
DIVA-EMIN: Efficient Dependability for Post-Silicon Materials

Oliver Kaltstein † Shinya Takamaeda-Yamazaki † Jun Yao † Yasuhiko Nakashima †

Abstract

Microprocessors for new materials (e.g. IGZO thin film)
are required to have a small amount of transistors, so
that they can fit onto the material. At the same time
due to the sensitivity of film-material more redundancy
is necessary to avoid early system-failure. In this pa-
per, we propose DIVA-EMIN, a novel method to pro-
vide a high dependability to keep the circuit smaller
than in a straightforward Dual Modular Redundancy
(DMR) implementation. In order to reduce the circuit
overheads, infrequently used parts of the processor have
been isolated from the additional system for the depend-
ability. DIVA-EMIN reduces the size of a DMR-module
to half of the surface while degrading dependability by
only 10%.

1 Introduction

Instead of silicon, new material devices using amorphous
oxide semiconductors, such as indium-gallium-zinc ox-
ide (IGZO)1), will become very cheap if mass-produced.
This characteristic makes it possible to create an ultra
low-power and cheap embedded computer system.

Unfortunately, the maximum number of available
transistors is limited to a few 1000 transistors on the
new materials. If such material is very cheap, it may be
much less protected against scratches, because the mod-
ern dependable technique might not be adopted. Addi-
tionally chemical effects will make it become unreliable
even faster than the silicon-based devices.

We already proposed the small footprint processor
architecture for emerging materials, named EMIN2).
EMIN is designed for directly executing 32-bit ARM
programs by using emulation techniques on an 8-bit ar-
chitecture. By employing the emulation approach, com-
plex logics that consume very large circuits are realized
as software and stored in memory. However, EMIN does
not provide any features to detect an error at runtime.

Commonly, in order to provide dependability, DMR
(Dual Modular Redundancy) is used to detect an error
that appeared on a system. Such straightforward DMR
that appends an additional copy of the protected com-
ponent requires a huge number of transistors.

In this paper, we propose DIVA-EMIN, a novel tech-
nique to provide high dependability for EMIN using
emerging cheap but unreliable materials. Instead of
DMR, we choose DIVA for the error detection with small
circuit footprints. In contrast to the original DIVA, our
approach is to reduce the memory footprint for emulator
instructions. We found that only some portions of the
emulator are heavily utilized in DMR. Portions that are
not used frequently are kept non redundant to reduce
the amount of used transistors.

†Nara Institute of Science and Technology

Figure 1: EMIN

2 Architectural Techniques for Tiny Processors
on Post-Silicon Materials

2.1 EMIN: Emulation Oriented Small Proces-
sor

EMIN is an optimized processor architecture executing
the ARM emulator to execute ARM binaries. Figure 1
shows the architecture of EMIN. EMIN is an 8-bit pro-
cessor with 8 data-lines to memory, however, it has opti-
mizations to handle 32-bit data and addresses, so up to
32 address-lines can be implemented. There are further
optimizations for running emulator-software that emu-
lates the ARMv4T processor. Even though it is an 8-bit
processor it has specific mechanisms to easily load 32 bit
instructions in 4 steps from memory into the processor-
registers. There are optimizations for addressing as well
by using the WR-Register to cache the working address
anytime while loading the Y-Registers. The instruction-
set balances the performance with the circuit-area. In-
structions that are not used often in ARM programs,
such as shifting, are emulated in a more compact but
slower way by iterations.

An advantage of having an ARM emulator is that
ARM programs can be run directly without disassem-
bling. Source-code is often unavailable, however, ARM
is a popular system. EMIN can be used as a replace-
ment for existing systems with ARM processors. In this
way micro-controllers can be migrated to much cheaper
thin-film materials than printed circuit boards. Low-
cost controllers are a great advantage in sensor-networks
to help monitor the environment. ARM is the de-facto
standard for mobile devices3). A tiny processor-system
will allow better reliability during use and a higher yield
during production.

This approach avoids 32-bit hardware and therefore
saves space - space is an issue on new materials where
space for transistors or cabling is very limited. How-
ever, the complexity of the CPU (i.e., the circuit area)
and the size of the emulator (i.e., performance) are in a
trade-off relationship. Another reason for using an em-
ulator is that it is easier to protect the logic of memory
for example by ECC than to protect the integrity of a
processor.

