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Abstract: The inference of genetic networks is a problem to obtain mathematical models that can explain observed
time-series of gene expression levels. A number of models have been proposed to describe genetic networks. The
S-system model is one of the most studied models among them. Due to its advantageous features, numerous inference
algorithms based on the S-system model have been proposed. The number of the parameters in the S-system model is
however larger than those of the other well-studied models. Therefore, when trying to infer S-system models of genetic
networks, we need to provide a larger amount of gene expression data to the inference method. In order to reduce the
amount of gene expression data required for an inference of genetic networks, this study simplifies the S-system model
by fixing some of its parameters to 0. In this study, we call this simplified S-system model a reduced S-system model.
We then propose a new inference method that estimates the parameters of the reduced S-system model by minimizing
two-dimensional functions. Finally, we check the effectiveness of the proposed method through numerical experiments
on artificial and actual genetic network inference problems.
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1. Introduction

High-throughput technologies, such as RNA-seq, make it pos-
sible to measure gene expression patterns on a genomic scale.
Several researchers have become interested in the inference of
genetic networks as one means of extracting useful information
from the measured gene expression data. The genetic network is
a functional circuit in living cells at the gene level, and can be
considered as an abstract mapping of an actual biochemical net-
work consisting of genes, proteins, metabolites, and so on. The
inference of genetic networks is therefore conceived of as one
promising way to understand biological systems.

The purpose of inference of genetic networks is to obtain math-
ematical models that can explain observed time-series of gene ex-
pression levels. In order to describe genetic networks, a number
of models have been proposed [2], [6], [17], [28], [31]. An S-
system model [21], [29] is one of the most studied models among
them. This model possesses a rich structure capable of captur-
ing various dynamics and can be analyzed by several available
methods. Because of its advantageous features, numerous infer-
ence algorithms based on the S-system model have thus been pro-
posed [3], [4], [9], [11], [12], [13], [16], [18], [26], [30]. In ge-
netic network inferences based on the S-system model, we must
estimate 2N(N + 1) model parameters, where N is the number of
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genes contained in the target network. The number of the param-
eters of the S-system model is larger than those of the other well-
studied models, such as the linear model [31], the Vohradský’s
model [28], and so on. When trying to infer S-system models of
genetic networks, therefore, we need to provide more gene ex-
pression data to the inference method. As it is generally difficult
to measure a sufficient amount of the gene expression data, how-
ever, the requirement for this larger amount of data is a drawback
for inference approaches based on the S-system model.

In order to overcome the drawback of the S-system approaches,
this study decreases the number of model parameters that need
to be estimated by fixing some of them to 0. We refer to this
simplified S-system model as a reduced S-system model in this
study. In order to infer reduced S-system models of genetic net-
works, we could use existing algorithms that were developed
for inferring S-system models. These methods generally esti-
mate model parameters by solving non-linear function optimiza-
tion problems whose dimensions depend on the number of genes
contained in the target genetic network. When trying to infer a
genetic network consisting of many genes, therefore, they must
solve high-dimensional function optimization problems. In order
to resolve the high-dimensionality in the parameter estimation,
this study proposes an effective method that uses features of the
reduced S-system model. The proposed method overcomes the
high-dimensionality by defining the inference of the reduced S-
system model of a genetic network consisting of N genes as N

individual two-dimensional function optimization problems. As
the defined two-dimensional functions seem to be multimodal,
this study uses REXstar/JGG [15], an evolutionary algorithm, to
optimize them. Finally, we confirm the effectiveness of the pro-
posed approach through numerical experiments on artificial and

c© 2014 Information Processing Society of Japan 30



IPSJ Transactions on Bioinformatics Vol.7 30–38 (Dec. 2014)

actual genetic network inference problems.

2. Reduced S-system Model

The S-system model [21], [29] is a set of non-linear differential
equations of the form

dXn

dt
= αn

N∏
m=1

Xgn,m
m − βn

N∏
m=1

Xhn,m
m , (n = 1, 2, · · · ,N), (1)

where Xn is the n-th state variable and N is the number of com-
ponents in the network, αn (> 0) and βn (> 0) are multiplicative
parameters called rate constants, and gn,m and hn,m are exponen-
tial parameters called kinetic orders. In the genetic network in-
ference, Xn is the expression level of the n-th gene and N is the
number of genes contained in the target network. The inference
of an S-system model of a genetic network consisting of N genes
is defined as the estimation problem of 2N(N + 1) model param-
eters, i.e., αn, βn, gn,m and hn,m (n,m = 1, 2, · · · ,N), that produce
time-series consistent with the observed gene expression data.

