
Vol. 44 No. 7 IPSJ Journal July 2003

Regular Paper

Effective Automated Testing for Graphical Objects

Juichi Takahashi†,†† and Yoshiaki Kakuda††

Recently, software testers have become increasingly reliant on automated testing. The au-
tomated testing methods consist of three phases: test case design, execution, and verification.
However, to accomplish these three phases, presents a dilemma because of the lack of a ver-
ification function. Hardly any commercial automated testing tools can efficiently compare
graphical objects, though Graphical user interface (GUI) software is now more crucial than
text-based user interface. This paper describes a technique that aids automatic behavior ver-
ification for a particularly difficult problem: determining the correctness of screen and paper
output. A methodology for capturing and comparing the output is presented, and a case
study using Microsoft(R) PowerPoint(R) is described.

1. Introduction

Automated testing involves executing test
cases and verifying the results programmati-
cally instead of relying on human ability. Re-
search shows automated testing can save up
to 80% 1),2) of testing costs, because test cases
can be executed much faster automatically than
manually. Moreover, it is impossible to com-
plete some tests manually 3).

One problem with automated testing is that
there are so many graphics in desktop applica-
tions and Web applications. Automated tools
have difficulty fetching and comparing graph-
ical objects. For example, although Web ap-
plications should be able to handle many types
of objects, controls, and images, most existing
automation tools have trouble fetching the ob-
jects’ information. In addition, no research has
been done on testing for printing. Hardly any
automated testing tools can handle printing ob-
jects. The same issues face testers using third-
party interface controls4) and developers using
custom controls. In those cases, testers must
physically watch the running test case on their
computer screen and printed-paper, because ex-
isting tools cannot have the ability to automat-
ically verify the behavior of such objects. This
approach is not optional, because the main ben-
efit of automated testing is that it increases the
number of test cases that can be applied. Sit-
ting in front of a computer to manually ver-
ify test results negates the time saved through
automated execution. Although there are ob-

† SAP Labs Tokyo
†† Faculty of Information Sciences, Hiroshima City

University

jects which are hard to verify by using auto-
mated tools, some common objects can be han-
dled and verified by in this way, such as strings,
files, memory information, menu objects, win-
dows size and attribute, contents of communi-
cation data, and screen images. Image objects,
such as disk or screen images, are stored in the
file system, and testers can perform standard
binary file comparison to compare such images.
Screen images are compared bit by bit. How-
ever, if an application uses graphical images,
bit-by-bit comparison is the only way to com-
pare them. It is thus difficult to compare actual
images with expected images, because of stor-
age constraints (the images tend to be large)
and time constraints (bit-by-bit comparison is
computationally intensive). Although almost
all automated verification tools are capable of
comparing drawing objects, several researchers
recommend against capture/replay automated
testing for drawing objects because the verifi-
cation is overly sensitive to any change 1),5),6).

Thus, in this research, a reliable and cost-
effective graphical automated testing method,
called the API and PostScript comparison
method, is offered for testing drawing objects.

2. Verification Method of Graphical
Objects

An important issue for verification is how
to compare graphical objects. With testing of
screen images, the main problem is that only a
bit-by-bit verification method is currently avail-
able 7),8). With testing of printing image, there
is no method of verifying test results. At first,
we will consider which verification method may
be used to test graphics-related software.

1695

1696 IPSJ Journal July 2003

2.1 Verification of Graphical Screen
Images

A number of applications can be used to
draw graphical images. Examples include Web,
Computer-Aided design (CAD), and desktop
publishing applications. Formally, when testing
graphical screen images, testers used the bit-by-
bit comparison method. This section describes
two ways of verifying graphical images by the
bit-by-bit comparison method, and explains the
API comparison method that we developed 9).

2.1.1 Bit-by-Bit Comparison
This method, which is used by most com-

mercial tools 7),8), compares graphical images
bit by bit. Its main drawback is that it is
too difficult to compare pre-saved bitmap im-
ages with actual bitmap images. For exam-
ple, some testers save an image with a Win-
dows title bar and some testers do not. Con-
sequently, when a tester compares a pre-saved
bitmap with an actual bitmap image, the com-
parison program may judge that the verification
failed because the two objects are not equiva-
lent. It is true that there are other techniques
for comparing objects intelligently by means
of bitmap images, for example various biomet-
ric verifications 11), such as fingerprint, face 12),
signature, and iris recognition, are used in the
real world. However, those methods are still
being researched and their algorithms have not
yet been applied to software testing.

2.1.2 API Comparison
In modern commercial operating systems,

such as Microsoft Windows(R) and UNIX, ap-
plications do not access graphic devices directly,
because the operating systems are designed for
multi-tasking to protect against conflict of de-
mands for use of shared graphics hardware re-
sources. Therefore, applications use the same
system APIs to access graphic devices. Draw-
ing applications use graphical APIs to render
screen images. Calls to such APIs are inter-
rupted and the information is stored as draw-
ing information (Fig. 1). To take as an ex-
ample, when drawing a line, PowerPoint uses
the Win32 graphic API 13) (LineTo API), which
passes the data to the operating system. In
addition, most applications running on Win-
dows operating systems use the common Win32
graphic API. In this case, a tool (see Section 6,
“Tool Development”) interrupts the “LineTo”
API and stores the “LineTo” API information.

One of the benefits of this approach is that
application testing does not require its source

Application Operating SystemAPI

Normal System

Application Operating System

API

Developed System

Fetch And Store
API Data

API

Fig. 1 API comparison model.

code to interrupt APIs’ information. On the
other hand, when a method is required that
uses source code and interrupts the APIs,
testers should prepare all related source code,
including that developed by external compa-
nies, open source code, and so on. For vari-
ous reasons, it is sometimes difficult to obtain
such source code. In addition, testers are re-
quired to keep the same version during the en-
tire development process, from the source code
to the testing of the binary files. Activity of
configuration management entails further work
for testers.

2.2 Verification of Printed Graphical
Images (PostScript(R) Compari-
son)

Graphical images are not only drawn on
the screen, but may also be printed on pa-
per by means of a printing device. By us-
ing PostScript commands to test printing ob-
jects, we can test them efficiently. Usually,
it is difficult to fetch printed-image informa-
tion. The objects are on paper, and there is
no method of obtaining printed information us-
ing automated testing tools. An image scan-
ner may be useful, but scanned information
is too ambiguous. Therefore, in this research,
we use PostScript commands to fetch printed-
image information. The PostScript language
was developed by Adobe(R) in 1985 14) and has
been used widely for desktop publishing ap-
plications. PostScript commands are not con-
structed from a subset of dot information but
are logical. A graphical object can be regen-
erated 15) and used to analyze objects 16) by
means of PostScript commands. On the other
hand, it is very difficult to use the dot infor-
mation generated by a non-PostScript printer.
For the same reason, testers do not use the bit-
by-bit comparison technique (the testing results
may be sensitive). When an application com-
mands an operating system to print images, the
operating system receives API commands from

Vol. 44 No. 7 Effective Automated Testing for Graphical Objects 1697

Application Operating System

Printing
 API

Printer Driver

 Graphical
Information

Fig. 2 PostScript comparison model.