A-04

2014年度情報処理学会関西支部 支部大会



Figure 2: DIVA
2.2 DIVA

Dynamic Verification DIVA4) was originally designed as
a dependability-solution for submicron-system to over-
come low signal-quality and radiation to avoid logic-
failure inside a silicon-chip. If integrations are very high,
dependability decreases in silicon-systems as well as in
film-computers. Even though the reasons for the reli-
ability decrease are different, the approach to correct
errors is the same one. The left side: “DIVA Core”
shown in Figure 2 is the complete processor with high
integration, and possibly smaller transistors. The DIVA-
checker on the right is a reduced core to do only the
most frequent calculations. Whenever the DIVA-checker
agrees with the full core then the results will be commit-
ted. If a more specific instruction from the full core is
not implemented in the DIVA-checker, then it cannot
be compared and will be committed without verifica-
tion. The result from the main-core will be copied to
the checker so that further instructions that depend on
the missing steps can be continued processing. DIVA
needs only small space for the checker-unit, because it
is a stripped down processor where many instructions
have been reduced.

This concept is also useful for film-based computers,
because space on thin-film is limited. Because dual mod-
ular redundancy (DMR) would consume too much space
it couldn’t be implemented. Using DIVA in combination
with EMIN can save a lot of space, and still leads to a
reliable overall-performance, close to the reliability of
dual modular redundancy. However, since EMIN is not
a pipeline-architecture out-of-order execution is not an
issue and the implementation of the DIVA-EMIN system
is actually simpler.

3 DIVA-EMIN

3.1 System Architecture

The important characteristic of EMIN is that a memory
component storing the emulator program requires larger
hardware resources than the EMIN processor: the mem-
ory for the emulator consumes 20 times more transistors
than the EMIN processor3). This research focuses on re-
ducing the size of the memory while keeping the depend-
ability almost as high as in a conventional dual modular
redundancy (DMR) system.

We propose DIVA-EMIN to make the best use of ma-
terials that are limited in size and that degrade faster
than silicon. Our study involves a combination of three
technologies: new materials, EMIN and DIVA. Figure 3
shows the DIVA-EMIN system. Both sides have a com-
plete EMIN processor. The processor is already about

Figure 3: DIVA-EMIN
20 times smaller than memory. The left side shows the
full ARM emulator, which is 4KB big. On the right side
it has the exact same system, but a smaller memory is
used to save memory space. The reduced ARM emulator
on the right functions as a DIVA checker.
In our experiments, we are using an arbitrary number

for the size of the checker-unit. This number symbolizes
the remaining space available on film-material that we
want to make best use of. For example 70%, so it may be
not enough to fit a complete processor with the emulator
as dual modular redundancy.
DIVA-EMIN avoids slowing down the system, because

the full core is usually slower than the DIVA checker.
However, some dependability will be sacrificed while al-
ways keeping the execution-speed of ARM binaries to
the maximum. This is accomplished by sacrificing some
dependability. The general idea is to keep the system re-
dundant more than 90% of the time while using only half
of the area. Whether this can be accomplished or not
depends on the software and the data that is being ex-
ecuted on such an optimized system. Our DIVA-EMIN
study is about finding the best possible optimization for
reducing the size of the DIVA checker.
Both systems need to be connected to ensure that

the right side can do the checking and committing of
the calculations that are performed on the left side of
the system in Figure 3. While there are various ways to
establish such a communication-link, discussing the pros
and cons of the interconnection is not included in this
paper. The connection between the systems is necessary
to send every result from the left processor to the right
processor. Results computed in the DIVA-checker can
be compared with the results of the full-core, or the
results of the full core can be used to replace missing
results from the checker-unit.

3.2 Adaptive Instruction Selection

In EMIN, an ARM program is executed by the software
emulator of ARM architecture running on the native 8-
bit processor that is realized as actual hardware. The
ARM emulator has a decoder for converting an ARM
instruction into a native instruction sequence. Figure
4 shows the memory size breakdown of each function
region of the ARM emulator decoder. The emulator
consists of a 3-level hierarchy of function regions to de-



Figure 4: Breakdown of Occupied Memory Region for
Decoding ARM Instructions

code an ARM instruction into a native 8-bit instruction
sequence: each function level is represented by a prefix
named D1, D2 and EX, respectively. Every instruction
begins at D1 START. After exiting D1, one of the D2-
regions will be entered depending on which instruction
is being executed. Whenever D2 MUL is entered, then
EX MULTIPLY is entered with the same frequency.