In the genetic network inference, it is often important to know
whether the m-th gene regulates the n-th gene or not, and whether
the inferred regulation of the n-th gene from the m-th gene is pos-
itive or negative. In the S-system model, the kinetic orders gn,m

and hn,m represent the regulations of the n-th gene from the m-
th gene. When Xm promotes or suppresses the synthesis of Xn,
values for gn,m are positive or negative, respectively. Similarly,
values for hn,m are positive or negative, when Xm promotes or
suppresses the degradation of Xn, respectively. In the S-system
approaches, we generally assume that the m-th gene positively
regulates the n-th gene when gn,m is positive and/or hn,m is neg-
ative. When gn,m is negative and/or hn,m is positive, on the other
hand, the n-th gene is assumed to be negatively regulated by the
m-th gene. When the m-th gene has no influence on the n-th gene,
gn,m and hn,m are both zero. When we try to extract the infor-
mation about the regulations from the observed gene expression
data, therefore, the S-system model seems to be redundant.

In order to remove the redundancy from the S-system model,
this study fixes hn,m (n � m) to 0. We call this simplified model
a reduced S-system model. The reduced S-system model is thus
defined as

dXn

dt
= αn

N∏
m=1

Xgn,m
m − βnXhn,n

n , (n = 1, 2, · · · ,N). (2)

Note that, while the number of parameters we must estimate in
the S-system model is 2N(N + 1), that in the reduced S-system
model is N(N + 3).

When trying to infer genetic networks, several researchers have
already used models that are obtained by restricting the S-system
model [3], [24]. Even when the numbers of parameters of these
models are less than that of the original S-system model, they re-
portedly still have an ability to represent genetic networks. In or-
der to estimate their parameters, however, the references [3], [24]
used the inference methods developed for the S-system model.
In this study, on the other hand, we propose a parameter estima-
tion method that utilizes a unique feature of the reduced S-system
model, as described below.

3. Parameter Estimation

This study proposes an effective method for estimating param-
eters of the reduced S-system model. The proposed method di-
vides the inference problem of the reduced S-system model of
a genetic network consisting of N genes into N subproblems,
each of which is defined as a two-dimensional function optimiza-
tion problem. By solving the n-th subproblem, our method es-
timates the parameters corresponding to the n-th gene, i.e., αn,
βn, gn = (gn,1, gn,2, · · · , gn,N) and hn,n. This section describes a
method for solving the n-th subproblem.

3.1 Problem Definition
In the n-th subproblem corresponding to the n-th gene, the pro-

posed method estimates the model parameters αn, βn, gn and hn,n

by solving a set of the following algebraic equations.

dXn

dt

∣∣∣
t1
= αn

∏N
m=1

(
Xm|t1

)gn,m − βn

(
Xn|t1

)hn,n
,

dXn

dt

∣∣∣
t2
= αn

∏N
m=1

(
Xm|t2

)gn,m − βn

(
Xn|t2

)hn,n
,

...
dXn

dt

∣∣∣
tK
= αn

∏N
m=1

(
Xm|tK

)gn,m − βn

(
Xn|tK

)hn,n
,

(3)

where Xm|tk is the expression level of the m-th gene at time tk,
and dXn

dt

∣∣∣
tk

is the time derivative of the expression level of the n-th
gene at time tk, and K is the number of measurements. In the pro-
posed method, Xm|tk ’s are measured using gene expression profil-
ing technologies such as RNA-seq. dXn

dt

∣∣∣
tk

’s are, on the other hand,
estimated directly from the observed time-series of the gene ex-
pression levels using a smoothing technique such as a spline inter-
polation [19], a local linear regression [7], a neural network [30],
or a modified Whittaker’s smoother [27]. Based on an idea similar
to the method described here, several genetic network inference
methods have already been proposed [5], [13], [14], [30], [31].

3.2 Effective Technique for Solving Simultaneous Equations
This study estimates the model parameters αn, βn, gn =

(gn,1, gn,2, · · · , gn,N) and hn,n by solving the simultaneous Eqs. (3).
Note however that these equations are non-linear with respect to
the parameters. Moreover, the number of the parameters we must
estimate is proportional to the number of genes contained in a
network, i.e., N. Therefore, it is not always easy to solve Eqs. (3).
In order to overcome the difficulty in solving them, this study
proposes the effective method described below.
3.2.1 Concept

The proposed method resolves the difficulty in solving the si-
multaneous Eqs. (3) by using a feature that arises from their trans-
formation, described below.

By rearranging the k-th member of Eqs. (3), we obtain

dXn

dt

∣∣∣∣∣
tk
+ βn

(
Xn|tk

)hn,n
= αn

N∏
m=1

(
Xm|tk

)gn,m
. (4)

By taking the logarithms of both sides of the equation above, we
then have

log

[
dXn

dt

∣∣∣∣∣
tk
+ βn

(
Xn|tk

)hn,n

]
= logαn +

N∑
m=1

gn,m log
(

Xm|tk
)
.