Oracle
 Tool

Test Result

PostScript
Commands

 API
Commands

Fig. 3 Mixed comparison model.

the application and passes graphical informa-
tion to the printer driver. The printer driver
then prints the objects on paper (Fig. 2). In
the PostScript printing system, the application
can generate PostScript commands and store
them as a file. The file can be used to compare
pre-saved objects with test result objects. In
this method, called PostScript comparison tech-
nique, testers can use printing images as logical
objects, such as lines, circles, and triangles 14).
For instance, to draw a line on paper from (0,
0) to (100, 100), an application generates the
following PostScript commands:
0 0 moveto

100 100 lineto

The “moveto” command sets the current
point to (x, y) and the “lineto” command de-
fines the point to which the line will be drawn.

2.3 Verification of Printed Graphical
Images by Means of Screen Graph-
ical Images

The previous section dealt with verification
of printed graphical images. Yet it is rare for
an application to have only printing functions
without the ability to render images on screen,
and it is equally unusual for printing functions
to be tested individually. Typically, an appli-
cation has both on-screen drawing and printing
functions. Thus, in a typical testing scenario an
application tests graphical screen images first,
and then goes on to ensure those screen im-
ages match printed graphical images. In ad-
dition, when testers choose to use this test-
ing method instead of only “PostScript Com-
parison”, they usually do not have to design
printing test cases. While they are running
screen image test cases, a tool (see the following
section, “Tool Development”) can execute and
verify the printing test results simultaneously
(Fig. 3). This means that the screen image test
cases are automatically duplicated as printing
test cases, and executed and verified.

3. Benefits of Using the API and
PostScript Comparison Approach

The API and PostScript comparison method
offers a large number of benefits. Some of the
most important of these are explained.

3.1 API Comparison System
3.1.1 System Configuration
Bit-by-bit verification is extremely sensitive

to changes 1). Various uncontrollable factors
can often affect results. For example, it is very
difficult to ensure that all members of a test-
ing team have the same type of machines and
graphic systems. One tester may have an ad-
vanced graphic system with resolution of over
1, 600 × 1, 200 pixels, while another may have
a normal graphic system with a resolution of
1, 024 × 768. Any differences between comput-
ing environments can cause failure, even when
screen images match. On the other hand, when
the API comparison method is used, the differ-
ence can be adjusted by the vector comparison
method (see Section 5.2 “Vector Comparison”).
Thus, testers can test graphical objects on any
type of computing system.

3.1.2 Disk Size
When testers store a drawing image with

screen resolution of 1, 600 × 1, 200 pixel screen
resolution at three bytes per pixel, the image re-
quires 5.76 M bytes (1, 600×1, 200×3). Storing
files of this size is acceptable only when a test
case is considered strategically crucial. In this
case, they can either use an image-compression
method to reduce the disk sizes, or they can use
the API comparison method.

3.1.3 Processing Speed
Similar issues exist for disk size. Bit-by-bit

comparison requires time.
3.1.4 Expansion and Reduction Test-

ing
A number of drawing and CAD applications

support object expansion and reduction func-
tions. When testing such applications, testers
are required to exercise and verify expansion
and reduction functions. In testing expansion
and reduction functions using the bit-by-bit
method, it is necessary to store images for every
possible zoom rate. When testing zoom rates
from 1% through 100% in increments of 1%,
there may be 100 test cases, and testers must
store 100 bitmaps to verify the test results.
These storage tasks are time-consuming and re-
quire large amounts of hard drive space. In ad-
dition, verification is not straightforward, be-

1698 IPSJ Journal July 2003

cause even difference of a single bit causes fail-
ure in bit-by-bit comparison techniques. On the
other hand, testers can test any type of expan-
sion and reduction by the API and PostScript
comparison method. They do not have to store
100 images to compare the results. When using
a vector comparison method, it is sufficient to
store a single image to compare an original and
a post-tested result for any degree of zoom rate
(see the section titled “Vector Comparison”).

3.1.5 Model-Based Testing
In some cases, it is better to use model-

based testing. However, if model-based 4),17)

and monkey tests 10) are performed by using
a bit-by-bit comparison method, manual veri-
fication of the test results is a major problem
for those testing for drawing objects. On the
other hand, testers can use the API compari-
son method, and can execute model-based and
monkey tests using the automated verification
method we developed.

3.2 PostScript Comparison System
It is difficult to describe the benefits of the

PostScript method, because little research on
automated printing testing has been reported
to date. For instance, in Microsoft and SAP,
most testers manually verify test results for
printed-paper images. It is inevitable that such
work consumes both large amounts of time
and money. Moreover, in the case of compli-
cated images, it is very difficult to compare
printed images and screen images. Myers ad-
vises, “Thoroughly inspect the result of each
test” 7). The PostScript comparison method
can meet his recommendation for testing graph-
ical objects.

4. Analysis of Graphical Objects and
Defects: Toward the Use of API
Comparison

In this section, we will examine the types of
graphical objects used by PowerPoint. We will
also consider whether the API and PostScript
comparison methods can detect all kinds of
graphical object defects. As a result, the ad-
vantages and limitations of our method can be
seen.

4.1 Type of Graphical Objects
Lines, triangles, and rectangles: Most

drawing objects are composed of simple line ob-
jects. A triangle is made up of three connected
lines, a rectangle of four lines, and a polygon of
four or more lines. It is possible to fetch and
compare such objects by the API comparison

method, because the APIs contain the infor-
mation describing the lines that compose the
objects.

Bitmap fonts: Text is displayed by using
font or text APIs. When an application uses
a text-handling API, any commercial automa-
tion testing tool can fetch text information.
Yet, for a variety of reasons, developers some-
times choose not to use text-handling APIs to
display text. In such cases, bitmap fonts are
used, so text information is rendered by a using
bitmap instead of text-handling APIs. When
text information is stored as a bitmap, it can-
not be fetched by existing commercial automa-
tion testing tools. The only way to fetch such
information is to load and store it as a bitmap
object. It is possible to fetch and compare such
objects by the API comparison method. How-
ever, there is no advantage in using the API and
PostScript comparison method as opposed to
the bit-by-bit comparison method. Therefore,
we will not discuss this topic in this paper.

