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Regular Paper

Reflective Context-Free Grammar

Daijiro Kato†

RCFG is one of extensions of Context-Free Grammar. RCFG is one of self-extensible
formal language systems. The language class of RCFG is in between CFL and CSL. The
extensibility is obtained so as to embed new production rules which are desired to be used
in the text following the embedments. In this paper, RCFG is formally defined, and, some
properties are established. Also, a general parsing algorithm for RCFG is given. This paper
is a revised and extended version of “A Proposal of Reflective Context Free Grammars” (by
Kato, D., 2001). It contains slight mistakes in the definition of derivation. We remade the
definition so as to be correct, and moreover, so that RCFG presents typical reflective features,
as given in Example 3.9. This revision causes the modification of general parsing algorithm
for RCFG, which is given in Section 5. We established soundness and completeness of the
algorithm. This paper would be the first publication for RCFG as a correct one.

1. Introduction

This paper is a revised and extended version
of Ref. 10). In this paper, we introduce a formal
language system, named Reflective Context-
Free Grammar (RCFG), which provides a basis
of self-extensible language systems. RCFG is an
extension of Context-Free Grammar (CFG). Its
language class is middle between Context-Free
Language (CFL) and Context-Sensitive Lan-
guage (CSL). Moreover, it has an efficient gen-
eral parsing algorithm which is an extension of
Earley’s parsing algorithm for CFG 7). The idea
of RCFG is quite simple. Production rule de-
scription of CFG forms, such as,

Exp → Exp ‘ + ’ Exp.
The “grammar of production rule of CFG” is
also defined in CFG,

ProdRule → Var ‘ → ’SymSeq
SymSeq →
SymSeq → Var SymSeq
SymSeq → Term SymSeq.

This observation is the start point of RCFG.
To realize self-extensible language system, we
adopt a way so as to enable for programmers
to embed new production rules into program
texts which are just being parsed. If it is per-
mitted that descriptions of syntactic rules can
appear in text being parsed in order to define
new operators, such that,

Exp newop Exp is also Exp,
we gain freedom to define new operators which
have another types other than infix operators,
as follow,
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Exp ? Exp : Exp is also Exp. (1)
For example, in RCFG, description (1) above is
written as,

[ Exp > Exp ? Exp : Exp ].
‘[’ and ‘]’ indicate the sentence enclosed by these
brackets is an embedded production rule. ‘Exp’
is a terminal symbol which is introduced in or-
der to express a syntactic variable Exp. When
such a description is derived from specified syn-
tactic variable, an augmentation of designated
production rule happens.

Our main purpose is to construct a frame
work of compiler-compiler which is upper com-
patible to YACC 9) or Bison 6), and moreover,
which can treat extensible grammar. Accord-
ing to this purpose, some restrictions and needs
arise. 1) The base grammar processed by the
system must be an extension of CFG. It must
includes CFG as a special case. 2) With some
restrictions on the base grammar, LALR(1)
parsing scheme or some other scheme resem-
ble to it can be processed on the system.
3) Ambiguity of given grammar must be solved
in YACC style. 4) About error handling, and
5) semantic descriptions. These are the reason
why we propose RCFG, and 1) is solved in this
paper. 2) to 5) are remained for another publi-
cations.

In this paper, we provide a formal definition
of RCFG, definition of derivation sequence, ex-
amples of RCFG, some properties on RCFG,
general parsing algorithm which is an extension
of Earley’s parsing algorithm for CFG, sound-
ness and completeness of the algorithm and dis-
cussion on the efficiency of the algorithm.
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2. Related Works

