
Vol. 44 No. 3 IPSJ Journal Mar. 2003

Regular Paper

Nested Invocation Protocol on Object Replicas

Kenichi Hori,† Tomoya Enokido† and Makoto Takizawa†

Objects are replicated in order to increase reliability and availability of an object-based
system. If a method t is invoked on multiple replicas and each instance of t on the replicas
invokes another method u on an object y, the method u is performed multiple times on the
object of y although u should be performed just once. Then, the object gets inconsistent.
This is redundant invocation. In addition, if each instance of the method t issues a request
u to its quorum, more number of the replicas are manipulated than the quorum number
of the method u. This is quorum expansion. We discuss a protocol to invoke methods on
multiple replicas in a nested manner where the redundant invocation and quorum expansion
are resolved. We evaluate the protocol compared with the primary-secondary replication.

1. Introduction

Objects are replicated in order to increase
the reliability and availability in object-based
applications 10). There are many discus-
sions on how to replicate state-full database
servers 2),4)∼7),11),12), the two-phase locking 4)

and quorum-based 6),7) protocols. The quorum
concept for read and write is extended to ab-
stract methods supported by objects 11).

In the object-based system, an object is an
encapsulation of data and methods. Further-
more, methods are invoked in a nested manner.
Suppose a method t on an object x invokes a
method u on another object y. Let x1 and x2 be
replicas of the object x. Let y1 and y2 be repli-
cas of y. In a primary-secondary way, x1 and
y1 are primary replicas and the others are sec-
ondary ones. A method is invoked on a primary
replica. The method t on the primary replica
x1 and then the method u on y1. A check-
point is taken on the primary replica and is
transferred to secondary replicas. If a primary
replica is faulty, one of the secondary replicas
takes over the primary replica. The new pri-
mary replica restarts at the checkpoint. This
approach is simple but less available. In order
to increase the availability, each method is per-
formed on more than one replica. A method
t is issued to the replicas x1 and x2. A set of
replicas x1 and x2 is referred to as quorum of
the method t. We assume that every method
is deterministic. Then, the method t invokes
the method u on replicas y1 and y2. Here, the
method u is performed twice on each replica.

† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

If multiple instances of the method u are per-
formed on some replicas, the replicas may get
inconsistent. This is a redundant invocation. In
addition, an instance of the method t on the
replica x1 issues a method u to replicas in its
own quorum Q1, and another instance of t on
x2 issues u to replicas in Q2 where |Q1| = |Q2|
= Nu but Q1 �= Q2. More number of replicas
are manipulated for a method u than Nu, i.e.,
|Q1 ∪ Q2| ≥ Nu. If the method u furthermore
invokes another method, the number of repli-
cas manipulated are more increased. This is a
quorum expansion. In order to increase the re-
liability and availability, a method issued has
to be performed on multiple replicas. On the
other hand, the replicas may get inconsistent
by the redundant invocations and the overhead
is increased by the quorum expansion. We dis-
cuss how to resolve the redundant invocation
and quorum expansion in nested invocations of
methods on multiple replicas.

In section 2, we overview replication tech-
nologies. In section 3, we discuss what problems
to occur in nested invocation of methods on
replicas. In sections 4 and 5, we discuss how to
resolve the redundant invocation and the quo-
rum expansion, respectively. In section 6, we
evaluate the quorum-based protocol.

2. Replication of Object

There are various kinds of discussions on
how to replicate a system. As Wiesmann 12)

discusses, there are different ways to replicate
processes and database servers. Processes are
stateless while database servers are statefull.
There are three ways to replicate processes, ac-
tive, passive, and hybrid ones. In the active
replication 9), every replica receives a same se-

510

Vol. 44 No. 3 Nested Invocation Protocol on Object Replicas 511

quence of messages, same computation is per-
formed on every replica, and same outputs are
sent back. Here, the process is required to be
deterministic. The process is operational as
long as at least one replica is operational. In
the passive replication 3), there is one primary
replica, say p1, and the other replicas are sec-
ondary. Messages are sent to only the primary
replica p1 and the computation is performed on
only the primary replica p1. No computation
is performed on any secondary replica. At a
checkpoint of the primary replica p1, a state of
p1 is sent to all the secondary replicas. The
hybrid replication 1) is same as the passive one
except that messages are sent to not only the
primary replica but also the secondary replicas.