There are some variations in size of a function re-
gion. In DIVA-EMIN, removing a decode function con-
suming large memory can effectively reduce the con-
sumed transistors for instruction memory of the DIVA
checker. However, just removing them might decrease
the dependability, if those parts are frequently executed.
When the DIVA checker has no corresponding part of
the original decoder, it just receives and uses the com-
putation result from the corresponding instructions and
cannot validate results by those instructions.

In order to reduce the memory consumption for the
emulation program with dependability, infrequently ex-
ecuted instructions are the first candidate to be removed
from the DIVA checker. To determine which parts are
removed, we analyzed the actual frequency of use for
each function region of the emulation decoder by using
a software simulator of EMIN. Figure 5 shows the fre-
quency of use for each function region. The numbers on
top show how many times the multiply instruction was
used. We used Stanford Integer Benchmarks5) as the
benchmark.

The result shows that the frequency of usage strongly
depends on the behavior of each program. Note that
we don’t distinguish which part of EX MULTIPLY was
utilized, since the chosen granularity was coarse-grained.
Therefore EX MULTIPLY and D2 MUL appear in the
same length as a percentage in this graph. The result
shows that every program makes some significant use of
the function regions of the ALU operation. A bench-
mark Intmm makes heavy use of the function region of

Figure 5: Breakdown of Frequency of Use of Decoder
Function.
multiplication operation, while Tower, Queens, Puzzle
and Perm make no use of it. Bubble and FFT make
some use of the function regions of the multiplication
operation.
These hints help us to make decisions which function

regions we should implement as single-module (only in
the full EMIN) and which function regions we imple-
ment as dual-modular redundancy in the full-EMIN and
the DIVA-checker. It’s revealed that removed instruc-
tions should be selected and customized based on the
actual frequency of use for each application, in order
to efficiently reduce the occupied memory capacity with
acceptable dependability.
To determine which parts of function regions are re-

moved from the DIVA checker, we now define a value of
priority that indicates the importance of each function
region using its occupied memory size and frequency of
use, as following. A function region with a low priority
is potentially removed from the DIVA checker.

Priority =
Freq[times]

OccupiedSize[Byte]
(1)

4 Evaluation

We evaluate DIVA-EMIN in hardware size and depend-
ability. Dependability is defined as the cumulative num-
ber of covered instructions from the DIVA checker. If
no instruction is removed from the DIVA checker, the
dependability is perfect in this evaluation. To analyze
the relationship between memory size reduction and de-
pendability, we removed some function regions for de-
coding of ARM instructions from the DIVA checker



based on its priority, and then we calculated the num-
ber of covered instructions by the DIVA checker. The
number of covered instructions of the DIVA checker is
calculated from the instruction mix of each benchmark
measured by using the software simulator of EMIN and
the correspondence relationship between an ARM in-
struction and used function regions. As well as the pre-
vious preliminary evaluation, we used Stanford integer
benchmark as the benchmark.

Figure 6 shows the relationship between dependabil-
ity and occupied memory size of the DIVA checker for
various programs. Overall, the DIVA-EMIN system
can achieve substantial reliability with reducing mem-
ory consumption by the instruction decoder in DIVA
checker by preferentially selecting function regions with
low priority (high memory consumption or low frequency
of usage). In the benchmark Puzzle, the system can
achieve 95% reliability of the original DMR, while the
ARM emulator in the DIVA checker can be optimized
in memory usage to 50% of the original.

The selection of removed function regions for decoding
ARM instructions is optimized for each ARM program,
because each program has different behavior. However,
another application might be executed on the optimized
emulator for the other. Dependability of a mismatch
combination will be lower than an execution on the
appropriate emulator. We evaluate the dependability
in case the selection is unfortunately optimized for the
other application.

Figure 7 shows the relationship between dependability
and the occupied memory size both in the appropriate
situation and mismatch situation. If reduction is done
arbitrarily there can be up to 90% difference in depend-
ability. For example, FFT can function with 60% of the
function regions and still be 99% dependable, if reduc-
tion was done systematically, because 99% of the time
is spent in function regions that exist on both the main
processor and the DIVA checker. On the other hand, if
the improper function regions of the DIVA checker are
removed then the dependability can be as bad as 5%
with the same size of the DIVA checker. Therefore an
optimized reduction-procedure can help making better
use than intuitively deciding while manually selecting
the function regions.

5 Related Work

There are various prior researches and techniques on
system-level dependability improvement. The major
approach employing dual-modular redundancy is Lock-
Step6, 7). In Lock-Step, two same components are
tightly connected and execute an identical application.
While the granularity of error detection depends on the
system, computation results generated from these two
components are validated by an additional comparator.