Image objects: Because a large number of
multimedia applications and tools have been
developed over the last decade, testers are re-
quired to test images of a large number of types,
such as bitmap, GIF (Graphics Interchange
Format), and JPEG (Joint Photographic Ex-
pert Group) images. It is possible to fetch and
compare such objects by the API comparison
method. However, as in the case of bitmap
fonts, there are no advantages in using the API
and PostScript comparison method rather than
the bit-by-bit comparison method.

4.2 Types of Graphical Defects
Software defects can be categorized as im-

properly constrained input, improperly con-
strained stored data, improperly constrained
computation, and improperly constrained out-
put 19)İn accordance with this idea, we can cat-
egorize the types of graphical defects as improp-
erly constrained computing coordinates, im-
properly computed color information, and im-
properly constrained output.

4.2.1 Improperly Constrained Com-
puting Coordinates

One common defect is that drawing objects
are often rendered by using the wrong coor-
dinates. This defect can be found by the
API comparison method, since the API and
PostScript comparison methods use coordinate
information. Consider the following report of
real defect in Microsoft PowerPoint:

Application: Microsoft PowerPoint 2000

Vol. 44 No. 7 Effective Automated Testing for Graphical Objects 1699

Fig. 4 Defect 1.

Fig. 5 Defect 2.

Steps:
1. Launch Microsoft PowerPoint.
2. Insert a graph (Fig. 4).
3. Minimize the graph.
4. Click at another location (not on the

graph).
5. Restore the original size.
Expected Result: The graph is shown as

in the original image (Fig. 4).
Actual Result: The graph is shown with

corruption (Fig. 5).
4.2.2 Improperly Computed Color In-

formation
Applications use graphical APIs to show ob-

jects with color information. First, the operat-
ing system receives API calls from the applica-
tion, and then it calculates the color informa-
tion on the basis of the specific capabilities of
the installed graphic card. Next, the operating
system passes the information to the graphic
card driver. The problem is that there is a huge
variety of different graphic devices and they all
vary in their ability to display colors; more-
over, it is difficult to develop an application
to suit all of these graphic systems. Another
problem is that drawing a graphic uses multi-
ple software modules and hardware, including
the application, operating system, graphic card
drivers, and graphic card hardware (Fig. 6).
Consequently, defects may be in the applica-
tion, the operating system, the graphic driver,
or any combination thereof. However, since
computing color information is usually much
simpler than computing coordinates, in our ex-
perience, the number of defects is relatively
small. Moreover, most defects are caused by the
graphic driver and graphic hardware because
there are so many types of graphic card in the
world 20). In addition, though the API compar-

Operating
 System

Graphic Driver

Application

Output

 Graphic Card
Software

API: such as LineTo(10, 10, 50, 40)

Fig. 6 Graphical object output.

ison method can fetch color information, it is
quite simple to calculate the color information
code. Thus, in this research, we shall not in-
clude verification of color information, since a
very small number of defects is anticipated.

4.2.3 Improperly Constrained Output
As explained above, to output graphic im-

ages, the data created by the application goes
through the application, API, operating sys-
tem, graphic driver, and graphic card software
(Fig. 6). Obviously, some graphic driver soft-
ware and card-controlling software contains de-
fects. We call such defects improperly con-
strained output defects. Virtually no method
(including the API and bit-by-bit comparison
methods) can find defect of this type, because
they usually occur within the graphic driver
code. Therefore, in this paper, we do not fo-
cus on testing improperly constrained output
type defects.

5. Comparison Method

In this research, two kinds of comparison
methods, point-based and vector-based com-
parison are offered to reduce the need for bit-
by-bit comparison. In these comparison tech-
niques, testers can use images as logical ob-
jects, such as lines, circles, and triangles. As
explained in the previous section, the API and
PostScript comparison system will fetch the
API and PostScript commands. For example,
to draw a line from screen coordinates (0, 0)
to (100, 100), an application calls an API as
follows (on Microsoft Windows platforms).
POINT pPoint[2];

pPoint[0].x = 0; pPoint[0].y = 0;

pPoint[1].x = 100; pPoint[1].y = 100

LineTo(pPoint);

The tool then fetches the information and
stores it for comparison.

5.1 Point-Based Comparison
Once an API command from an application

has been fetched, the API command informa-
tion is saved as point information to be ana-
lyzed and compared. For instance, in the case
of two rectangles (Figs. 7 and 8), the coordi-

1700 IPSJ Journal July 2003

x

y (50, 50)

(50, 10)

(10, 40)

(10, 10)
(0, 0)

Fig. 7 Point-based comparison 1.

x

y (70, 50)

(70, 10)

(10, 40)

(10, 10)

(0, 0)

Fig. 8 Point-based comparison 2.

Table 1 Comparison results.

Fig. 7 Fig. 8 Test Result
(10, 10) (10, 10) Pass
(10, 50) (10, 50) Pass
(50, 10) (70, 10) Fail
(50, 50) (70, 50) Fail

x

y

(0, 0)

(10,10)

(50,40)
length

θ

Fig. 9 Vector comparison.

nates of the rectangles will be compared one by
one. The test results are shown in Table 1.

5.2 Vector Comparison
In a vector comparison system, point infor-

mation generates vector information, which is
structured by length and angle (Fig. 9).

In Fig. 9, the value of from vector (10, 10)
through (50, 40) is calculated as follows:

length =
√

(10 − 50)2 + (10 − 40)2

Θ = sin−1(40−10
length)

The vector comparison technique is useful be-
cause testers can easily accomplish expansion
and reduction testing, as explained in the pre-
vious section titled “Expansion and Reduction
Testing”. For example, Fig. 10 shows the line
zoomed out 50% from Fig. 9. coordinates are
(25, 20) = (50, 25) ×0.5 and (5, 5) = (10, 10)
×0.5.

The length and angle are as follows:
length =

√
(5 − 20)2 + (5 − 20)2

Θ = sin−1
(

25−5
length

)

Even when the application zooms out 50%,

x

y

(0, 0)

(5, 5)

(25,20)length

θ

Fig. 10 50% Zooming.

the angle remains the same. The length can
also be calculated as follows:

Original length = (zoom rate) × (changed
length)

In similar objects, the angles are the same,
and the lengths are similar. The bit-by-bit com-
parison method cannot directly compare similar
objects.