Ways to replicate database servers are clas-
sified with respect to which replica a request
is issued to, eager and lazy, and when other
replicas are updated, primary and everywhere.
Requests are performed on replicas as soon as
requests are issued in the eager type. On the
other hand, requests are not immediately per-
formed in the lazy one. In the primary replica-
tion, requests are performanced only on a pri-
mary replica. In the everywhere replication, re-
quests are performed on all the replicas.

3. Nested Invocation on Replicas

3.1 Types of Method
Methods are procedures for manipulating ob-

jects. That is, methods are more complex and
abstract than simple methods read and write
on a file object. For example, a method in-
crement on an object counter is realized by a
sequence of read and write methods. There are
dependent and independent types of methods.
Computation of a dependent method t depends
on object state. A method increment is a de-
pendent one. Independent methods are per-
formed independently of object state. There
are furthermore update and non-update types
of methods according to whether or not ob-
ject state is changed by performing methods.
For example, increment is a dependent update
method since a counter value is incremented. A
method display is a dependent, non-update one
on an object counter. A method append is an
independent, update method since data to be
added is independent of object state while the
state is changed.

3.2 Primary-secondary Invocation
Objects are encapsulation of data and meth-

ods for manipulating the data. Objects are ma-

T t u

y : ivocation

: method

: object

x

Fig. 1 Nested invocation.

T t1 u1

x1 y1

x2

xa

y2

yb

.

.

.

.

.

.

: ivocation

: method

: object

: checkpoint

Fig. 2 Primary-secondary replication.

nipulated only by invoking methods supported
by the objects. Here, suppose a transaction T
invokes a method t on an object x. Data in the
object x is manipulated only by performing the
method t. The method t is realized by invoca-
tions of other methods, say a method u on an
object y. Thus, methods are invoked on objects
in a nested manner (Fig. 1).

Suppose there are replicas x1, . . ., xa (a>1)
of an object x and replicas y1, . . ., yb (b>1)
of another object y. We discuss how to invoke
methods on replicas of objects. In a primary-
secondary one, the transaction T first issues a
request t to only a primary replica x1. Then,
a request u in t is issued to a primary replica
y1 (Fig. 2). After the method commits, the
state of the primary replica is eventually trans-
mitted to the secondary ones. For example, a
checkpoint 8) is taken on the primary replica
and then the checkpoint data is transferred to
secondary ones. Here, the secondary replicas
catch up with the primary one. Since only one
instance of t invokes u, neither redundant invo-
cation nor quorum expansion occurs. For ex-
ample, suppose a replica y1 is faulty when t1
invokes u1 on y1. One secondary replica, say y2

is taken as the primary replica and t1 invokes
u2 on y2. The replica y2 restarts on a previous
state taken at the most recent checkpoint of y1.
Thus, the primary-secondary replication is less
available due to the fault of primary replica.

3.3 Multi-invocation Model
We take another approach where a method is

issued to multiple replicas in order to increase
the reliability and availability (Fig. 3). Here, a
transaction T invokes a method t on multiple
replicas of an object x. Each instance ti of t

512 IPSJ Journal Mar. 2003

T

xi yk
.
.
.

.

.

.

ti uk

tj ul

xj yl

Fig. 3 Invocation on multiple replicas.

on a replica xi invokes a method u on multi-
ple replicas of another object y. Even if some
replica is faulty, the method t is performed on
other replicas and u is invoked on replicas of y.
Let Qui be a quorum of a method u which is
a subset of replicas of the object y to which an
instance ti issues a method u. Suppose there
are four replicas y1, y2, y3 and y4. Qu1 = {y1,
y2} and Qu2 = {y2, y3}. That is, an instance
t1 invokes a method u on replicas y1 and y2,
and another instance t2 issues u on y1 and y2.
Thus, an instance of the method u is performed
on each replica in a subset Qu1 ∪ Qu2 = {y1,
y2, y3}. |Qu1 ∪ Qu2| (= 3) ≥ Nu. This means
that more number of replicas of y are manipu-
lated than Nu. Then, the instances of u on the
replicas in Qu1 ∪ Qu2 issue further requests to
other replicas and more number of replicas are
manipulated. The deeper level in a transaction,
the more number of replicas are manipulated.
This is quorum expansion. If Qui is not nec-
essarily equal to a quorum Quj of another in-
stance tj , the quorum is expanded. |Qui ∪ Quj |
> Nu may hold. Thus, the transaction T ma-
nipulates more number of replicas of the object
y than Nu, i.e., the quorum of the method u is
expanded.