(5)
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Note that, although the transformed Eq. (5) is non-linear with re-
spect to the parameters βn and hn,n, it is linear with respect to the
parameters logαn and gn = (gn,1, gn,2, · · · , gn,N). This fact sug-
gests that, when the parameters βn and hn,n are given, the other
parameters αn and gn are easily estimated. The proposed method
utilizes this feature to solve the simultaneous Eqs. (3), as men-
tioned below.
3.2.2 Objective Function

As mentioned just above, we can easily estimate the parameters
αn and gn, when the parameters βn and hn,n are given. The pro-
posed method therefore solves the simultaneous Eqs. (3) simply
by estimating the parameters βn and hn,n. This study thus defines
the problem of solving the simultaneous equations as a minimiza-
tion problem of the following two-dimensional function.

S n(βn, hn,n) =
K∑

k=1

⎡⎢⎢⎢⎢⎢⎣ dXn

dt

∣∣∣∣∣
tk
− α∗n

N∏
m=1

(
Xm|tk

)g∗n,m
+ βn

(
Xn|tk

)hn,n

⎤⎥⎥⎥⎥⎥⎦
2

+ max
{
0, dn(βn, hn,n)

}
, (6)

where

dn(βn, hn,n)

= max
{
βn

(
Xn|t1

)hn,n
, βn

(
Xn|t2

)hn,n
, · · · , βn

(
Xn|tK

)hn,n
}

−cd ×max

{∣∣∣∣∣∣
dXn

dt

∣∣∣∣∣
t1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
dXn

dt

∣∣∣∣∣
t2

∣∣∣∣∣∣ , · · · ,
∣∣∣∣∣∣
dXn

dt

∣∣∣∣∣
tK

∣∣∣∣∣∣
}
,

max {·} is an operator that returns the maximum value of a
set of elements, cd is a constant parameter, and α∗n and g∗n =
(g∗n,1, g

∗
n,2, · · · , g∗n,N) are the optimal values for αn and gn, respec-

tively, under given βn and hn,n. The next section describes a way
to obtain α∗n and g∗n.

The proposed approach is based on the least-squares method.
The first term of the function (6) is therefore a sum of the squared
errors between the left-hand sides and the right-hand sides of
Eqs. (3). The second term is, on the other hand, a penalty term
to avoid βn being excessively large. This term tries to keep the

maximum absolute values of βn

(
Xn|tk

)hn,n
and dXn

dt

∣∣∣
tk

contained in
the simultaneous Eqs. (3) to a similar size. When this term was
not applied, our method often got trapped in local optima where
βn is large, αn = βn, gn,n = hn,n and gn,m = 0 (m � n). According
to our preliminary experiments, this study set the parameter cd to
10.
3.2.3 Estimation of α∗n and g∗n

As mentioned in Section 3.2.2, when trying to compute a value
for the objective function (6), we must always obtain values for
α∗n and g∗n = (g∗n,1, g

∗
n,2, · · · , g∗n,N). In the proposed approach, they

serve as the solution of the transformed simultaneous Eqs. (5) un-
der given βn and hn,n. Note here that, when values for βn and hn,n

are given, Eqs. (5) are linear with respect to logαn and gn. There-
fore, it is easy to solve these equations. This study defines the
problem of solving them as the following constrained function
minimization problem.

minimize
logαn ,gn ,ξ

+
k ,ξ
−
k

C
K∑

k=1

γk

(
ξ+k + ξ

−
k

)
+

N∑
m=1

|gn,m|, (7)

subject to

Lk − logαn −∑N
m=1 gn,m log

(
Xm|tk

)
≤ ξ+k , (k = 1, 2, · · · ,K),

ξ+k ≥ 0, (k = 1, 2, · · · ,K),

Lk − logαn −∑N
m=1 gn,m log

(
Xm|tk

)
≥ −ξ−k , (k = 1, 2, · · · ,K),

ξ−k ≥ 0, (k = 1, 2, · · · ,K),

where

Lk = log (Zk) ,

Zk =

⎧⎪⎪⎨⎪⎪⎩
dXn

dt

∣∣∣
tk
+ βn

(
Xn|tk

)hn,n
, (if dXn

dt

∣∣∣
tk
+ βn

(
Xn|tk

)hn,n ≥ δ),
δ, (otherwise),

ξ+k and ξ−k are slack variables, and γk, δ and C are constant param-
eters. Note that, when solving this problem, we treat the parame-
ters βn and hn,n as constants.
ξ+k and ξ−k represent the differences between the left-hand side

and the right-hand side of the k-th member of the transformed
Eqs. (5). The first term of the objective function of the problem
(7), i.e., C