6. Tool Development

To realize the idea of API comparison, we de-
veloped a tool that can fetch graphical API in-
formation on PowerPoint. Because verification
of graphic screen images is much more com-
plicated to realize than verification of printed
graphical images, we explain our tool in a
separate section. PowerPoint uses common
components of Microsoft(R) Office(R). When
drawing graph objects, PowerPoint uses an
Office component named GRAPH9.EXE. In
order to store API information, we changed
the GRAPH9.EXE binary file to capture the
API information. The GRAPH9.EXE file
is edited by using a binary editor. One
string in GRAPH9.EXE’s was changed from
“GDI32.dll” to “GDI23.dll” (indicated in bold
font in the following Fig. 11) to access gdi23.dll
instead of gdi32.dll (Fig. 12).

After the string has been changed, GRAPH9.
EXE calls gdi23.dll when PowerPoint uses
graphical APIs such as LineTo() and Poly-
gon(). Gdi23.dll has two functions: to store
API information and to pass the API informa-
tion to the operating system. As Fig. 12 shows,
the API information goes into gdi23.dll and is
passed into gdi32.dll. Consequently, the API
information is stored on the hard disk drive.
The stored information is used to compare ob-
jects (this comparison will be discussed in a
later section). The following source code is a
part of gdi23.dll that fetches and stores the
LineTo commands.
KERNEL23_API BOOL WINAPI

myLineTo(HDC hdc, int iX, int iY)

{

Vol. 44 No. 7 Effective Automated Testing for Graphical Objects 1701

Address: Hex code
--
D50: 50493332 2E648C8C 00004744 4932332E PI32.dll GDI23.
D60: 646C6C00 4B45524E 454C3332 2E646C6C dll KERNEL32.dll
D70: 00004D53 4F392E44 4C4C0000 6F6C6533 MSO9.DLL ole3
D80: 322E646C 6C005553 45523332 2E646C6C 2.dll USER32.dll

Fig. 11 Changed Binary Image for GRAPH9.EXE.

LineTo()

PowerPnt.exe

GRAPH9.EXE

gdi32.dll

Graphic
 Driver

Store APIs
information

gdi23.dll

Fig. 12 Gdi32.dll behavior.

typedef BOOL

(CALLBACK *LPFN)(HDC, int, int);

HINSTANCE bltH_Dll;

LPFN bltPtrFn_Function;

BOOL ReturnValue;

//Loading Dll

char ptrChr_DllPath[MAX_STR];

GetSystemDirectory(ptrChr_DllPath,

MAX_STR);

strcat(ptrChr_DllPath, "\\gdi32.Dll");

//Load gdi32.dll

bltH_Dll=LoadLibrary(ptrChr_DllPath);

//In case failing the library

_ASSERT(bltH_Dll);

if (bltH_Dll==NULL)

{

ErrorLoading("LineTo");

return 0;

}

bltPtrFn_Function = (LPFN)

GetProcAddress(bltH_Dll, ’’LineTo");

//In case failing the function

_ASSERT(bltPtrFn_Function);

if (bltPtrFn_Function == NULL)

{

FreeLibrary (bltH_Dll);

return 0;

}

FreeLibrary (bltH_Dll);

ReturnValue =

bltPtrFn_Function(hdc, iX, iY);

//To store LineTo information into disk

LogFile2(

Fig. 13 Fetching information.

Original API
 Information

Control C++
 code

Test result API
 information

Bind C++ files

Build a bound
 file

Show comparison
 result

Fig. 14 Flowchart for Gdi23.dll.

"LineTo(*hdc,", iX, iY, LINETO_LOG);

return ReturnValue;

}

6.1 Fetching Drawing Information
The tool described in this paper specifically

targets Microsoft PowerPoint. It fetches draw-
ing information from APIs calls (Fig. 12). For
the object in Fig. 13, the tool could fetch the
points of the polygons, e.g.
Polygon 1:(34,172),(53,158),(248,158),

(229,172), (34, 172)

Polygon 2:(34,172), (34,22), (53,8),

(53,158), (34,172)

Polygon 3:(53, 158), (53,8), (248,8),

(248,158), (53,158)

and so on.
6.2 Comparing Graphical Objects
In order to compare an original object and

a test result, the tool has a comparison func-
tion. After the tool has stored the original in-
formation and the test result, it binds the orig-
inal program and the test result and prepares a
C++ program that includes the APIs’ compar-
ison routine. The bound file is then compiled
and linked in order to compare the original ren-
dered object with the test result (Fig. 14).

7. An Example: Microsoft Power-
Point

Microsoft PowerPoint is used as a sample ap-
plication to confirm the efficiencies of the API
and PostScript comparison technique. Power-

1702 IPSJ Journal July 2003

Fig. 15 Simple object (original).

Fig. 16 Simple object (modified).

Point is one of the most popular graphical pre-
sentation applications, and is sufficiently com-
plicated to demonstrate the API and PostScript
comparison technique working on a real appli-
cation.

7.1 Verification of Graphical Screen
Images

In the previous section, we described what
the API comparison method can efficiently test
for logical graphical objects (lines, circles, poly-
gons, and so on). Next, we will test simple
logical objects by using the API comparison
method, and will then extend the API compar-
ison case study to a real application object.

7.1.1 Simple Line and Circle Objects
Lines and circles are basic graphical ob-

jects that are often built into more compli-
cated graphical objects. Before confirming
whether the API comparison works with real-
world graphical objects, we first try a simple
demonstration. Test Case 1: Compare two sim-
ple objects.

1. Launch PowerPoint.
2. Draw a rectangle and a circle (Fig. 15).
3. Save the object as the original object.
4. Change the rectangle width (Fig. 16).
5. Save the object as the destination object.
Expected result: The comparison program

shows the differences between the objects.
The API comparison method stores the orig-

inal object (Fig. 15) formation as:
Ellipse(hdc,87,51,204,168);

Rectangle(hdc,147,80,238,146);

On the other hand, the API comparison
method stores the result object (Fig. 16) as:
Ellipse(hdc,87,51,204,168);

Rectangle(hdc,147,80,185,146);<-diff.

We can thus clearly determine that the two
objects are different.

7.1.2 Complicated Graph Objects
We have already demonstrated a simple

graphical object. In order to prove that the

Fig. 17 Modified object.

API comparison method can achieve more ad-
vanced testing efficiency, we now show that it
can test real-world, and complicated objects.
The target object is one of the functions of Pow-
erPoint’s Graph (Fig. 13). Graph’s objects are
mainly structured in terms of polygons. To sim-
plify the analysis and results, the tool tests only
the polygon object information. When two ob-
jects (Figs. 13 and 17) are compared, the former
differs from the original object only in the value
of the first bar value (Fig. 13). The comparison
program should show that only one bar is dif-
ferent. The following is a test case: Test Case
2: Compare two different objects.