Next, suppose a transaction T issues a
method t to a pair of replicas in the quorum
Qt = {x1, x2} and Nt = 2. Furthermore, the
method t issues a request u to replicas of the
object y in the quorum of u, say Nu = 2. Let
ti be an instance of the method t performed on
a replica xi (i = 1, 2). Each instance ti issues
a request u to replicas in a quorum Qui. Sup-
pose Qu1 = Qu2 = {y1, y2}. Here, let ui1 and
ui2 show instances of the method u performed
on replicas y1 and y2, respectively, which are is-
sued by a method instance ti (i = 1, 2) (Fig. 4).
Suppose the method u is “y = 2∗y”. However,
the replica y1 is multiplied by four since a pair
of instances u11 and u21 are performed on y1.
Thus, y1 gets inconsistent and so does y2. This
is a redundant invocation, i.e. a method on a

T

x1
y1

t1 u11

t2

u22

x2
y2

u21

u12

Fig. 4 Redundant invocation.

replica is invoked multiple times by multiple in-
stances of a method.

Since every method is deterministic, the same
computation of the method t is performed on
the replicas x1 and x2. Here, t1 and t2 are re-
ferred to as same crone instances of the method
t. Instances u11, u12, u21, and u22 are also same
crones of the method u.
[Definition] A pair of instances t1 and t2 of
a method t are same crones iff t1 and t2 are
invoked on a replica by a same instance or by
same crones. �

A quorum of an object x for a method t is
expanded in a transaction T iff same crone in-
stances of t invoked in T are performed on more
number of replicas of x than the quorum num-
ber Nt. An instance t is redundantly invoked
on a replica iff a same crone as t is already in-
voked on the replica. In order to resolve the
quorum expansion and redundant invocation,
each instance issued to a replica is required to
satisfy following constraints:
[Invocation constraints]

1. Qui = Quj for every pair of same crones
ui and uj issued from replicas xi and xj ,
respectively.

2. At most one crone instance of a method
invoked in a transaction is performed on
each replica if the method is a dependent
or update type. �

[Theorem] If every method is invoked on a
replica so that the invocation constraint is sat-
isfied, neither quorum expansion nor redundant
invocation occurs. �

4. Redundant Invocation

4.1 Basic Protocol
In order to resolve the redundant invocation,

we have to make clear whether or not every
pair of instances issued to a replica are same
crones. An identifier id(ti) for each instance
ti invoked on a replica of an object x is com-
posed of a method type t and identifier of the

Vol. 44 No. 3 Nested Invocation Protocol on Object Replicas 513

object x, i.e. id(ti) = t:x. Each transaction T
has a unique identifier tid(T), e.g. thread iden-
tifier. If the transaction T invokes a method
t, t is assigned a transaction identifier tid(t)
as a concatenation of tid(T) and invocation se-
quence number iseq(T , t) of t in T . The invo-
cation sequence number is incremented by one
each time T invokes a method. Thus, iseq(T ,
t) shows how many methods T has invoked be-
fore invoking ti. Suppose an instance ti on a
replica xi invokes an instance uk on a replica yk.
id(ti) = t:x. The transaction identifier tid(uk)
is tid(ti):id(ti):iseq(ti, uk) = tid(ti):t:x:iseq(ti,
uk). id(uk) = u:k. Thus, tid(uk) shows an in-
vocation sequence of methods from T to the
instance uk. The transaction identifiers have to
satisfy the following constraint.
[Transaction identifier] tid(t1) = tid(t2) iff
t1 and t2 are same crone instances. �

Suppose tid(T) is assumed to be 6 in Fig. 4.
Suppose T invokes a method t after invoking
three methods, i.e. iseq(T , t1) = iseq(T , t2)
= 4. id(t1) = id(t2) = t:x. Since tid(t1) =
tid(t2) = tid(T):iseq(T , t1) = tid(T):iseq(T , t2)
= 6:4, t1 and t2 are same crone instances. The
method t invokes another method u after invok-
ing one method. Here, iseq(t,u)=2, tid(u11) =
tid(u12) = tid(t1):id(t1):2 = 6:4:t:x:2. tid(u21)
= tid(u22) = tid(t2):id(t2):2 = 6:4:t:x:2. Since
tid(u11) = tid(u21), u11 and u21 are same crone
instances on a replica y1.

A method t invoked on a replica xh is per-
formed as follows:

1. If no method is issued to a replica xh, an
instance th is performed and a response res
of t is sent back. 〈t, res, tid(th)〉 is stored
in the log Lh.

2. If 〈t, res, tid(t′h)〉 such that tid(th) =
tid(t′h) is found in Lh, the response res of t′h
is sent back as the response of th without
performing th. Otherwise, t is performed
on the replica xh as presented at step 1.

In Fig. 4, suppose u11 is first issued to the
replica y1. 〈u, response of u11, tid(u11)〉 is
stored in the log L1. Then, u21 is issued. Since
tid(u11) = tid(u21), i.e. u11 and u21 are same
crones, u21 is not performed but the response
of u11 stored in the log L1 is sent to t2 as the
response of u21. By the resolution of the redun-
dant invocation, at most one crone instance is
surely performed on each replica. In addition,
if multiple instances invoke a same method on a
replica, every invoker instance receives the same

response of the method.
4.2 Modified Protocol
At the deeper level methods are invoked, the

longer the length of the transaction identifier
is getting. We try to reduce the length of the
transaction identifier. Suppose a transaction T
invokes a method u on an object y in addition
to invoking a method t as shown in Fig. 1. The
method t invokes the method u as well. If the
transaction identifier tid(T) is used as an identi-
fier of each method, both instances of u invoked
by T and t have the same identifier. Hence, if an
instance of u invoked by T is already performed
on a replica of y, other instances of u invoked by
t are not performed. As long as every method
is invoked at most once in a transaction T , the
transaction identifier tid(T) can be used as an
identifier of each instance.

Next, suppose every transaction and method
serially issue methods. Each transaction T has
a variable id whose initially value is 0. Suppose
a transaction T issues a method t on replicas
x1, . . ., xm. Each request message carries the
method t with tid(T) and id. Then, an instance
ti of the method t is performed on a replica xi.
Suppose ti issues a method u to replicas y1, . . .,
yl. id is incremented by one, id := id + 1. The
request u with tid(T) and id is carried to repli-
cas of the object y. If an instance uj of the
method u finishes on a replica yj , the response
of uj carries id to the invoker instance tu. Then,
the value of id in ti is replaced with id returned
from uj . Then, ti issues another method v on
replicas of an object z. id is incremented by
one. Then, tid(T) and id are sent to the repli-
cas of z. Thus, id shows a depth-first order of
methods in an invocation tree of methods.

1 On receipt of a request 〈t, tid(T), id〉 from
an invoker instance s,

a. cid := sid := id; t is performed;
b. If t invokes a method u on an object y,

cid := cid + 1 and a request 〈u, tid(T),
cid〉 is issued to replicas of y. t waits
for a response from the replicas.

2 On receipt of a response 〈u, tid(T), id,
resp〉

1. cid := id;
2. If t invokes another method, go to 1b.
3. A response 〈t, tid(T), cid, resp′〉 is

sent to the instance where resp′ is the
response of t.