∑K
k=1 γk

(
ξ+k + ξ

−
k

)
, is thus the weighted sum of the ab-

solute errors between the left-hand sides and the right-hand sides
of the transformed equations. Note that, while the problem de-
scribed in Section 3.2.2 tries to solve the simultaneous Eqs. (3),
the problem described here tries to solve the transformed Eqs. (5).
On the other hand, the second term, i.e.,

∑N
m=1 |gn,m|, is a penalty

term that forces most of gn,m’s down to 0. As mentioned in Sec-
tion 2, gn,m is set to 0 when the m-th gene does not regulate the n-
th gene. When this penalty term is applied, therefore, most of the
genes are disconnected from each other. We introduce this term,
since genetic networks are known to be sparsely connected [23].
The constant parameter C therefore determines the tradeoff be-
tween the goodness of fit and the sparseness of the inferred net-
work.

As mentioned in Section 3.2.1, in order to estimate the model
parameters, the proposed method uses the feature arising from the
transformation of Eqs. (3). Note here that, only when the condi-

tion dXn

dt

∣∣∣
tk
+ βn

(
Xn|tk

)hn,n
> 0 is satisfied, we can transform the

k-th member of Eqs. (3). Even when the optimum values are set
for βn and hn,n, however, the noise contained in the measurement
data might make this condition unsatisfied. This study thus intro-
duces a threshold parameter δ, and sets its value to 1.0×10−6. On

the other hand, we should note that, when dXn

dt

∣∣∣
tk
+ βn

(
Xn|tk

)hn,n

approaches 0, the term log
[

dXn

dt

∣∣∣
tk
+ βn

(
Xn|tk

)hn,n
]

contained in

Eq. (5) approaches −∞. When dXn

dt

∣∣∣
tk
+βn

(
Xn|tk

)hn,n
is small, there-

fore, the transformation of the equation would amplify the noise
contained in the measurement data. We should not rely too much
on the equations transformed under this condition. In order to in-
troduce this notion into our parameter estimation, this study sets
the constant parameter γk to

γk =
Zk∑K
j=1 Zj

.

We can transform the optimization problem (7) to a linear pro-
gramming problem. Thus, the proposed method solves this prob-
lem by using the simplex method [25].

3.3 Algorithm
As mentioned previously, our approach divides the inference of

a genetic network consisting of N genes into N subproblems. In
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Fig. 1 The computation of the objective function (6).

the n-th subproblem corresponding to the n-th gene, the proposed
method estimates the parameters αn, βn, gn = (gn,1, gn,2, · · · , gn,N)
and hn,n by minimizing the objective function (6). Note that, when
computing a value for this function, we must always solve the
constrained function minimization problem (7) (see Fig. 1). As
the problem (7) is converted to a linear programming problem,
however, we can easily solve it using the simplex method. On
the other hand, we can use any function optimization algorithm
to optimize the objective function (6). While this function is only
two-dimensional, however, it seemed to be multimodal. In or-
der to minimize it, thus, this study uses REXstar/JGG (see Ap-
pendix A.1) [15], an evolutionary algorithm.

4. Numerical Experiments

4.1 Inference of Artificial Networks
In this experiment, we confirm that the proposed method has

an ability to infer structures of genetic networks.
4.1.1 Experimental Setup

This experiment used reduced S-system models consisting of
30 genes (N = 30) as target networks. As the inference ability
of the proposed method may depend on the structure of the target
network, we generated the target networks of different structures
by changing the model parameters. When trying to determine the
model parameters corresponding to the n-th gene, we randomly
chose an integer k from a power-law distribution with a cutoff of
5. Then, k genes were randomly selected from all of the genes
contained in the network. The kinetic orders gn,m’s correspond-
ing to the regulations of the n-th gene from the selected genes
were randomly chosen from [−1.0, 1.0], and the other gn,m’s were
set to 0.0. The kinetic order hn,n and the rate constants αn and βn

were all set to 1.0. This study changed the network structure on
every trial.

As the performance of the inference method also depends on
the amount of given time-series data, we performed the experi-
ments with different numbers of time-series datasets. The time-
series datasets were obtained by solving the differential Eqs. (2)
on the target networks. The initial values of these sets were se-
lected randomly from [0.0, 2.0]. Each dataset consisted of the
expression levels at 11 time points. The measurement noise was
simulated by adding 10% Gaussian noise to the computed time-
series data. In order to estimate the time derivatives of the gene
expression levels from the given time-series datasets, we used the
local linear regression [7], a smoothing technique.

Fig. 2 Performances of the proposed method on experiments with different
numbers of time-series datasets. Solid and dotted lines represent the
recall and the precision of the proposed method, respectively.