Some frame works for extensible grammars
have been proposed (Refs. 1)∼3), Ref. 15),
Ref. 16)). Many of those (Refs. 1)∼3)) are
based on Definite Clause Grammar 4), so as
summarized in Ref. 3), and some others are
based on Attributed Grammar 11),12) and its re-
semblances 14). There are several purposes to
introduce extensibility to grammars. One of
them is to describe the correspondence between
declarations of variables of programming lan-
guage and its uses. This problem requires a
method in order to restrict the effective range
of definitions of variables. So, in many ap-
proaches, parse-time augmentation and dele-
tion of production rules have been indispens-
able aspects on extensible grammars. How-
ever, the function of deletion of production rules
causes too much computability of the systems,
which is equivalent to Turing Machine. Dele-
tion of production rule is not considered in the
frame work of RCFG. One might have a ques-
tion on the expressive power of RCFG, because
it abandoned the function of deletion of pro-
duction rules. However, this simple choice leads
us to harvests as a good properties of RCFG.
No deletion means that all newly defined pro-
duction rules have global scopes. Even if the
scope is restricted to only global one, many
applications are remained, e.g., operator dec-
laration, introduction of new sentences, and so
on. Mostly alike system to RCFG is Exten-
sible Context-Free(ECF) Grammar 15),16) on a
few points. ECF Grammar is one of extensions
of CFG, permits deletion of production rules,
and its language class involves CSL, if no re-
strictions. We give an example language in Ex-
ample 3.9, which is accepted by RCFG but ECF
Grammar, that is of tricky one in some sense.

3. Definitions

3.1 Formalization of RCFG
Definition 3.1 (RCFG)

RCFG G is defined with 8-tuple as below,
G = (V, T, M, D, Aug, f, P, s)

V is a finite set of Syntactic Variables,
T is a finite set of Terminal Symbols, espe-

cially including special symbols ‘[’, ‘ >’, ‘]’,
which are used for augmentation (dynamic
extension) of Production Rules,

M is a subset of T , called Meta-Symbols,
D is a subset of M , called Definables,
Aug is a subset of V , each element of which

causes Augmentation of production rules,
f is a one-to-one mapping, s.t., M → V ,

which is used for interpretation of augment-
ing production rules,

P ⊂ V × (V ∪ T )∗ is a finite set of (Ini-
tial)Production Rules,

s is Start Symbol (∈ V ).
Terminal symbols in M are used to indicate

syntactic variables in order to express produc-
tion rules in texts. If a terminal a ∈ M appears
in a text, a is translated to a syntactic vari-
able f(a) when a new production rule is aug-
mented. Only members in D can be used to in-
dicate syntactic variables occurred in left-hand
side of embedded production rules. Therefore,
each newly augmented production rule forms
X → α, where X ∈ f(D) and α ∈ (T ∪f(M))∗.

We introduce a notion, AF (Augmented
Forms), to discuss and define dynamic augmen-
tation of production rules.

Definition 3.2 (Augmented Form)
An augmented form of a syntactic variable A
∈ V forms 4-tuple,

(A, P1, P2, w),
where P1 and P2 are finite sets of production
rules, and w ∈ T∗. Also, an augmented form of
a terminal symbol a ∈ T forms,

(a, P1, P2, w).
We simply call Augmented Form (AF) for both.

To reduce descriptions in following discus-
sions, an AF sequence (X1, P1, P2, u1) (X2,
P2, P3, u2) · · · (Xn, Pn, Pn+1, un) may be
abbreviated to (α, P1, Pn+1, u), where α =
X1X2 · · ·Xn, u = u1u2 · · ·un. On the case
n = 0 as a special case, (α, P1, Pn+1, u) =
(ε, R, R, ε) denotes an empty augmented se-
quence with appropriate production rule set
R, which means that (ε, R, R, ε)(β, P, P ′, w) =
(β, P, P ′, w)(ε, R′, R′, ε) = (β, P, P ′, w) for any
β ∈ (V ∪ T )∗, any w ∈ T∗ and any production
rule sets P, P ′ with implicit constraints R = P
and R′ = P ′.

Intuitively, an augmented form (X, P1, P2, w)
indicates that string w is derived from X by use
of production rules in P2, and, while derivation
is done, some new production rules which are
embedded in w are attached to P1.