The transaction identifier of each instance in-

514 IPSJ Journal Mar. 2003

voked in a transaction T is a pair 〈tid(T), id〉. If
the method t finished on a replica xi, 〈t, tid(T),
sid, resp〉 is stored in the log Li where resp
shows response data of t. On receipt of a re-
quest 〈t, tid, id〉, Li is searched. If 〈t, tid, id,
resp〉 is found in Li, the request is not per-
formed because a same crone is already per-
formed on xi. Without performing t, the re-
sponse 〈t, tid, id, resp〉 is sent to the invoker.
[Property] tid(t1) = tid(t2) iff t1 and t2 are
same crones. �

5. Quorum Expansion

5.1 Basic Protocol
Suppose a method t on an object x invokes a

method u on an object y. Let Quh be a quorum
of u invoked by an instance th of the method
t on a replica xh. In order to resolve the quo-
rum expansion, Quh and Quk have to be the
same for every pair of replicas xh and xk. If
some method is frequently invoked, the replicas
in the quorum are overloaded. The quorum of
the method u has to be randomly decided each
time u is invoked. In distributed systems, the
quorum information is distributed in networks.
If some replica is faulty, the quorum including
the faulty replica has to be updated. We have
to discuss a mechanism to randomly create a
quorum Qui for each invoker instance ti to in-
voke a method u in presence of replica fault of
y, which satisfies the following constraints:

1. Qui = Quj only if a pair of instances ti
and tj are same crones in a transaction.

2. Qui �= Quj if ti and tj are different crones.
We introduce a function select(i, n, a) which

gives a set of n numbers out of 1, . . ., a for a
same initial value i where n ≤ a. For exam-
ple, select(i, n, a) = {h | h = (i + � a

n	(j −
1)) modulo a for j = 1, . . ., n} ⊆ {1, . . ., a}.
For a pair of different values x and y, select(x,
n, a) �= select(y, n, a). By using select, an in-
stance th on a replica xt obtains a quorum Quh

of a method u as follows: Suppose an instance
th on a replica xh invokes a method u. I =
select(numb(tid(th)), Nu, b) is obtained, where
Nu is quorum number of u and b is a total num-
ber of replicas of y, i.e. {y1, . . ., yb}. Let tid(th)
be s1:s2:· · ·:sg. Here, numb(tid(th)) is (s1 + · · ·
+ sg) modulo a. I ⊆ {1, . . ., b} and |I| = Nu.
Then, Quh = {yi | i ∈ I}.

Every pair of same crone instances have
the same transaction identifier tid as pre-
sented in the preceding Subsection. Hence,

th

tk

...

...

...

Quh

Quk

th

tk

.

.

.
Qu

Fig. 5 Resolution of quorum expansion.

select(numb(tid(th)), Nu, b) = select(numb
(tid(tk)), Nu, b) for every pair of crone instances
th and tk. An instance th on every replica xh

issues a method u to the same quorum Quh as
the other same crones. Hence, no quorum ex-
pansion occurs (Fig. 5). In addition, a quorum
Q′

uk obtained for another crone instance t′h is
different from Quh.

5.2 Modified Protocol
Each instance th on a replica xh issues a

method request u to Nu replicas of the object y.
Hence, totally Nt · Nu requests are transmitted.
We try to reduce the number of requests trans-
mitted in the network. Let Qu be a quorum {y1,
. . ., yb} (b = Nu) of the method u obtained by
the function select for each instance th. If each
instance th issues a request u to only a subset
Quh ⊆ Qu, the number of requests issued to the
replicas of the object y can be reduced. Here,
Qu1 ∪ . . . ∪ Qua = Qu.

Let r (≥ 1) be a redundancy factor, i.e. the
number of the requests to be issued to each
replica yk in Qu. For each instance th on a
replica xh in Qt = {x1, . . . xa} where a = Nt,
Quh is constructed for the method u as follows
(h = 1, . . ., a):

If a ≥ b·r, Quh = {yk | k = � hb
a 	} if h ≤

r · b Quh = φ otherwise.
If a < b·r, Quh = { yk | (1 + � (h−1)b

a
) ≤
k < [1 + (� (h+r−1)b

a
 − 1) modulo b]}.
For example, suppose instances t1, t2, and t3
on replicas x1, x2, and x3, respectively, issue
a method request u to replicas y1, y2, y3, and
y4, i.e. Qt = {x1, x2, x3} and Qu = {y1, y2,
y3, y4}. Suppose the redundancy factor r = 2.
Hence, Quh = {yk | (1 + (� (h−1)4

