
Regular Paper

Human Software Interaction in Software Development Community

Xin Yang, Kar-Long Chan, Papon Yongpisanpop, Hideaki

Hata, Hajimu Iida and Kenichi Matsumoto†1

1. Introduction

Human Computer Interaction (HCI) is a dis-
cipline concerned with the design, evaluation
and implementation of interactive computing
systems for human use and with the study of
major phenomena surrounding them1). HCI is
a big research fields, and has long histories fo-
cusing on the interaction between people and
computers. Although HCI targets interactions,
we believe that what we need to study is the
different interactions, that is, interaction with
software data and interaction between people in
software ecosystem. We also believe that such
software-related interactions should be needed
to study and its not limited research scope.
Therefore, we call this software-related inter-
action research field as Human Software In-

teraction, and try to develop techniques and
frameworks of studies. Intuitively, HSI begins
with the combination with MSR/SA and HCI,
and tries to design the interaction between hu-
man and software data, and the interaction be-
tween human and human in software develop-
ment. We also hope to generalize the usage of
HSI into both industries and Open Source Soft-
wares. In the remainder of the paper, we will
present the challenges we are expecting in de-
signing such interaction, and also our visions of
future software development, in which we will
introduce a conceptual framework called guild.

2. Current Social Issues

Difficulties in knowledge sharing and

volatilities of communications: Collabo-
ration is one of the main feature in software
since people are now connected with the in-
ternet. But the question is how are we go-
ing to enhance the human-software interaction
and human-human interaction in collaboration.
He et al.2) studied about interaction while do-
ing collaboration between human to human and
human to computer in CAD software system.

†1 Nara Institute of Science and Technology (NAIST)

They found out that adding collaborative capa-
bilities to single-user CAD application is helpful
but also difficult. Another problem is when peo-
ple are working together, only technologies can-
not be thought of as just another independent
tool. People need to have a strong comprehen-
sion about collaboration. Lack of collaboration
comprehension can also lead to these problems
such as unclear roles, information (over)sharing
and not enough doing. In HSI, we are not only
research on just technology integration but we
also study on how well people are integrated
into the practices of those who work together.
Low stickiness: Since human power is an es-

sential resource, the population of contributors
in a software development community is one of
the health indicators of OSS project. Onoue
et al. studied the communities’ population by
proposing software population pyramids, graph-
ical illustrations of the distribution of various
experience groups in a software development
community3). From the empirical study of the
status of the population distributions and their
transitions with OSS projects in GitHub, it re-
vealed that contributors leave easily even if in
attractive OSS projects.
Social Network in Software Engineer-

ing: We studies the social aspect of software
engineering in order to know how develop-
ers work together and communicate with oth-
ers. There are some related works have been
done using techniques from social perspective
to solve software engineering problems. Bird
et al. extracted potential structure for latent
sub-communities and studied the relationship
among them in OSS projects4). Wolf et al. use
social networks to search the development net-
work structure and they predict the potential
failure5) Work by Damien6) looked at the so-
cial networks of global teams communication
and collaboration.

3. Our vision of the future

In the future research, by adopting gamifica-

ウィンターワークショップ2015・イン・宜野湾

5



tion, we hope to construct a framework named
as Guild to effectively connect people with one
another for collaboration in software develop-
ment. The original termGuild comes from me-
dieval, which means an association of artisans
or merchants who control the practice of their
craft. As for the modern acknowledgement, the
term of guild is more famous as a social mecha-
nism functioning in MMORPG (Massively Mul-
tiplayer Online Role-Playing Game), which is
a major type of online game. A MMORPG
connects game players all over the world and
each of them is required to create his/her avatar
in a virtual world. Usually each avatar poses
with different skills, representing different roles
in the virtual world. Based on avatar’s skills,
player can accomplish varied missions individu-
ally or by cooperating with other players. Guild
in MMORPG is a social approach to group dif-
ferent players into one community, aiming to
ease the heterogeneity between players, causing
less confrontation, and building up better co-
operation to achieve certain goal. In fact, the
mechanism of guild brings a lot of profits for
players including avatar levelling, or efficiently
challenging some of the most difficult missions.
Unlike Software Craftsmanship, a movement of
emphasizing the importance of coding skill in
software projects, the guild is based on promot-
ing the collaboration among contributors and
encourage contributions.
In the next two parts, we will introduce how

we want to implement the mechanism of guild
into software development.
• Mission Software development activities

such as Coding, Reviewing, Testing, Build-
ing can be treated as different type of mis-
sions and they will be ranked based on
the difficulties. The difficulty of the mis-
sion is judged by high-ranking developers
in the guild. Based on the difficulty of the
mission, high-rank member can assign it
to certain low rank member based on his
skills. By completing certain mission, the
member can be promoted to higher level,
which grants him/her the chance to work
on more challenging mission. Status of dif-
ferent missions can be easily tracked with a
designated interface, which should be built
upon versioning system such as Git or SVN.
Such tracking interface should be very user-
friendly, by showing the most essential in-
formation.

• Guild In order to form a guild in software

development, usually the project leader
and other senior engineers should be as-
signed as high-rank member in the guild.
When a certain programmer/developer
wants to join the guild for developing the
software, he/she is required to fill in his
skills and experiences. In addition, high-
ranking members could also assign some
tasks as entrance exam to test his/her abil-
ity. His/Her performance in the test and
profile information will treated as input to
quantify his/her status point in software
development. The status point should be
an important index for high-ranking mem-
bers to base on in order to assign mis-
sions. Furthermore, in the environment of
guild, beginner has better chance to im-
prove his/her skill in software development
since it is easy for he/she to team up with
high-rank members to accomplish certain
tasks, while at the same time gaining valu-
able experience.

References

1) “ACM SIGCHI curricula for human-computer
interaction,” New York, NY, USA, Tech. Rep.,
1992.

2) F.He and S.Han, “A method and tool for hu-
manhuman interaction and instant collabora-
tion in cscw-based {CAD},” Computers in In-

dustry, vol.57, no. 89, pp. 740 – 751, 2006.
3) S.Onoue, H.Hata, and K.Matsumoto, “Soft-
ware population pyramids: The current and
the future of oss development communities,” in
Proc.of 8th ACM-IEEE Int. Symp. on Empir-

ical Softw. Eng. and Measurement, ser. ESEM
’14. New York, NY, USA: ACM, 2014, pp.
34:1–34:4.

4) C.Bird, D.Pattison, R.D’Souza, V.Filkov, and
P.Devanbu, “Latent social structure in open
source projects,” in Proceedings of the 16th

ACM SIGSOFT International Symposium on

Foundations of software engineering. ACM,
2008, pp. 24–35.

5) T. Wolf, A. Schroter, D. Damian, and T.
Nguyen, “Predicting build failures using so-
cial network analysis on developer communica-
tion,” in Proceedings of the 31st International

Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 1–11.

6) D.E. Damian and D.Zowghi, “An insight into
the interplay between culture, conflict and dis-
tance in globally distributed requirements ne-
gotiations,” in System Sciences, 2003. Proceed-

ings of the 36th Annual Hawaii International

Conference on. IEEE, 2003, pp. 10–pp.

ウィンターワークショップ2015・イン・宜野湾

6




