
embedded into a safe-box agent without los-
ing any interoperability, because the agent can
carry a procedure for the algorithm and per-
form it at both the source host and destination
host.

6. Related Work

Many mobile agent systems have been de-
veloped over the last few years, for example,
Aglets 7), Telescript 14), and Voyager 8). To our
knowledge, none of them can dynamically ex-
tend and adapt their network processing for
agent migration to the characteristics of current
networks and the requirements of respective vis-
iting agents, although mobile agents must be
used in heterogeneous and dynamic network en-
vironments, such as in personal mobile com-
munication, wireless networks, and active net-
works. This is because their agent migration
protocols are statically embedded inside their
systems.

The framework presented in this paper
changes network processing by combining it
with active network technology 13). There have
been many attempts to apply mobile agent
technology to the development of active net-

works 2),3) because mobile agents can be con-
sidered a special case in mobile code technol-
ogy, which is the basis of existing active net-
work technologies. For example, the Grasshop-
per system offers an active network platform
consisting of stationary and mobile agents as
service entities for telecommunication. In con-
trast, the framework presented in this paper ap-
plies active network technology to mobile agent
technology. Existing active network approaches
intend to customize network service in individ-
ual layers, such as network layer and transport
layer in the OSI model, instead of across mul-
tiple layers. On the other hand, our framework
can naturally model the layer hierarchy of net-
work protocols by using the notion of hierarchi-
cal mobile agents in the MobileSpaces system.
For example, an outer agent can be viewed as a
packet or service provider in a lower layer and
its inner agents as packets in an upper layer.
Therefore, the framework provides an infras-
tructure for building and testing network pro-
tocols across more than one protocol layer.

In the literature of meta-level and self-
reflective architecture, there have been many
reported attempts to customize processing
rather mobile agent technology. However, their
customization mechanisms are often so complex
that it is difficult to construct them and make
them accessible and secure. We need to con-
struct a simple and natural approach to con-
figuring and adapting network processing for
agent migration. To satisfy this requirement,
the approach presented in this paper uses agent
migration as a mechanism for deploying and
managing agent migration protocols, because
agent migration is one of the most essential
mechanisms in mobile agent computing.

There have been few approaches to build-
ing configurable protocols for agent migration
rather than data transmission. A mobile agent,
which visits multiple hosts to perform its task,
must have an application-specific itinerary. For
example, a mobile agent may roam over more
than one host without making any detours or
may have to return to its home host after each
hop instead of proceeding to another destina-
tion. Also, a network-dependent itinerary is
often needed for a mobile agent to travel to
multiple hosts efficiently. However, it is diffi-
cult to determine such an itinerary at the time
the agent is designed or instantiated, because
the network topology cannot always be known.
Moreover, even if the itinerary of a mobile



768 IPSJ Journal Mar. 2003

agent were optimized for a particular network
to travel to multiple hosts efficiently, it might
not be reusable in another network. To over-
come this problem, ADK 6) separates the travel
itinerary of an agent from its behavior by build-
ing a mobile agent from a set of component cat-
egories: navigational components responsible
for a travel itinerary and performer components
responsible for executing one or more manage-
ment tasks on each node. Aglets 7) introduces
the notion of an itinerary pattern, which is sim-
ilar to design patterns in software engineering,
to shift the responsibility for navigation from
an application-specific agent to a framework li-
brary described in 1). Both approaches allow
us to design the application-specific itinerary
for an agent independent of the logical behav-
ior of the agent, but the itinerary parts must
be statically and manually embedded in the
agent. Consequently, the agent cannot dynam-
ically change its itinerary and cannot travel be-
yond its familiar networks.

We described a portable and extensible mo-
bile agent system, MobileSpaces, in our previ-
ous paper 9). The system serves as the basis
for the framework presented in this paper. It
can dynamically adapt its functions and struc-
tures to changes in the environments, but its
goal is to provide a general platform for exe-
cuting and migrating distributed applications.
In our previous paper 10), we presented a ar-
chitecture for building several agent migration
protocols. That architecture is hierarchically
organized like the notion of the protocol stack
in existing data transmission protocols. While
the goal of the previous paper was to propose
the architecture and a few protocols available
on the Internet, the goal of this paper is to pro-
pose various mobile-agent-based protocols for
agent migration, in addition to the architecture.
Hence, this paper describes several protocols
that are not presented in the previous paper.
Furthermore, in other previous papers 11),12),
we presented a mobile agent-based approach for
network management. Although the approach
is based on the notion of navigator agents pre-
sented in this paper, it is specific to network
management, and the previous papers do not
present other agent migration protocols, such
as point-to-point channel agents and forwarder
agents, studied in this paper.