3
) ≤ k ≤ (1
+ (� (h−1)4

3
 + � 8
3
 − 1) modulo 4)}. Hence,

Qu1 = {y1, y2}, Qu2 = {y2, y3, y4}, and Qu3

= {y3, y4, y1} (Fig. 6 (1)). Two requests from
the instances of the method t are issued to each
replica of y. For example, suppose an instance
t1 on a replica x1 is faulty. Another instance t2
sends u to the replicas y2, y3, and y4 in Qu2 and

Vol. 44 No. 3 Nested Invocation Protocol on Object Replicas 515

x1

x2

x3

t1

t2

t3

y1

y2

y3

y4

t1

t2

t3

y1

y2

y3

y4

(2) r = 2 (3) r = 1

x1

x2

x3

t1

t2

t3

y1

y2

y3

y4

(1) r = 3

x1

x2

x3

Fig. 6 Invocations.

T t1 t2
... tl

x1 x2 xl

ivocation level 1 2 l

Fig. 7 Invocation model.

t3 sends u to the replicas in Qu3. Since Qu2 ∪
Qu3 = {y1, y2, y3, y4}, u is sent to every replica
in Qu even if t1 is faulty. Qu1 = {y1}, Qu2 =
{y2}, and Qu3 = {y3, y4} for r = 1 (Fig. 6 (3)).
Thus, totally r · Nu requests of the method u
are issued to the replicas in Qu. Even if (r − 1)
instances of t are faulty, u is performed on Nu

replicas of y.

6. Evaluation

We evaluate the quorum-based invocation
(Q) protocol discussed in this paper. The Q
protocol is evaluated in terms of number of
replicas manipulated, number of requests is-
sued, and response time compared with the
primary − secondary invocation (P) protocol.

In the evaluation, we take a simple invoca-
tion model where a transaction T first invokes
a method t1 on an object x1, then t1 invokes
t2 on x2, · · · as shown in Fig. 7. Here, let ai

be the number of replicas of an object xi (i =
1, 2, . . .). Let Ni be the quorum number of
a method ti (Ni ≤ ai), where i shows a level
of invocation. Let ri be a redundancy factor
on an object xi. In the primary-secondary (P)
protocol, only a method on a primary replica is
invoked as shown in Fig. 2. Suppose a method
ti invokes another method ti+1 on a primary
replica xi+1 (Fig. 8). If xi+1 is faulty, one sec-
ondary replica x′

i+1 is taken as a new primary
and a method ti+1 on the replica xi+1 is in-
voked again. In addition, x′

i+1 might be faulty
during invocation of ti+1. Here, if x′

i+1 is de-
tected to be faulty, another replica x′′

i+1 is taken
and ti+1 is invoked again on the replica x′′

i+1.
Let fi be probability that a replica of an object
xi is faulty. Thus, the higher fi is, the longer it
takes to perform the transaction T . We assume

T xi xi+1 x’
i+1

ti

ti+1

time

R

:fault

Fig. 8 Primary-secondary (P) protocol.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation Level(l)

N
u

m
b

er
 o

f
re

p
li

ca
s

m
an

ip
u

la
te

d

Protocol P(f=0)
Protocol P(f=0.01)
Protocol P(f=0.05)
Protocol P(f=0.1)
Protocol P(f=0.3)
Protocol P(f=0.5)
Protocol Q

f = 0
f = 0.01
f = 0.05
f = 0.1

f = 0.3

f = 0.5

Protocol Q
Protocol P

Protocol Q

Fig. 9 Number of replicas manipulated.

f1 = f2 = . . . = f .
In the Q protocol, each method ti is per-

formed on only Ni replicas of an object xi as
long as at least ri replicas are operational. We
assume that a1 = a2 = . . . = a = 10, N1 = N2

= . . . = N (≤ a), and r1 = r2 = . . . = r.
Figure 9 shows the number of replicas

where methods are performed in the transac-
tion whose maximum invocation level is i for
fault probability f . In the Q protocol, a = 10
and N = 3. Only the quorum number N of
replicas, i.e. three replicas, in ten replicas are
manipulated at each invocation level.