3.2 Notations and Terminologies
A capital letter, A, B, C, . . ., possibly with

some suffix, denotes a syntactic variable ex-
cludes special syntactic variables in Aug.

A lowercase letter, a, b, c, . . ., possibly with
some suffix, denotes a terminal symbol excludes
‘[’, ‘ >’ and ‘]’.
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A capital letter, X, Y , Z, possibly with some
suffix, denotes a syntactic variable or a terminal
symbol.

A lower case letter, u, v, w, possibly with
some suffix, denotes a finite sequence of ele-
ments of T , called string.

A lowercase Greek letter, α, β, γ, . . ., possibly
with some suffix, denotes a finite sequence of
elements of T and V .

An element (A, α) of P is denoted using arrow
as ‘A → α’.

A capital letter, P , Q, possibly with some
suffix, denotes a finite set of production rules.

We extend f to f̂ : T → (V ∪ T ), where

f̂(a) =
{

f(a) if a ∈ M
a otherwise.

Also, f̂∗ : T∗ → (V ∪ T )∗ is defined recur-
sively, where f̂∗(ε) = ε, f̂∗(aw) = f̂(a)f̂∗(w),
and, f̃ : T∗ → V × (V ∪ T )∗ is defined as,

f̃(w) =




A → α if f̂∗(w) = A > α
and A ∈ f(D)

� otherwise.

We use f in order to denote one of all these
functions, if no ambiguity.

When for a string [w] ∈ T∗, f(w) �= � then
we term [w] an embedded portion. And also, we
write that f(w) has valid form.

3.3 Derivation and Language of RCFG
Definition 3.3 (Derivation of RCFG)

A binary relation ⇒ on finite sequences of aug-
mented forms is defined as,
1) ordinal case,

(α, P, P1, w1)(A, P1, P
′
1, w2)(β, P ′

1, P
′
2, w3)

⇒ (α, P, P1, w1)
(X1, P1, P2, u1) · · · (Xn, Pn, P ′

1, un)
(β, P ′

1, P
′
2, w3)

with constraints,
• A �∈ Aug,
• if n = 0, then P ′

1 = P1,
• A → X1 · · ·Xn ∈ P ′

1,
• w2 = u1 · · ·un,
• ∀i = 1, . . . , n, if Xi ∈ T , then ui = Xi

and Pi+1 = Pi,
2) reflective case,

(α, P, P0, w1)(p, P0, P
′
1, w2)(β, P ′

1, P
′
2, w3)

⇒ (α, P, P0, w1)([, P0, P0, [)

(X0, P0, P1, u0)( >, P1, P1, >)
(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)
(], Pn+1, P

′
1, ])(β, P ′

1, P
′
2, w3)

with constraints,
• p ∈ Aug
• w2 = [u0 > u1 · · ·un]
• p → [X0 > X1 · · ·Xn] ∈ P ′

1 and f(u0 >
u1 · · ·un) has valid form of production rule,

• ∀i = 0, . . . , n, if Xi ∈ T , then ui = Xi

and Pi+1 = Pi,
• P ′

1 = Pn+1 ∪ {f(u0 > u1 · · ·un)}.
We write reflective transitive closure of ⇒ by
∗⇒.
In this definition, production rule sets which

occur in each AFs have no procedure to calcu-
late them. Only they have constraints on them,
some of them are provided in definition ex-
plicitly as ‘constraints’ conditions as described
above, and the others are implicitly provided
in the definition, e.g., such as P1 in AF se-
quence (α, P0, P1, w1) (β, P1, P2, w2). The
need of terminal strings, i.e., the fourth argu-
ments of AFs, is clear. Production rules just
augmented must be determined with embedded
portions, while embedded portions are objects
of terminal strings. Therefore, AF sequences as
intermediate objects of derivations must have
an interface to terminal strings which are de-
rived from the AF sequences themselves.