7. Conclusion

This paper was described a framework for

building configurable network protocols for
agent migration. The framework provides a
layered architecture for network protocols for
migrating agents and allows these protocols to
be naturally implemented by mobile agents.
Therefore, network processing for mobile agents
can be dynamically added to and removed
from remote hosts by migrating correspond-
ing agents. To demonstrate the utility of the
framework, we developed several mobile agent-
based protocols, such as point-to-point chan-
nels among neighboring hosts, and application-
specific routing protocols for migrating agents
among multiple nodes. A prototype implemen-
tation of the framework built on a Java-based
mobile agent system called MobileSpaces was
carried out. The framework can greatly sim-
plify the development of active network tech-
nology 13). This is because mobile agents are
introduced as the only constituent of this frame-
work and thus algorithms and protocols for ac-
tive networks can be constructed and reused
through a single programmable abstraction for
composition and refinement of mobile agents.
We believe that the framework can provide an
a testbed for building and testing agent migra-
tion protocols.

Finally, we would like to mention further is-
sues. Our early performance measurements in-
dicate that the performance of protocols for
a high-level prototype is fast enough for ex-
perimenting with application-specific protocols.
However, the performance of the current imple-
mentation is not yet satisfactory, and we plan
to improve it. We are interested in develop-
ing various agent migration protocols, in addi-
tion to the examples presented in this paper.
Our protocols are not always dependent on our
framework and can thus be applied to other ac-
tive network infrastructure.

References

1) Aridor, Y. and Lange, D.: Agent Design Pat-
terns: Elements of Agent Application Design,
Proc. Second International Conference on Au-
tonomous Agents (Agents’98 ), ACM Press,
pp.108–115 (1998).

2) Bäumer, C. and Magedanz, T.: The Grasshop-
per Mobile Agent Platform Enabling Short-
Term Active Broadband Intelligent Network
Implementation, Proc. Working Conference on
Active Networks, LNCS, Vol.1653, pp.109–116,
Springer (1999).

3) Busse, I., Covaci, S. and Leichsenring, A.: Au-



Vol. 44 No. 3 Network Protocols for Mobile Agents by Mobile Agents 769

tonomy and Decentralization in Active Net-
works: A Case Study for Mobile Agents,
Proc. Working Conference on Active Networks,
LNCS, Vol.1653, pp.165–179, Springer (1999).

4) Friedman, D.P., Wand, M. and Haynes, C.T.:
Essentials of Programming Languages, MIT
Press (1992).

5) Fuggetta, A., Picco, G.P. and Vigna, G.: Un-
derstanding Code Mobility, IEEE Trans.Softw.
Eng., Vol.24, No.5 (1998).

6) Gschwind, T., Feridun, M. and Pleisch, S.:
ADK: Building Mobile Agents for Network
and System Management from Reusable Com-
ponents, Proc. Symposium on Agent Systems
and Applications/Symposium on Mobile Agents
(ASA/MA’99 ), pp.13–21, IEEE Computer So-
ciety (1999).

7) Lange, B.D. and Oshima, M.: Programming
and Deploying Java Mobile Agents with Aglets,
Addison-Wesley (1998).

8) ObjectSpace Inc: ObjectSpace Voyager Tech-
nical Overview, ObjectSpace, Inc. (1997).

9) Satoh, I.: MobileSpaces: A Framework for
Building Adaptive Distributed Applications
Using a Hierarchical Mobile Agent System,
Proc. International Conference on Distributed
Computing Systems (ICDCS’2000 ), pp.161–
168, IEEE Computer Society (2000).

10) Satoh, I.: Dynamic Configuration of Agent
Migration Protocols for the Internet, Proc. In-
ternational Symposium on Applications and the
Internet (SAINT 2002 ), IEEE Computer Soci-
ety, pp.119–126 (2002).