Figure 10 shows the number of request mes-
sages transmitted for fault probability f . In
the Q protocol, N messages are transmitted.
We assume the redundancy factor r = N in
this evaluation. N2 request messages are trans-
mitted at each invocation. Hence, N2i request
messages are transmitted for a transaction with
invocation level i. The numbers of replicas ma-
nipulated are shown for r = N and r = N/3.
In the P protocol, totally i request messages are
transmitted if no fault occurs, i.e., f = 0.

Let us consider response time of transaction

516 IPSJ Journal Mar. 2003

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation level(l)

N
u

m
b

er
 o

f
re

q
u

es
t

m
es

sa
ge

s
(r

=
N

, R
=

N
/3

)

Protocol P(f=0)
Protocol P(f=0.01)
Protocol P(f=0.05)
Protocol P(f=0.1)
Protocol P(f=0.3)
Protocol P(f=0.5)
Protocol Q(r=N)
Protocol Q(r=N/3)

f = 0
f = 0.01
f = 0.05
f = 0.1

f = 0.
3

f = 0.5

Protocol Q
(r=N)

Protocol Q
(r=N/3)

Protocol Q
(r=N)

Protocol Q
(r=N/3)

Protocol P

Fig. 10 Number of request messages issued.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation level(l)

R
P

/R
Q

f=0
f=0.05
f=0.1
f=0.3
f=0.5

f = 0.05

f = 0.5

f = 0.3

f = 0

f = 0.1

Fig. 11 Response time (α = 0.25).

with invocation level i in the Q and P proto-
cols. Let δi be delay time to send a message
from a replica of xi−1 to a replica of xi. Let πi

show time for processing a request on a replica
xi. Here, we assume δ1 = δ2 = . . . = δ and π1

= π2 = . . . = π. In the Q protocol, the response
time RQ is (2δ + π)i. In the P protocol, the
response time RP is 2δ·(number of request mes-
sages) + π·(number of replicas manipulated) for
fault probability f , which are obtained from
Figs. 9 and 10. Here, π = α·δ. Figures. 11
and 12 show the ratio RP /RQ for α=0.25 and
α=4. α=0.25 shows the delay time is for times
longer than the primary speed. These figures
show that the Q protocol supports shorter re-
sponse time than the protocol while implying
larger number of messages transmitted.

7. Concluding Remarks

In this paper, we discussed how transactions
invoke methods on multiple replicas of objects
in a nested manner. Methods may invoke other
methods, i.e. nested invocation. If methods
are invoked on multiple replicas, multiple re-

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation level(l)

R
P

/R
Q f=0

f=0.05
f=0.1
f=0.3
f=0.5

f = 0.05

f = 0.5

f = 0.3

f = 0

f = 0.1

Fig. 12 Response time (α = 4).

dundant instances of a same method may be
performed on a replica, redundant invocation
and more number of replicas than the quo-
rum number may be manipulated, quorumn
expansion. We discussed the Q (quorum-based
invocation) protocol with neither redundant in-
vocations nor quorum expansions. We evalu-
ated the Q protocol compared with primary-
secondary one. We showed the Q protocol im-
plies shorter response time while more num-
ber requests are transmitted than the primary-
secondary one. By using the Q protocol, a repli-
cated object-based system can be efficiently re-
alized.

References

1) Barrett, P.A., Hilborne, A.M., Bond, P.G. and
Seaton, D.T.: The Delta-4 Extra Performance
Architecture, Proc. 20th Int’l Symp. on FTCS,
pp.481–488 (1990).

2) Bernstein, P.A. and Goodman, N.: The Fail-
ure and Recovery problem for Replicated
Databases, Proc. 2nd ACM POCS, pp.114–122
(1983).

3) Budhiraja, N., Marzullo, K., Schneider, B.
and Toueg, S.: The Primary-Backup Approach,
ACM Press, pp.199–221 (1984).

4) Carey, J.M. and Livny, M.: Conflict Detec-
tion Tradeoffs for Replicated Data, Proc. ACM
TODS, Vol.16, No.4, pp.703–746 (1991).