1. Launch PowerPoint.
2. Insert a graph object (Fig. 13).
3. Save the object as the original object.
4. Change the value of the 1st bar (Fig. 17).
5. Save the object as the destination object.
Expected result: The comparison program

shows the differences between the objects. Test
Analysis:
• 42 polygons are detected.
• Two polygons have different point values.
• Nine lines have different values.

Test Result: PASS
In this case, there are 42 polygons. Compar-

ing Figs. 13 and 17, the program detects two
polygons that are different: the differences in-
clude 9 lines. Thus, the tool can detect the dif-
ference as expected. It is important to note that
the bit-by-bit comparison method hardly ever
finds the differences or the causes of problems.
The bit-by-bit comparison tool only shows dif-
ferences caused by group of bitmap informa-
tion. On the other hand, the API comparison
method can show APIs that cause defects. It
is clear that when developers debug the defect,
the API comparison gives more logical defect
information and permits faster debugging than
the bit-by-bit comparison method.

7.2 Verification of Printed Graphical
Images

As explained in the previous section, in order
to verify printed images with pre-saved images,
we use the PostScript comparison method.

Vol. 44 No. 7 Effective Automated Testing for Graphical Objects 1703

7.2.1 Tool Development
A tool was developed to use the PostScript

comparison method and verify printed images.
The tool is capable of:
• Fetching PostScript commands.
• Comparing rendered objects via PostScript

commands.
Fetching Printing Information: Fetching

PostScript information is much simpler than
fetching API information. PowerPoint is able
to save information on PostScript commands
as a file, and we use the files to compare each
PostScript command.

Comparing Rendered Objects via
PostScript Commands: Fetched PostScript
information can be saved as a file. However, we
cannot simply compare pre-saved and test re-
sult files, because saved PostScript files include
various types of information such as PostScript
command definitions, dates, and so on. There-
fore, the tool filters out non-rendering-related
PostScript commands and compares the filtered
data. If the two files are different, the tool
shows a test failure and indicates the differences
between the graphical objects.

7.2.2 Testing
As we demonstrated in the previous section,

we used both simple and complicated cases
to confirm whether the PostScript compari-
son method can test printing images with real-
world applications.

7.2.3 Simple Line and Circle Objects
Test case 1 was executed and PowerPoint gen-

erated the following PostScript commands for
the original object (Fig. 15):
5296 1762 moveto

3446 1762 lineto

3446 3112 lineto

5296 3112 lineto

4244 3210 moveto

4469 2985 4596 2680 4596 2362 curveto

....

PowerPoint also generated the altered object
(Fig. 16):
4196 1762 moveto <--difference

3446 1762 lineto

3446 3112 lineto

4196 3112 lineto <--difference

4244 3210 moveto

4469 2985 4596 2680 4596 2362 curveto

....

When we compare the test results for two ob-

jects, we can see that two lines of PostScript
commands (indicated in bold font) have differ-
ent values. This successful test was conducted
by using the PostScript comparison method.

Complicated Graph Objects: Test case
2 (described in the previous section) was also
performed by using the PostScript comparison
method. Test analysis:
• 265 lines were detected.
• Eight lines had different point values.

The results shows that the pre-saved object and
the tested object are not the same. Some of the
line objects have different line lengths. Test
Result: PASS.

7.3 Verification of Printed Graphical
Images by Screen Graphical Im-
ages

To verify printed graphical images with veri-
fied graphical screen images, we use both API
and PostScript comparison methods.

7.3.1 Tool Development
We developed a tool with three functions:
• Deconstructing polygon objects into line

objects
• Adjusting
• Comparing rendered objects in the form of

screen and printing images
Deconstructing Polygon Objects into

Line Objects: Unfortunately, depending on
the application, PowerPoint has different ar-
chitectures for printing and drawing on-screen
functions. For drawing on the screen, Power-
Point uses polygon commands, whereas for pa-
per printing, it uses the lineto command. Thus,
a tool is required for deconstructing a polygon
command into lineto commands. For example,
let us consider a square represented by the poly-
gon command for drawing on-screen, such as:
rPoint[0].x = 0; rPoint[0].y = 0;

rPoint[1].x = 100; rPoint[1].y = 0;

rPoint[2].x = 100; rPoint[2].y = 100;

rPoint[3].x = 100; rPoint[3].y = 0;

Graph->AddPolygon(rPoint, 4);

The polygon command above can be decon-
structed into lineto commands by the tool as
follows:
0 0 moveto 0 100 lineto

100 100 lineto 100 0 lineto

0 0 lineto

After the tool has converted polygon informa-
tion into lineto information, the on-screen and
printed graphical information is compared by
using lineto commands.

Adjusting: Naturally, applications do not

1704 IPSJ Journal July 2003

Table 2 Test result.

Command GDI Length Rate Delta for Lines
x y x y diff x diff y length diff x diff y length GDI Post

x y x y

moveto 49 218 1502 3552
lineto 55 214 1571 3502 6 -4 7.2 -0.6 69 -50 85.2 -0.59 -35.9 -33.7 11.8 -0.3% PASS
lineto 357 214 5202 3502 302 0 302.0 0.0 3631 0 3631.0 0.00 0.0 0.0 12.0 -2.1% PASS
lineto 351 218 5133 3552 -6 4 7.2 0.6 -69 50 85.2 0.59 35.9 33.7 11.8 -0.3% PASS
lineto 49 218 1502 3552 -302 0 302.0 0.0 -3631 0 3631.0 0.00 0.0 0.0 12.0 -2.1% PASS
moveto 55 214 1571 3502 6 -4 69 -50 PASS
lineto 55 18 1571 1140 0 -196 196.0 -1.0 0 -2362 2362.0 -1.00 -90.0 -90.0 12.1 -2.3% FAIL
lineto 357 18 5202 1140 302 0 302.0 0.0 3631 0 3631.0 0.00 0.0 0.0 12.0 -2.1% PASS
lineto 357 214 5202 3502 0 196 196.0 1.0 0 2362 2362.0 1.00 90.0 90.0 12.1 -2.3% FAIL
lineto 55 214 1571 3502 -302 0 302.0 0.0 -3631 0 3631.0 0.00 0.0 0.0 12.0 -2.1% PASS
moveto 78 218 1852 3552 23 4 281 50 PASS
lineto 78 22 1852 3021 0 -196 196.0 -1.0 0 -531 531.0 -1.00 -90.0 -90.0 2.7 77.0% FAIL
lineto 84 17 1921 2964 6 -5 7.8 -0.6 69 -57 89.5 -0.64 -39.6 -39.8 11.5 2.7% PASS
lineto 84 214 1921 3502 0 197 197.0 1.0 0 538 538.0 1.00 90.0 90.0 2.7 76.8% FAIL
lineto 78 218 1852 3552 -6 4 7.2 0.6 -69 50 85.2 0.59 35.9 33.7 11.8 -0.3% PASS