In multicore processor era, dependability aware ar-
chitectures have been proposed. Slipstream processor8)

is a mechanism for improving dependability and per-
formance based on multicore processor redundancy. In
the slipstream processor, one of multiple cores executes

Figure 6: Relationship between Dependability and
Hardware Size
a proper instruction sequence, and simultaneously an-
other core executes a short sequence with the same be-
havior as the proper sequence. This mechanism requires
a very low latency communication mechanism for core-
core synchronization. Configurable isolation9) is a low-
cost approach providing loose Lock-Step capability for
modern multicore processors. Configurable isolation en-
ables to make DMR sets or TMR sets on multicore pro-
cessors by employing separation of the on-chip intercon-
nections into multiple parts for avoiding unnecessary er-
ror propagations. SmartCore10) is a flexible approach
for DMR execution on many-core processors with on-
chip network supports. In SmartCore, a DMR pair of
processor cores on a single many-core processor system
executes an identical thread. Eventually the cores gen-
erate data transfers, such as cache miss and DMA, then
the on-chip router waits and compares the correspond-
ing contents of the transfer to validate that the execution
was correct.
The ideas of these prior researches are useful, but the

available resources and situations are very different. In
processors on post-silicon materials, available transistors
are limited. Therefore, architects have to make a reliable
system with minimal transistor usage both in logic and
memory.

6 Conclusion

In this paper, we proposed DIVA-EMIN, a lightweight
approach for improving dependability of microproces-
sors on post-silicon materials. To reduce the transistor
consumption, we employ EMIN, an emulation-oriented
tiny processor that can execute a 32-bit ARM programs
by emulation. Our proposed technique provides depend-
ability improvements with small area overhead. Our ap-



Figure 7: Relationship between Dependability and
Hardware Size (Unoptimized vs. Optimized)
proach enables to reduce the memory footprint, consum-
ing most of available transistors in EMIN processor, by
adaptive instruction selection based on the analysis of
program behavior. The evaluation result shows that the
hardware size of an additional unit for DMR execution
can be reduced to half of the original with low depend-
ability decreases from the perfect DMR.

Acknowledgement

This work is supported in part by JSPS KAKENHI
KIBAN-A (24240005) and HOUGA (24650020).

References

1) Kenji Nomura, Hiromichi Ohta, Akihiro Tak-
agi, Toshio Kamiya, Masahiro Hirano, and Hideo
Hosono. Room-temperature fabrication of transpar-
ent flexible thin-film transistors using amorphous
oxide semiconductors. Nature, 432(7016):488–492,
2004.

2) Yasuhiko Nakashima. A Study of Emulator Ori-
ented Small CPU for Realizing Film Comput-
ers. IEICE Technical Report. Computer Systems,
112(173):19–24, 2012.

3) Yuko Hara-Azumi, Masaya Kunimoto, and Ya-
suhiko Nakashima. Emulator-oriented tiny pro-
cessors for unreliable post-silicon devices: A case
study. In Design Automation Conference (ASP-
DAC), 2014 19th Asia and South Pacific, pages 85–
90, Jan 2014.

4) T.M. Austin. Diva: a reliable substrate for deep
submicron microarchitecture design. In Microarchi-
tecture, 1999. MICRO-32. Proceedings. 32nd An-
nual International Symposium on, pages 196–207,
1999.

5) John Hennessy and Peter Nye. Stanford integer
benchmarks. Personal communication, 1988.

6) PowerPC 750GX Lockstep Facility. IBM Applica-
tion Note, 2008.

7) Spartan-6 FPGA Dual-Lockstep MicroBlaze Pro-
cessor with Isolation Design Flow. Xilinx Applica-
tion Note, 584, 2012.

8) Karthik Sundaramoorthy, Zach Purser, and Eric
Rotenberg. Slipstream processors: Improving both
Performance and Fault Tolerance. Proceedings of
the International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, 35(11):257–268, 2000.

9) Nidhi Aggarwal, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and James E. Smith. Configurable
Isolation: Building High Availability Systems with
Commodity Multi-core Processors. In ISCA ’07:
Proceedings of the 34th annual International Sym-
posium on Computer Architecture, pages 470–481,
2007.

10) Shinya Takamaeda, Shimpei Sato, Takefumi
Miyoshi, and Kise Kise. SmartCore System for De-
pendable Many-Core Processor with Multifunction
Routers. In International Conference on Network-
ing and Computing (ICNC2010), pages 133 –139,
nov. 2010.