5) Chevalier, P.Y.: A Replicated Object Server
for a Distributed Object-Oriented System,
Proc. IEEE SRDS, pp.4–11 (1992).

6) Garcia-Molina, H. and Barbara, D.: How to
Assign Votes in a Distributed System, JACM,
Vol.32, No.4, pp.841–860 (1985).

7) Gifford, D.K.: Weighted Voting for Replicated
Data, Proc. 7th ACM Symp. on Operating Sys-
tems Principles, pp.150–159 (1979).

8) Koo, R. and Toueg, S.: Checkpointing and

Vol. 44 No. 3 Nested Invocation Protocol on Object Replicas 517

Rollback-Recovery for Distributed Systems,
IEEE Trans. Softw. Eng., Vol.3E-13, No.1,
pp.23–31 (1987).

9) Schneider, B.F.: Replication Management us-
ing the State-Machine Approach, Distributed
Computing Systems, Vol.7, ACM Press, 2nd
edition (1993).

10) Silvano, M. and Douglas, C.S.: Constructing
Reliable Distributed Communication Systems
with CORBA, IEEE Comm. Magazine, Vol.35,
No.2, pp.56–60 (1997).

11) Tanaka, K., Hasegawa, K. and Takizawa, M.:
Quorum-Based Replication in Object-Based
Systems, Journal of Information Science and
Engineering, Vol.16, pp.317–331 (2000).

12) Wiesmann, M., et al.: Understanding Repli-
cation in Databases and Distributed Systems,
Proc. IEEE ICDCS-2000, pp.264–274 (2000).

(Received June 27, 2002)
(Accepted October 7, 2002)

Kenichi Hori was born in
1979. He received his B.E. de-
grees in Computers and Systems
Engineering from Tokyo Denki
University, Japan in 2002. He
is now a graduate student of
the master course in the Depart-

ment of Computers and Systems Engineering,
Tokyo Denki University. His research interests
include distributed database systems and fault-
tolerant system. He is a student member of
IPSJ.

Tomoya Enokido was born
in 1974. B.E. and M.E. degrees
in Computers and Systems Engi-
neering from Tokyo Denki Uni-
versity, Japan 1997 and 1999.
After he worked for NTT Data
Corporation, he is currently a

research assistant in the Department of Com-
puters and Systems Engineering, Tokyo Denki
University. His research interests include dis-
tributed systems and group communication. He
is a member of IPSJ.

Makoto Takizawa served
as program co-chair of the
IEEE International Conference
on Distributed Computing Sys-
tems (ICDCS) in 1998 and as
program vice chairs of ICDCS
in 1994 and 2000, and is serving

as a general co-chair of ICDCS-2002. He also
served as a general co-chair of IEEE ISORC.
He is a member of the program committees of
many IEEE Computer Society conferences in-
cluding ICDCS, SRDS, ICPADS, ISORC, and
ICNP. He was elected for 2003–2005 BoG mem-
ber of IEEE Computer Society. Takizawa is a
full professor in the Department of Computers
and Systems Engineering, Tokyo Denki Univer-
sity, Japan. He is now a dean of the gradu-
ate school of Science and Engineering, Tokyo
Denki University. He chaired the Information
Division at the Research Institute for Technol-
ogy, Tokyo Denki University from 1998 to 2002.
He was a visiting professor at GMD-IPSI, Ger-
many (1989–1990) and has been a regular visit-
ing professor at Keele University, England since
1990. Takizawa is a fellow of Information Pro-
cessing Society of Japan (IPSJ) and was a mem-
ber of the executive board of IPSJ from 1998 to
2000. He chaired SIGDPS (distributed process-
ing) of IPSJ from 1997 to 2000 and was an ed-
itor of the Journals of IPSJ (1994–1998). Tak-
izawa received his BE, ME, and DE in com-
puter science from Tohoku University, Japan.
In 1996, he won the best paper award at IEEE
International Conference on Parallel and Dis-
tributed Systems (ICPADS). He is a member
of the IEEE and a member of the ACM and
IPSJ.