Postscript GDI ASINPostscript Test
ResultGDI Postscriptdiff y/

lentgh

diff y/
legth

Error
 Rate

Zoom
Rate

generate the same coordinate values for screen
and printing images. For example, the appli-
cations may generate the following PostScript
commands for printing:
0 0 moveto 100 100 lineto

and the following API commands for rendering
on screen:
rPoint[0].x = 0; rPoint[0].y = 0;

rPoint[1].x = 50; rPoint[1].y = 50;

Graph->AddPolygon(rPoint, 2);

When the API commands and PostScript com-
mands are compared, the tool indicates that the
two objects are not equivalent. Therefore, the
tool is required to calculate the zoom rate and
use this to compare the objects. The zoom rate
is calculated as follows:

Zoom rate =
∑n

1
length(GDI)

length(P ostScript)

n (n:
number of lines)

7.3.2 Testing
Test case 2 (described in the previous section)

is also performed in the API and PostScript
comparison methods. Test Analysis:
• Forty-two polygons are detected in the

screen object.
• The forty-two polygons are deconstructed

into 168 lines.
• Four lines have different values.

The result is that pre-saved object and the
tested objects are not the same. The test result
indicates that four line objects have different
line lengths, as expected. Test result: PASS.

To explain the details of the calculation pro-
cess, we will choose a part of the information
from the entire set of test results. As shown
in Table 2, three polygons are separated into
12 lineto commands and three “moveto” com-
mands, and pointing information is indicated.
First, when we look at each of the points in

the first two columns (under the heading “GDI”
in the table and shown in white letters against
a colored background) we see that the coordi-
nates 49, 218 and 55,214 are fetched by the API
comparison system. The coordinates are gener-
ated by the following commands:
rPoint[0].x = 49; rPoint[0].y = 218;

rPoint[1].x = 55; rPoint[1].y = 214;

In the next two columns (under the head-
ing “PostScript” in the table), the coordinates
1502, 3552 and 1571, 3502 are fetched by the
PostScript comparison system. The coordi-
nates are generated by the following commands:
1502 3552 moveto

1571 3502 lineto

Each line length is
7.2 (

√
(49 − 55)2 + (218 − 214)2) and

85.2 (
√

(1502 − 1571)2 + (3552 − 3502)2).
Therefore, at this time we cannot say that the
GDI and PostScript objects are the same. But
we can find a fixed zoom rate of around 12. This
shows that most of the objects are similar, but
some of them are not. According to Table 2,
two lines have 77.0% and 76.8% error rates, and
this indicates that two graphical objects are not
equivalent. Next, we compare angles. In Table
2, we calculate the angle of every line by us-
ing the pointing information, and this shows
that there are a small number of differences of
sin−1 (under the heading ASIN in the table)
between the GDI object and the PostScript ob-
ject. These differences can be ignored, because
they may be caused by accidental errors in cal-
culation (see the section titled “Error Rate”);
furthermore, we can say that the two objects
have the same angles for all lines. Finally, even
when the lengths are similar and the angles are
the same, we cannot say two objects are equiva-

Vol. 44 No. 7 Effective Automated Testing for Graphical Objects 1705

lent. We need to check the positions of lines, be-
cause the objects should be shown in the correct
positions on screen and paper. For example, the
objects in Fig. 18 have similar lengths and the
same angle lines. However, the two objects are
not equivalent, because the relevant coordinates
of their two lines are different. Thus, in Table
2, we calculate delta x and delta y. When ana-
lyzing the three factors above, we can say that
the comparison tools indicate that the screen
object and the printed object are not the same,
and that the testing meets the expected result.

7.3.3 Error Rate
Unfortunately, we see some errors during the

calculation process. In Table 3 there is a 13%
error rate. However, we consider that this er-
ror rate might be acceptable, for the following
two reasons: First, PowerPoint is not required
to produce accurate images and printed out-
put, since it is a business presentation tool.
Users may not require accurate printed im-
ages. Second, GDI gives a value of 8.1 for the
length, whereas PostScript gives a value of 85.2
when there is a 13% error rate. Since Windows
graphical API only allows integer to be used as
value 13), the error rate tends to be high when
the value is small enough. Of course, when we
test larger graphical objects, the error rate can
be reduced. Let’s us turn now to other types
of objects, such as circles, ovals, and triangles.
A circle has two attributes: location of the cen-
ter, and the diameter. It is entirely fair to say
that the location of the center has an error rate
quite similar to that of the location of a line,
while the diameter has the same error rate as
the length of a line. Consequently, we may not
see a much larger error rate for circle objects
than for line objects. For triangles and other

Fig. 18 Relative positions of objects.

Table 3 Error Rate.

Command GDI Length Rate
x y x y diff x diff y r (diff y)/r diff x diff y r (diff y)/r GDI Post diff

moveto 188 116 3164 2321
lineto 195 112 3233 2271 7 -4 8.1 -0.5 69 -50 85.2 -0.59 -35.9 -29.7 -6.2 10.6 10.3%
lineto 176 112 3033 2271 -19 0 19.0 0.0 -200 0 200.0 0.00 0.0 0.0 0.0 10.5 10.6%
lineto 171 116 2964 2321 -5 4 6.4 0.6 -69 50 85.2 0.59 35.9 38.7 -2.7 13.3 -13.0%
lineto 188 116 3164 2321 17 0 17.0 0.0 200 0 200.0 0.00 0.0 0.0 0.0 11.8 0.1%

Error
 Rate

Zoom
Rate

Postscript GDI ASINPostscript

objects, we can be fairly certain that there is
not a large error difference between lines and
triangles or other objects, since objects usually
consist of lines and arcs.

7.3.4 External Factors
In real-world testing, when we formalize a

model, we may encounter obstacles from ex-
ternal factors, such as sequential API and
PostScript commands.