In order to check the performance of the proposed method, this
study constructed and then solved 10 genetic network inference
problems with each available number of time-series datasets. The
search area of the parameter hn,n was [−5, 5]. As the other param-
eter βn is positive, on the other hand, this study searched for it
in a logarithmic space. The search area of log βn was [−20, 10].
According to its recommended settings, this study set the fol-
lowing values for the parameters of the optimization algorithm,
REXstar/JGG [15]: the population size np is 40, the number of
children generated per selection nc is 6, and the step-size param-
eter t is 2.5. Each run of REXstar/JGG was continued until the
number of generation alternations reached 500. Based on the pre-
liminary experiments, we set the constant parameter C contained
in the defined problem (7) to 30.
4.1.2 Results

As the given data were noisy, it was difficult to use the
proposed method to estimate model parameters precisely. In
this experiment, therefore, we only compared the structures of
the inferred networks with those of the target networks. This
study extracted the structures of the networks from the estimated
model parameters according to the rules used for the S-system
model [13]: when gn,m ≥ Thn and/or hn,m ≤ −Thn, we conclude
that the m-th gene positively regulates the n-th gene, where Thn

is a threshold; similarly, this study concludes that the n-th gene is
negatively regulated by the m-th gene, when gn,m ≤ −Thn and/or
hn,m ≥ Thn; otherwise, we infer no regulation of the n-th gene
from the m-th gene. As the threshold, this study used

Thn = γmax
{|gn,1|, |gn,2|, · · · , |gn,N |, |hn,1|, |hn,2|, · · · , |hn,N |} ,

where γ is a parameter, and this study set its value to 0.05 [14].
Note that, as we used the reduced S-system model in this study,
the values for the parameters hn,m (n � m) are all 0.

The recalls and the precisions of the proposed method on the
experiments with 10, 20, 50, 100 and 200 sets of time-series data
are shown in Fig. 2. The recall and the precision are defined as

(recall) =
T P

T P + FN
, (precision) =

T P
T P + FP

,

where TP, FN and FP are the numbers of true-positive, false-
negative and false-positive regulations, respectively. The recall
increases from 0 to 1 with decrease in the number of false-
negative regulations, and the precision increases from 0 to 1 with
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Fig. 3 Performances of the proposed method applying different values of
parameter C on the experiments with 20 sets of noisy time time-
series data.

Fig. 4 Precision versus recall for the genetic network inference problems of
30 genes with 20 sets of noisy time-series data. A solid line repre-
sents the performances of the proposed method. Dash-dotted, dotted
and dashed lines represent the performances of the least-squares ap-
proach with I = 0, I = 2 and I = 5, respectively. These curves
were obtained by changing the parameters of the inference methods.
A symbol ‘×’ represents the performances of the inference method
based on the S-system model [13].

a decrease in the number of false-positive regulations. Figure 2
shows that the recall and the precision of our method increase
with an increase in the amount of given time-series data. On the
other hand, as described above, this study set the parameter C to
30. However, as shown in Fig. 3, the performance of the proposed
method depends on the parameter C. When we try to analyze ac-
tual genetic networks, thus, we should carefully determine the
value of C.

As mentioned in Section 3, this study defines the estimation of
the model parameters corresponding to the n-th gene as a problem
of solving the simultaneous Eqs. (3). The method proposed in this
study effectively solves them by minimizing the two-dimensional
function (6). We can however solve the simultaneous Eqs. (3)
simply by using the least-squares method. This study thus con-
structed an inference method based on the simple least-squares
method (see Appendix A.2), and then compared the proposed
method with it. In this study, we call this inference method
a least-squares approach. Figure 4 shows the precision-recall
curves of the proposed method and the least-squares approach

on the experiments with 20 sets of noisy time-series data. The
least-squares approach was performed under different parameter
settings, i.e., I = 0, I = 2 and I = 5. These curves were ob-
tained by changing the parameter of our method, C, from 5 to
200, and that of the least-squares approach, Dlsq, from 0.05 to
5. The figure indicates that our method outperforms the least-
squares approach. Because of the low-dimensionality of the pro-
posed objective function (6), our method would succeed in find-
ing reasonable results with a higher probability. The computation
time of the proposed method was also shorter. While the least-
squares approach took 158.2 ± 21.5 minutes on a personal com-
puter (Core i5-4670 3.4 GHz) to infer each network, the proposed
method took 35.0± 1.6 minutes on the same computer. However,
the computation time of our method is not always shortest. In or-
der to analyze each network, for example, the inference method
based on the S-system model [13] required only 12.6 ± 0.7 sec-
onds on a personal computer (Pentium IV 2.8 GHz). However,
this method inferred a lot of false-positive regulations. Although
its recall was comparable to that of the proposed method, its pre-
cision was much worse (see Fig. 4). The feature that the proposed
method infers a fewer number of false-positive regulations may
be due to the lower degree-of-freedom of the reduced S-system
model.