Example 3.4 (Grammar out of CFG)
Consider RCFG G1 = (V, T, M, D, Aug, f, P, s),
where

V = {s,p, A, B},
T = {0, 1, [, >, ], A},

M = D = {A},
Aug = {p},
f(A) = A,

P = {s → pA, p → [A > B],
B → ε | 0 B | 1 B},

This example specifies a language L(G1) = {[A
> w]w | w ∈ {0, 1}∗}. Since there is no pro-
duction rule in P , which has A on left-hand
side, for any AF (s, P, P ′, u), after a derivation
(s, P, P ′, u) ⇒ (p, P, P ′, u1) (A, P ′, P ′, u2),
only one derivation is able to be done from AF
(A, P ′, P ′, u2), using an augmented rule de-
rived from p. A definition of language of RCFG
will be given in Definition 3.7 below. A deriva-
tion sequence for terminal string [A > 01] 01
can be given as below,

(s, P, P ′, [A > 01]01)
⇒ (p, P, P ′, [A > 01])(A, P ′, P ′, 01)
⇒ ([, P, P, [)(A, P, P, A)( >, P, P, >)(B, P,

P, 01)(], P, P ′, ])(A, P ′, P ′, 01)



1658 IPSJ Journal July 2003

∗⇒ ([, P, P, [)(A, P, P, A)( >, P, P, >)(0, P,

P, 0)(1, P, P, 1)(ε, P, P, ε)(], P, P ′, ])
(A, P ′, P ′, 01)

⇒ ([, P, P, [)(A, P, P, A)( >, P, P, >)(0, P,

P, 0)(1, P, P, 1)(ε, P, P, ε)(], P, P ′, ])
(0, P ′, P ′, 0)(1, P ′, P ′, 1)

where P ′ = P ∪{A → 01}. If P ′ is given other
than P ∪ {A → 01}, the derivation on p must
be fault. Of course, there are infinitely many
choices to give arguments of AFs. However, for
successful derivation, there must be given valid
combination of values, because any derivation
must satisfy the constraints given in the defini-
tion of derivation.

Similar to CFG, on RCFG, notions of leftmost
and rightmost derivation are defined. Left-most
derivation is used in the proof of completeness
of the general parsing algorithm.

Definition 3.5 (Left-most Derivation)
Left-most derivation ⇒L is similar to derivation
⇒ with additional constraint α ∈ T∗ in each
cases.

Definition 3.6 (Right-most Derivation)
Right-most derivation ⇒R is similar to deriva-
tion ⇒ with additional constraint β ∈ T∗ in
each cases.

In both of leftmost and rightmost derivations,
reflective transitive closure for them are de-
noted by ∗⇒L and ∗⇒R, respectively.

These definitions of leftmost derivation and
rightmost derivation present the generality of
the definition of derivation for RCFG.

Definition 3.7 (Language of RCFG)
For given RCFG G, the language L(G) of G is
defined as,

L(G) = {u ∈ T∗ | ∃P ′, P1, P
′
1, ∃w, w′ ∈ T∗,

(s, P, P1, w) ∗⇒ (u, P ′, P ′
1, w

′)}.
Note: u = w = w′, P = P ′ and P1 = P ′

1 are
concluded with the propositions which will be
shown below.

With definitions of derivation, leftmost
(rightmost) derivation and language for RCFG,
we can define a notion of ambiguity for RCFG,
similarly to CFG.

Definition 3.8 (Ambiguity)
For given RCFG G, if there is a word in L(G),
for which there are at least two distinct leftmost
(rightmost) derivation sequences, G is called
ambiguous grammar, or simply ambiguous.

Example 3.9 (Tricky)
Here, an example which provides a reflective
feature of RCFG is given. Consider RCFG

G2 = (V, T, M, D, Aug, f, P, s), where
V = {s, p, A},
T = {[, >, ], s, p, a, b},

M = {p, s}
D = {s},

Aug = {p},
f(p) = p, f(s) = s,

P = {p → [s > A],
A → p | a A | A a | b A | A b}.