11) Satoh, I.: A Framework for Building Reusable
Mobile Agents for Network Management, Proc.
Network Operations and Managements Sympo-
sium (NOMS 2002 ), pp.51–64, IEEE Commu-
nication Society (2002).

12) Satoh, I.: Reusable Mobile Agents for Man-
aging Networks, to be submitted to Informa-
tion Processing Society of Japan Journal (con-
ditionally accepted) (2002).

13) Tennenhouse, D.L., et al.,: A Survey of Ac-
tive Network Research, IEEE Communication
Magazine, Vol.35, No.1 (1997).

14) White, J.E.: Telescript Technology: Mobile
Agents, General Magic (1995).

Appendix: Agent Programs

Suppose an agent migrates between two
nodes by using transmitter agents as de-
scribed in Section 6. The following code frag-
ment is the TCPTransmitter class that de-
fines simple transmitter agents on these nodes.
TCPTransmitter agents can exchange agents
with each other via their own communication

protocol. Since these TCPTransmitter agents
are mobile agents, we can create and allocate
them on nodes dynamically.
class TCPTransmitter extends TransmitterAgent
implements AgentEventListener {

public TCPTransmitter() {
// registering itself as a listener
addAgentListener(this);
// registering itself as transmitter
registryAs("transmitter");

}
// invoked when an agent arriving
public void add(AgentEvent evt) {
// serializing the arriving agent
Message msg = new Message("serialize");
msg.setArg(evt.getSourceURL());
byte[] data = (byte[])getService(msg);
// transmitting the serialized agent to
// a transmitter agent on its destination
send_agent(data, url.getTarget());

}
void send_agent(byte[] data, AgentURL dst) {
// sending the serialized agent (data)
// to the destination (dst)
...

}
void receive_agent(byte[] data, AgentURL dst) {
// deserializing data as an agent at dst
Message msg = new Message("deserialize");
msg.setArg(data); msg.setArg(dst);
AgentURL url = (byte[])getService(msg);
...

}
...

}

Our system has an event mechanism based on
the delegation-based event model introduced in
the Abstract Window Toolkit of JDK 1.1 or
later, so each agent must be informed of life-
cycle state changes so that it can release vari-
ous resources, such as files, windows, and sock-
ets, which are captured by the agent. To hook
these events, each agent can have one or more
listener objects. A listener object implements
a specific listener interface extended from the
generic AgentEventListener interface, which
defines callback methods that should be in-
voked by the core system before or after the
lifecycle state of the agent changes. For ex-
ample, the create() method is invoked after
creation, the destroy() method is invoked be-
fore termination, the add() method is invoked
after accepting an inner agent, the remove()
method is invoked before removing an inner
agent, the arrive() method is invoked after
arriving at the destination, and the remove()
method is invoked before moving to the desti-
nation. The following code fragment defines the
SimpleNavigator class, which is a simple im-



770 IPSJ Journal Mar. 2003

plementation of the navigator agent presented
in Section 5.
class SimpleNavigator extends NavigatorAgent
implements AgentEventListener {
Vector route = null; int i = 0;
public SimpleNavigator() {
// registering itself as a listener
addDefaultListener(this);
// making an itinerary to three nodes
route = new Vector();
route.addElement("first.place.com");
route.addElement("second.place.com");
route.addElement("third.place.com");

}
// invoked after arriving
public void arrive(AgentEvent evt) {
// invoking a callback method
// of its inner agents
Message = new Message("doYourTask");
msg.setArg(evt.getCurrentURL());
dispatch(msg);
// moving to the next place
moveToNextHop();

}
...
}

(Received July 1, 2002)
(Accepted October 7, 2002)

Ichiro Satoh
Ichiro Satoh received his B.E.,
M.E, and Ph.D. degrees in
Computer Science from Keio
University, Japan in 1996.
From 1996 to 1997, he was a re-

search associate in the Department of Informa-
tion Sciences, Ochanomizu University, Japan
and from 1998 to 2000 was an associate profes-
sor in the same department. Since 2001, he has
been an associate professor in National Insti-
tute of Informatics, Japan. His current research
interests include distributed and mobile com-
puting. He received IPSJ paper award, IPSJ
Yamashita SIG research award, and JSSST
Takahashi research award. He is a member of
six learned societies, including ACM and IEEE.
　　　　　　　　　　　　　　　　　　　　