The proposed method could not eliminate erroneous regula-
tions from the networks inferred in the experiments described
above. When noise-free data are provided, however, our method
has an ability to estimate model parameters with high precision.
The averaged objective value (6) of the proposed method with
C = 3000 was 1.237 × 10−11 ± 5.529 × 10−12 on the experiments
with 20 sets of noise-free time-series data. The averaged differ-
ence between the true model parameter values and the estimated
ones was 2.081 × 10−7 ± 4.684 × 10−7.

4.2 Inference of an Actual Network
Next, we apply the proposed method to an actual genetic net-

work inference problem.
4.2.1 Experimental Setup

We applied the proposed inference method to an actual infer-
ence problem from the SOS DNA repair regulatory network in
E.coli [22]. Many genes, including lexA and recA, are known to
be involved in this system. These genes are regulated by lexA

and recA. In a basal state, LexA, a master repressor, is bound to
the interaction site in the promoter regions of these genes. When
DNA is damaged, RecA, another SOS protein, senses the damage
and mediates LexA autocleavage. The decrease in LexA protein
level halts the repression of the SOS genes, and then they start
the DNA repair. Once the damage has been repaired, RecA stops
mediating LexA autocleavage, LexA accumulates and represses
the SOS genes, and the cells return to their basal state.

This experiment analyzed the expression data of six genes, i.e.,
uvrD, lexA, umuD, recA, uvrA and polB, that had been measured
by Ronen and colleagues [20] (N = 6). Consequently, in or-
der to infer the genetic network, this study solved 6 individual
two-dimensional function optimization problems. These expres-
sion data have often been used to confirm the performances of
inference methods [3], [4], [10], [13], [14]. The original expres-
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Table 1 Estimated model parameters in the experiment on the bacterial SOS DNA repair system.

n αn gn,1 gn,2 gn,3 gn,4 gn,5 gn,6 C
βn hn,n AIC

1 9.096 × 10−2 8.512 × 100 −2.179 × 101 −2.650 × 100 −2.200 × 100 2.235 × 101 −1.506 × 100 13,000
(uvrD) 5.747 × 10−3 1.313 × 100 −7.988 × 102

2 6.906 × 10−1 2.785 × 100 −3.438 × 100 −4.689 × 100 1.492 × 100 6.937 × 100 −4.106 × 10−1 20,000
(lexA) 4.484 × 10−1 3.455 × 100 −8.708 × 102

3 2.173 × 10−1 1.389 × 101 −2.405 × 101 0.000 × 100 −1.293 × 101 3.669 × 101 −4.191 × 100 12,000
(umuD) 1.879 × 10−2 1.678 × 100 −9.902 × 102

4 3.397 × 10−2 2.155 × 100 0.000 × 100 −9.891 × 100 −1.346 × 101 2.744 × 101 −2.052 × 100 7,000
(recA) 2.189 × 10−2 1.772 × 100 −1.077 × 103

5 2.307 × 10−1 8.679 × 100 −1.747 × 101 0.000 × 100 −4.495 × 100 2.059 × 101 −2.128 × 100 6,000
(uvrA) 5.341 × 10−2 1.720 × 100 −9.889 × 102

6 3.182 × 10−2 −3.540 × 10−2 −6.269 × 100 −2.117 × 100 −1.107 × 100 9.921 × 100 0.000 × 100 10,000
(polB) 6.396 × 10−3 9.144 × 10−1 −9.622 × 102

sion data contained four sets of time-series data. This experiment
however used only two sets (the third and fourth sets), since those
two had been measured under the same experimental conditions.
Each set of time-series data consisted of 50 measurement values
including the initial concentrations of 0. This experiment how-
ever removed the initial concentrations from both sets as models
based on a set of differential equations cannot produce different
time-courses from the same initial conditions. The number of
measurements K is thus 2×49 = 98. We normalized the data cor-
responding to each gene against its maximum expression level.
This experiment then smoothed the normalized gene expression
data using the local linear regression [7]. We assigned a value
of 10−6 to expression levels with values of less than 10−6, as the
gene expression levels must not be negative. The time derivatives
of the gene expression levels were estimated from the smoothed
data.