Initial production rule set P does not contain
any rule for start variable s. Thus, in the sense
of CFG, all rules contained in initial production
rule set P are nullable. However, this grammar
states a language,

L(G2) = {u[s > upv]v | u, v ∈ {a, b}∗}.
How can we guess so? See the definition of
derivation for RCFG (Definition 3.3) again. On
case 1), i.e., the ordinal case, derivation on a
syntactic variable A is defined with a produc-
tion rule A → X1 · · ·Xn contained in a produc-
tion rule set Pn+1, while Pn+1 is fixed during
derivations on X1, . . . , Xn. Is it circular defini-
tion, which leads to a contradiction? Actually,
it leads to no contradiction. Now, we observe a
derivation sequence reaches to a string ‘[s >p]’.
From the initial AF (s, P, P ′, u), there are pos-
sibly infinite candidates of AF sequences as a
result of derivation by one step,

(s, P, P ′, u) ⇒ (X1, P, P1, u1)
· · · (Xn, Pn−1, Pn, un).

However, because s �∈ Aug, (X1, P, P1, u1)
· · · (Xn, Pn−1, Pn, un) and s → X1 · · ·Xn

must satisfy the constraints given in the case
1) of Definition 3.3. One of the constraints is
s → X1 · · ·Xn ∈ Pn+1 that is not in P . Hence,
there must exist at least one AF sequence de-
rived from (X1, P, P1, u1) · · · (Xn, Pn−1, Pn,
un), which contains an AF for p. There is one
choice ‘p’ for X1 · · ·Xn among infinite, possibly
useless, candidates. As a hindsight, this choice
leads to a success on the derivation, because
from the AF for p, an AF sequence for a string
‘[s > p]’ is derived, and a new production rule
s → p is augmented to current production rule
set P .

Next example is for Operator Declaration
Problem, in which a way to give a grammar
enables user to declare new operators is illus-
trated. In this example, the grammar illus-
trated is ambigous in order to reduce descrip-
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tions.
Example 3.10 (Operator declaration)

Consider RCFG G3 = (V, T, M, D, Aug, f, P,
s), where

V = {s, p,DefList, Pat, Pat1, Exp, Id},
T = {[, >, ], Exp, a, b, . . . , z, +, ∗},

M = D = {Exp},
Aug = {p},

f(Exp) = Exp,

P = {s → DefList Exp,
DefList → ε,
DefList → pDefList,
p → [Exp > Pat],
Pat → ExpPat1 | Pat1,

Pat1 → IdExp | IdExpPat1,

Exp → Id | Exp + Exp | Exp ∗ Exp,

Id → a | b | · · · | z

| a Id | b Id | · · · | z Id}.
G3 is ambiguous on production rules concerning
to variable Exp.
We illustrate a derivation sequence for a string
“[Exp > exponential Exp of Exp] a +
exponential b of c”. We start with AF
(s, P, P ′, u) for some appropriate P ′ and u.

(s, P, P ′, u)
⇒ (DefListExp, P, P ′, u)
⇒ (p, P, P1, u1)(DefList, P1, P2, u2)

(Exp, P2, P
′, u3)

⇒ (p, P, P1, u1)(ε, P1, P2, u2)(Exp, P2, P
′, u3)

(at this point, it becomes clear that P1 = P2,
u2 = ε. AFs with ε string are omitted from
now on,)
⇒ ([Exp > Pat], P, P1, u1)(Exp, P2, P

′, u3)
∗⇒ ([Exp > exponentialExp ofExp], P, P1, u1)

(Exp, P2, P
′, u3)

(at this point, it becomes clear that P1 = P2 =
P∪{Exp → exponentialExp ofExp}, and u1 =
“[ Exp > exponential Exp of Exp]”,)
⇒ (u1, P, P1, u1)(Exp + Exp, P2, P

′, u3)
∗⇒ (u1, P, P1, u1)(a + Exp, P2, P

′, u3)
⇒ (u1, P, P1, u1)

(a + exponential Exp ofExp, P2, P
′, u3)

(this derivation is enabled, because a produc-
tion rule Exp → exponential Exp of Exp is in
P2, which was augmented above derivation,)
∗⇒ (u1 u3, P, P ′, u1 u3),

where u3 = “a + exponential b of c”.