Drawing on the screen by APIs: In
drawing on the screen, it may be possible to
have a different sequence of API calls for pre-
saved and test result objects. However, we have
never encountered any unexpected sequence of
APIs in our research. Even so, there is a slight
chance that an application and operating sys-
tem may generate an unexpected sequence of
APIs. In order to formalize this method, we
added a sorting function to our developed tool
to adjust this type of altered sequence.

Printing by Using PostScript com-
mands: In our research, we used a Hewlett-
Packard(R) Laser Jet4000 PostScript printer
with a Microsoft(R) Windows 2000(R) printer
driver. The issue here is the PostScript driver
design. For example, when there is a line from
0,0 to 100, 100, we expect the PostScript printer
driver to generate the following code:
0 0 moveto

100 100 lineto

On the other hand, since the PostScript lan-
guage grammar 14) does not define anything
sequentially, there is a possibility that the
PostScript driver may instead generate another
set of code:
100 100 moveto

0 0 lineto

In addition to the Hewlett-Packard(R) Laser
Jet4000 PostScript printer, we used a Xerox
DocuPrint 4512 and an Apple LaserWriter II
NTX. Fortunately the three printers generated
the same sequential PostScript commands, and
our tool operated without any trouble. Yet,
there is a slight chance that a printer driver
may generate unexpected sequential code, as
explained for the API call above. We are sure
that the design of PostScript drivers will dif-

1706 IPSJ Journal July 2003

fer only slightly among printer drivers, and we
emphasize that the effort of changing the tool
is much smaller than that required for testing
graphic applications.

8. Expanding the API and PostScript
Comparison Method (Fetching
Other Types of Graphical Object)

In the preceding sections, we have demon-
strated how tests can be efficiently executed
for PowerPoint graphical objects (mostly con-
structed from lines) by API and PostScript
comparison. In general, the API and PostScript
comparison method is able to fetch figures
of any of the types, such as lines, triangles,
squares, and circles, which we tested on Pow-
erPoint 2000. On the other hand, there may
be other attributes that determine the form of
graphics, such as thickness, thinness, and over-
lapping. In this section, we attempt to explain
whether the API and PostScript comparison
method can fetch and compare shapes of figures
(lines and triangles) as well as attributes of fig-
ure (thickness and thinness). Consequently, we
demonstrate that the API and PostScript com-
parison can test any type of application, includ-
ing Microsoft PowerPoint.

8.1 Thick and Thin Lines
First, we confirm that the API comparison

method can detect the widths of figures (such as
lines and rectangles). In the Windows system,
developers usually use a CreatePen() API in
order to determine the width of lines, such as:
//Draw a line as 2 points width.

//"2" indicates the width

CreatePen(PS_SOLID, 2, NULL);

MoveToEx(hdc, 100, 100, NULL);

LineTo(hdc, 200, 200);

//Draw a line as 5 points width.

//"5" indicates the width

CreatePen(PS_SOLID, 5, NULL);

MoveToEx(hdc, 100, 100, NULL);

LineTo(hdc, 200, 200);

In the above code, the width of data in-
cludes the CreatePen API. In addition, we can
easily fetch and compare the APIs by using
the API comparison methods and compare the
line widths (Fig. 19). Next, we confirm that
PostScript commands can be used for testing
thin and thick lines. The “setlinewidth” com-
mand is used for determining to decide line
width, such as 6.25 for a thin line and 25 for
a thick line (Fig. 19).

In the code below, thick and thin lines

Fig. 19 Thin and thick line.

Fig. 20 Overlapped objects 1.

Fig. 21 Overlapped objects 2.

are clearly indicated by the “setlinewidth”
PostScript command, and the PostScript com-
parison method that we developed can test the
attributes.
%%% thin line

6.25 setlinewidth

1039 1041 moveto

2054 1041 lineto

%%% thick line

25 setlinewidth

1039 1041 moveto

2054 1041 lineto

8.2 Overlapped Objects
If two graphical objects are overlapped in dif-

ferent ways (Figs. 20 and 21), the graphical
images must be different. For the present, we
examine whether API and PostScript compari-
son method can precisely fetch and distinguish
graphics of these types.

API comparison: When the two objects’
APIs are fetched, the sequence can affect the
graphical image. The first-called API is shown
in the background, and the second-called API
is shown in foreground. The following Win32
APIs show how the overlapped objects are con-
figured in a Windows system. The only differ-
ence between Figs. 20 and 21 is the overlapping
sequence.
//For Fig.\,20

Ellipse(hdc, 0, 0, 500, 500);

Ellipse(hdc, 0, 400, 1000, 500);

//For Fig.\,21

Ellipse(hdc, 0, 400, 1000, 500);

Ellipse(hdc, 0, 0, 500, 500);

These APIs also shows that the API com-
parison method can handle multi-window sys-

Vol. 44 No. 7 Effective Automated Testing for Graphical Objects 1707

tems. When we test graphical objects on mul-
tiple windows, API comparison is required to
distinguish between the sequences of API com-
mands. For example, a tool distinguishes APIs
for the first-opened and second-opened win-
dows. Thus, testing multiple windows by API
comparison is the same as testing overlapped
objects.

PostScript comparison: PostScript com-
mands have the same drawing system as
API command for printing foreground and
background objects. The codes below are
PostScript commands for showing overlapped
objects (Figs. 20 and 21).
%First circle, drawn on the left side

1535 1230 moveto

1209 1230 945 1494 945 1820 curveto

945 2146 1209 2411 1535 2411 curveto

1862 2411 2126 2146 2126 1820 curveto

2126 1494 1862 1230 1535 1230 curveto

%Second circle, drawn on the right side

2197 1466 moveto

1975 1466 1796 1646 1796 2868 curveto

1796 2089 1975 2269 2197 2269 curveto

2419 2269 2599 2089 2599 1868 curveto

2599 1646 2419 1466 2197 1466 curveto

As the above code shows, the sequential dif-
ference may only affect the foreground and
background locations of graphical objects. In
short, it is possible that our API and PostScript
comparison method can employ overlapped ob-
jects. There may also be color, shade, and
transparency attributes in graphic applications.
But we do not foresee any difficulties in fetching
these attribute by the API and PostScript com-
parison method on PowerPoint or other graphic
applications. Thus, it seems reasonable to sup-
pose that the API and PostScript comparison
method can be used with most graphical appli-
cations.

9. Related Work

It is difficult to find work related to this
graphical object verification. One possible ex-
ception is jRapture 21), a Java-based opera-
tional testing method which captures interac-
tions between a Java program and operating
system, including GUI, file, and console inputs.
Its concept is similar to that of our API and
PostScript comparison method, but it depends
on the Java programming language. On the
other hand, our API and PostScript compar-
ison approach is independent of the program-

ming language and focuses more on graphical
objects, since they are the most difficult to han-
dle using current testing techniques. In addi-
tion, jRapture tends to reveal software defects
that occur on the users’ site (often beta users).
However, our API and PostScript comparison
method tends to find complicated graphic de-
fects and reduce automated testing costs.