Before executing the experiments, it is difficult for us to deter-
mine a value for the parameter C contained in the problem (7).
This study thus performed the experiments by changing the pa-
rameter C from 1,000 to 20,000. For each experiment with a
different parameter setting, we performed 10 trials by changing a
seed for pseudo random numbers. All of the other experimental
conditions were kept the same as those of the previous experi-
ment.
4.2.2 Results

In the proposed approach, the number of inferred regulations
roughly decreases with a decreasing the parameter C. The com-
plexity of the obtained model thus decreases with a decrease in C.
On the other hand, the goodness of fit of the obtained model for
the observed gene expression data improves with an increase in
its complexity. When trying to infer genetic networks, we should
obtain simpler mathematical models that fit the observed gene
expression levels better. In general, we can use the Akaike in-
formation criterion (AIC) [1] to determine the tradeoff between
the goodness of fit and the model complexity. In this study, we
thus chose the most reasonable results with respect to AIC (Ta-
ble 1). These results indicate that the reasonable value for the
parameter C differs for every subproblem. This study computes
the AIC value of the n-th sub-model corresponding to the n-th
gene according to

AIC = −2 log Lin + 2Nf , (8)

where

Fig. 5 The network structure obtained for the SOS DNA repair regulatory
network in E.coli. Bold lines represent biologically plausible regula-
tions.
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1
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and Nf is the number of free parameters contained in the n-th
sub-model. Note here that, when a smaller number of regulations
are inferred, the model becomes simpler. This study thus defines
Nf as

Nf = Ntotal − N0,

where Ntotal is the total number of the parameters of the n-th sub-
model, i.e., Ntotal = N + 3, and N0 is the number of the kinetic
orders, gn,m’s and hn,n, whose absolute values are less than 10−6.

According to the rules described in Section 4.1.2, we extracted
the structure of the network from the estimated parameters given
in Table 1 (Fig. 5). The inferred network contained some reason-
able regulations. As mentioned previously, LexA is known to re-
press SOS genes. Therefore, although the regulation of recA from
lexA was not inferred, the regulations of the other genes from
lexA would be reasonable. Likewise, the regulation of lexA from
recA also appears to be reasonable, as RecA senses the damage
of DNA and mediates LexA autocleavage. In addition, the regu-
lation of umuD from recA, inferred by the proposed method, has
been contained in a network currently known [8]. Although some
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of the other inferred regulations might be new findings, most of
them should be false-positive.

In the proposed approach, we can control the complexity of
the inferred model by using the parameter C. In order to choose
a reasonable value for this parameter, we proposed to use AIC.
As mentioned above, however, the inferred network still seems to
have a lot of erroneous regulations. In a future work, therefore,
we need to find a way to reduce these erroneous regulations. For
this purpose, we are now planning to use other a priori knowledge
about genetic networks.

5. Conclusion

The S-system model has been considered appropriate for repre-
senting biochemical networks. However, this model has a larger
number of parameters. In order to infer reasonable genetic net-
works, therefore, the inference method based on the S-system
model requires a larger amount of gene expression data. In or-
der to resolve the drawbacks of the S-system approach, this study
first proposed a reduced S-system model that is obtained by sim-
plifying the S-system model. The number of the parameters of
the original S-system model is 2N(N + 1), where N is the num-
ber of genes contained in the network. On the other hand, that
of the reduced S-system model is N(N + 3). This study then
proposed the genetic network inference method based on the re-
duced S-system model that utilizes unique features of the model.
The proposed method effectively estimates the model parameters
by solving the two-dimensional function optimization problems.
The experimental results indicate that the proposed method has
an ability to infer genetic networks reasonably well even with
a smaller amount of gene expression data. This is an advanta-
geous feature, since it is generally difficult to measure a sufficient
amount of gene expression data.

We can simulate the gene expression of the target system by
solving a set of differential Eqs. (2) with the estimated model pa-
rameters. As the proposed method estimates the parameters with-
out solving any differential equations, however, the computed
time-courses of the gene expression levels would not resemble the
observed data. Therefore, our method should be used not for the
computational simulation, but mainly for the inference of a struc-
ture of the target network. For the computational simulation, we
should use other inference methods that estimate the parameters
with solving a set of differential Eqs. (2). As these methods must
solve differential equations many times, however, their computa-
tional costs are generally high. By using the model parameters
estimated by the proposed method as an initial guess for these
inference methods, we could decrease their computational costs.

The number of the regulations inferred by the proposed method
depends on the parameter C. Thus, this study also proposed
a technique to choose a reasonable value for the parameter C.
Through the experiments with the actual gene expression data,
however, we found that the models obtained by using reason-
able values for the parameter C still seem to produce a number
of false-positive regulations. In future work, therefore, we aim to
develop a technique to reduce them.
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Appendix

A.1 REXstar/JGG

REXstar/JGG [15] is a real-coded genetic algorithm, a sort of
evolutionary algorithm, that uses JGG as a generation alternation
model and REXstar as a recombination operator. This section de-
scribes each of the operators in detail.

A.1.1 JGG
JGG is a generation alternation model. The generation alterna-

tion model is a procedure for selecting individuals to breed and
for selecting individuals to form a new population in the next gen-
eration. The following is an algorithm of JGG.