3.4 Discussions on Derivation
During derivations,
• on CFG, arbitrary finite production rules

initially given are used,
• on two-level grammar 13), arbitrary pro-

duction rules among possibly infinite pro-
duction rules that are initially given are
used.

Comparing with these grammars, during
derivations,
• on RCFG, arbitrary finite production rules

among potentially infinite production rules
are used. But usable production rules are
initially given in initial production rule set,
or appear as embedded portions in text
that is being produced with this derivation
itself.

The essential point of RCFG is the mech-
anism to choose finite production rules that
are usable in a derivation sequence, from po-
tentially infinite production rules that are able
to be induced from initial production rule set.
From this point of view, we may be able to
see that RCFG stands on between CFG and
two-level grammar. In fact, production rules
such as p → α, p ∈ Aug can be seen as meta-
level production rules, because such a produc-
tion rule would produces new production rules.
However, this observation is not exact. Con-
sidering an RCFG in which a terminal p ∈ D
such that f(p) ∈ Aug, such an RCFG can-
not be called two level, because a meta-level
production rule can produce meta-level produc-
tion rules via text that is an object-level matter!
This is the reason why we call the framework
proposed in this paper ‘Reflective’.

The definition of derivation on RCFG resem-
bles the derivation on ECF Grammar 15), which
can be also seen as a peculiar variety of pro-
grammed grammar 5). However, our approach
is different essentially to these grammars. Most
significant point of derivation on RCFG is to
take in the mechanism of augmentation of new
production rules into the definition of deriva-
tion directly. To do so, we gain a kind of gen-
erality on derivation. For example, if the con-
dition A → X1 . . .Xn ∈ P ′

1 on ordinary case
is replaced with A → X1 . . .Xn ∈ P , then any
embedded portions do not affect on any deriva-
tions. Therefore, with this replacement, the
language class of RCFG becomes identical to
CFL. If the condition A → X1 . . .Xn ∈ P ′

1 on
ordinary case is replaced with A → X1 . . .Xn ∈
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P ′
2 and p → [X0 >X1 . . . Xn] ∈ P ′

1 on reflective
case is replaced with p → [X0 > X1 . . . Xn] ∈
P ′

2, then any embedded portions can affect on
any points of derivations.

Words that are derived via derivation se-
quences including reflective cases must contain
at least one embedded portion. Therefore, such
words must contain special symbols ‘[’, ‘ >’
and ‘]’. These special symbols are foreign sub-
stances for language theoretical interests. To
eliminate ‘[’ and ‘ >’ from text by changing the
definition of derivation, there is an easy way to
employ more complicated interpretation func-
tion which translates embedded portions to pro-
duction rules, instead of the simple interpreta-
tion function f which we adopt. If we adopt
such a complicated function for the interpreta-
tion function, the functionality of the function
essentially affects language class. Because one
of our main interests is to clarify the mecha-
nism of self-extensibility on language systems,
we adopt the simple interpretation function f .

Because all augmentations of production
rules occur on augmented forms for ‘]’, the sym-
bol ‘]’ has substantial role on our framework. It
is not impossible to eliminate the special sym-
bol ‘]’. However, there needs some sacrifices, as
long as keeping the framework of our derivation
definition. The sacrifices are Proposition 4.2
and Theorem 4.7 stated in the next section.

Practically, using pre-processor, special sym-
bols ‘[’, ‘ >’ and ‘]’ can be hidden.