10. Conclusion

Our research has shown that the API and
PostScript comparison method can be use-
ful for comparing graphical objects automat-
ically. This is a great advance for auto-
mated verification work of what has tradition-
ally been a manual, labor-intensive verification
process. Though testers have struggled to com-
pare drawing and printed images automatically,
we can now offer an alternative method to ver-
ify rendered images using API and PostScript
comparison. This research has demonstrated
the basic steps for realizing API and PostScript
comparison techniques:

API comparison was demonstrated on Mi-
crosoft PowerPoint by comparing points in each
of two rendered graphical objects on screen. In
this research, we used the Microsoft Windows
operating system. In order to generalize the use
of our method, we may need to realize our tech-
niques on the Linux and UNIX operating sys-
tems. Supporting our techniques on Windows
systems requires complicated tool development,
because we were not able to use any Windows
source code, but using UNIX and Linux would
be much easier since we could use their source
code. Thus, we can assume that this API com-
parison could easily be implemented on those
operating systems.

PostScript comparison was also demon-
strated on Microsoft PowerPoint to allow auto-
mated testing of printed images. Such testing
can be expensive and time-consuming, and is
difficult to automate. However, this PostScript
comparison method makes it possible to auto-
mate such testing. In addition, although it is
impossible to test graphical objects by using ad-
vanced testing approaches, such as model-based
testing 17), test case generation 23), dumb mon-
key 10), random testing, and so on (these meth-
ods cannot be implemented due to lack of verifi-
cation functions), we now have the option of us-
ing them with graphical images on both screen
and paper.

1708 IPSJ Journal July 2003

References

1) Dustin, E., Rashka, J. and Paul, J.: Au-
tomated Software Testing, Addison-Wesley
(1999).

2) Fewster, M. and Graham, D.: Software Test
Automation, Addison Wesley, New York, USA
(1999).

3) Beizer, B.: Black-Box Testing, John Wiley &
Sons, Inc., New York (1995).

4) Dustin, E.: Lessons in Test Automation, Soft-
ware Testing & Quality Magazine (Sep./Oct.
1999).

5) Kaner, C.: Improving the Maintainability of
Automated Test Suites, International Software
Quality Week (1997).

6) Marick, B.: When Should a Test Be Auto-
mated?, International Software Quality Week,
(May 1998).

7) Mercury Interactive, WinRunner Users Guide
(2000).

8) Rational Software Corporation, Using Ratio-
nal Robot Release 7.5, Rational Software Cor-
poration, MA (1999).

9) Takahashi, J.: An Automated Oracle for Veri-
fying GUI Objects, ACM Software Engineering
Note (Jul. 2001).

10) Nyman, N.: Application Testing with Dumb
Monkeys, International Conference on Testing
Computer Software (1999).

11) Pentland, A. and Choubury, T.: Face Recogni-
tion for Smart Environments, IEEE Computer,
Vol.33, Issue 2, pp.50–55 (Feb. 2000).

12) Pankanti, S. and Bolle, R.: Biometrics: The
Future of Identifications, IEEE Computer,
Vol.33, Issue 2, pp.46–49 (Feb. 2000).

13) Microsoft Co.: Microsoft Win32(tm) Program-
mer’s Reference, Microsoft Press, WA, USA
(1993).

14) Adobe Systems, Inc.: PostScript(R) lan-
guage Reference, Third Edition, Addison-
Wesley Publishing Company (1999).

15) Ginsburg, A., Marks, J. and Shieber, S.: A
Viewer for PostScript Documents, Proc. ACM
Symposium on User Interface Software and
Technology (1996).

16) Giuffrida, G., Shek, E. and Yang J.:
Knowledge-Based Metadata Extraction from
PostScript Files, Proc. 5th ACM Conference on
ACM 2000 (2000).

17) Takahahsi, J. and Kakuda, Y.: Extended
Model-Based Testing toward High Code Cov-
erage Rate, Quality Connection (2002).

18) Myers, G.J.: The Art of Software Testing, New
York, John Wiley & Sons (1979).

19) Whittaker, J. and Jorgensen, A.: Why Soft-

ware Fails, ACM Software Engineering Note,
Vol.24, Issue 4, pp.81–83 (Jul. 1999).

20) Takahashi, J.: Is Special Software Testing Nec-
essary Before Releasing Products to an Inter-
national Markets?, International Quality Week
(Jun. 2000).

21) Steven, J., Chandra, P., Fleck, B. and
Podgurski, A.: jRapture: A Capture/Replay
Tool for Observation-Based Testing, Interna-
tional Symposium on Software Testing and
Analysis (Aug. 2000).

22) Whittaker, J. and Thomason, M.: A Markov
Chain Model for Statistical Software Testing,
IEEE Trans. on Software Eng., Vol.20, No.10,
pp.812–824 (Oct. 1994).

23) Memon, A.M., Pollack, M.E. and Soffa, M.L:
Automated Test Oracle, International Sympo-
sium on Foundations of Software Engineering
(2000).

(Received April 30, 2002)
(Accepted April 3, 2003)

Juichi Takahashi received
M.S. degree in Software Engi-
neer at the Florida Institute of
Technology and is Dr. Eng. can-
didate at Hiroshima City Uni-
versity. He is currently qual-
ity manager at SAP Labs Tokyo.

He has been worked at Microsoft in both U.S.A.
and in Japan for 8 years as Software Test Lead.
It follows that his interests include software
testing and quality assurance. He is a member
of IEEE, ACM, and IPSJ.

Yoshiaki Kakuda received
the B.E., M.Sc., and Ph.D. de-
grees from Hiroshima Univer-
sity, Japan, in 1978, 1980 and
1983, respectively. From 1983
to 1991, he was with Research
and Development Laboratories,

Kokusai Denshin Denwa Co., Ltd. (KDD). He
joined Osaka University from 1991 to 1998 as an
Associate Professor. He is currently a Profes-
sor in the Department of Computer Engineer-
ing, Faculty of Information Sciences, Hiroshima
City University, since 1998. His current re-
search interests include network software engi-
neering and assurance networks. He is a mem-
ber of IEEE (U.S.A) and IPSJ (Japan). He re-
ceived the Telecom. System Technology Award
from Telecommunications Advanced Founda-
tion in 1992.