[Algorithm: MGG]
( 1 ) Initialization

As an initial population, create np individuals. As REXstar/

JGG is a real-coded genetic algorithm, these individuals are
represented as s-dimensional real number vectors, where s

is the dimension of the search space. Set Generation = 0.
( 2 ) Selection for reproduction

Select m individuals without replacement randomly from the
population. The selected individuals, that are expressed here
as p1, p2, · · · ,pm, are used as the parents for the recombina-
tion operator in the next step.

( 3 ) Generation of offspring
Generate nc children by applying the recombination operator
to the parents selected in the previous step. This study uses
REXstar as the recombination operator, and it requires s + 1
individuals as parents, i.e., m = s + 1.

( 4 ) Selection for survival
Select the best m individuals from the family containing the
m parents, i.e., p1, p2, · · · , pm, and their children. Then, re-
place the m parents with the selected individuals. In the orig-
inal JGG, the best m individuals are selected only from the

children. As its optimization process seemed to be unstable,
however, the algorithm is slightly modified in this study.

( 5 ) Termination
Stop if the halting criteria are satisfied. Otherwise,
Generation← Generation + 1, and then return to step 2.

A.1.2 REXstar

REXstar is a real-coded crossover operator. REXstar uses s + 1
parents, where s is the dimension of the search space, and gener-
ate nc (> s + 1) children according to the following algorithm.

[Algorithm: REXstar]
( 1 ) Generate reflection points, p1,p2, · · · , ps+1, of the parents

p1, p2, · · · , ps+1, i.e.,

pi = 2G − pi, (A.1)

where

G =
1

s + 1

s+1∑
i=1

pi.

( 2 ) Compute the objective values of the s + 1 reflection points
generated in the previous step. In REXstar, these reflection
points are treated as the children.

( 3 ) From the parents and their reflection points, select the best
s + 1 individuals, and then compute the center of the gravity
of the selected individuals. This study represents it as Gb.

( 4 ) Generate nc − s− 1 children by applying the following equa-
tion nc− s−1 times. Note that the s+1 reflection points gen-
erated in step 1 are treated as the children. The total number
of the children generated is therefore nc.

c = G + diag(ξt1, ξ
t
2, · · · , ξts)(Gb −G) +

s+1∑
i=1

ξi(pi −G),

(A.2)

where c represents a child, and ξti’s and ξi’s are ran-
dom numbers drawn from uniform distributions [0, t] and[
−

√
3

s+1 ,
√

3
s+1

]
, respectively, where t is a constant param-

eter named a step-size parameter.
In Ref. [15], the following settings are recommended for the

parameters of REXstar/JGG: the population size np is set between
2s and 20s, the number of children generated per selection nc is
set between 2s and 3s, and the step-size parameter t is set between
2.5 and 15.

A.2 Least-squares Approach

The proposed method estimates the model parameters corre-
sponding to the n-th gene by solving the simultaneous Eqs. (3)
effectively. However, we can solve these equations simply by
using the least-squares method. In this case, for example, we es-
timate the parameters αn, βn, gn = (gn,1, gn,2, · · · , gn,N) and hn,n by
minimizing

Tn(αn, βn, gn, hn,n)

=

K∑
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dt
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∣∣∣ , (A.3)
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where Gn,m’s are given by rearranging gn,m’s in descending order
of their absolute values, i.e., |Gn,1| ≤ |Gn,2| ≤ · · · ≤ |Gn,N |. Dlsq

is a constant parameter, and I is a maximum indegree. The max-
imum indegree determines the maximum number of genes that
affect the n-th gene directly.

The first and the second terms of the objective function (A.3)
are identical to those of our objective function (6). The third term
is a penalty term that forces most of gn,m’s down to zero. When
this term is applied, therefore, most of the genes are disconnected
from each other. The term does not penalize, however, when the
number of genes that directly affect the n-th gene is lower than
the maximum indegree I. Similar terms have been used in several
genetic network inference methods [11], [12], [16].

In this study, we compared the proposed method with a method
that minimizes the objective function (A.3). This study refers to
the method of optimizing this function as the least-squares ap-
proach. As with the proposed method, the least-squares approach
also uses REXstar/JGG [15] as a function optimizer. The follow-
ing values were used for the parameters of REXstar/JGG applied
in the least-squares approach; the population size np is 20s, the
number of children generated per selection nc is 3s, and the step-
size parameter t is 2.5, where s is the dimension of the search
space. Note that, when we try to infer a genetic network con-
sisting of N genes, the dimension s equals N + 3. Each run was
continued until the number of generations reached 1.0×105 or the
objective value of the best individual contained in the population
did not improve over 5,000 generations.
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