4. Some Properties on RCFG

Following arguments are basic properties on
RCFG. Proposition 4.1 to 4.4 and 4.6 are used
to establish soundness of Algorithm 5.2, The-
orem 4.7 is used in the discussion on the effi-
ciency of parsing algorithm, and Theorem 4.15
gives a basis for the proof of completeness of
Algorithm 5.2. From these properties, it is able
to see that RCFG is quite an extension of CFG,
and the formalism is free from procedural argu-
ments.

Proposition 4.1
If (α, P1, P2, w) ∗⇒ (β, P ′

1, P
′
2, w

′) then P1 = P ′
1,

P2 = P ′
2.

Proposition 4.2
If (A, P1, P2, w) ∗⇒ (α, P1, P

′
1, w

′)(β, P ′
2, P2, w

′′)
then P ′

1 = P ′
2, ∀A ∈ V .

Proposition 4.3
If (α, P1, P2, w) ∗⇒ (β, P ′

1, P ′
2, w′) then w = w′.

Proposition 4.4

If (α, P1, P2, w) ∗⇒ (u, P ′
1, P ′

2, w′) then u = w
= w′.
(proof) These four propositions are proved by
induction on length of derivations. //

Corollary 4.5
If (A, P1, P2, w) ∗⇒ (u, P ′

1, P ′
2, w′) for A ∈ V

and u ∈ T∗ then P1 = P ′
1, P2 = P ′

2, u = w =
w′.

Proposition 4.6
If (A, P1, P2, w) ∗⇒ (α, P1, P ′

1, w′) (β, P ′
1, P2,

w′′) ∗⇒ (w, P1, P2, w) then P1 ⊆ P ′
1 ⊆ P2, for

any A ∈ V . Moreover, if P1 is properly included
by P2, w contains at least one embedded por-
tion.
(proof) By induction on length of derivations.
//

Theorem 4.7
If (A, P1, P2, u) ∗⇒ (u, P1, P2, u), then u is also
a word of the language of CFG G = (V, T, P2,
A).
(proof) For any step of derivations of (A, P1,
P2, u) ∗⇒ (u, P1, P2, u), it is easy to see that if
(α, P1, P2, u) ⇒ (β, P1, P2, u) on RCFG holds,
α ⇒ β on CFG G holds, by Proposition 4.6. //

Because the contents of following two theo-
rems are identical to those in Ref. 10), pre-
cise descriptions are omitted here. To com-
pare language classes between RCFG and CSG
(Context-Sensitive Grammars), we need a no-
tion ε-free. An ε-free RCFG means in same
sense of CFG, which does not contain any pro-
duction rules that produce ε, and moreover,
does not augment any new production rules
which have ε on right-hand side.

Theorem 4.8
The language class of RCFG properly includes
the language class of CFG.
(proof) Considering a case that Aug = φ in
given RCFG G, there is no reflective case on any
derivations. Therefore, from Proposition 4.6
and Theorem 4.7, the language of G is identical
to the language of CFG (V, T, P, s).//

Lemma 4.9 (Folding)
For any given RCFG G, L(G) is preserved after
replacing a rule A → αX1X2β with a new rules
A → αHβ and H → X1X2, if X1 �= [ and
X2 �= ], where H is a newly added syntactic
variable �∈ Aug.
(proof) It is almost identical to the discussion
on CFG 8). //

Lemma 4.10 (Elimination of ε-rule)
For any given RCFG which language does not
contain ε(ε-free), there exists a RCFG G′ which
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rule contains no ε-rule, and which language is
identical to that of G.
(proof) It is almost identical to the discussion
on CFG 8). //

Lemma 4.11 (Normal Form of RCFG)
For any given ε-free RCFG G, there exists a
RCFG G′ which language is identical to that of
G′, and moreover, of which each rule forms one
of following three cases,
( 1 ) A → a, where A ∈ V and a ∈ T
( 2 ) A → B C, where A, B, C ∈ V
( 3 ) p → [B1 > B2], where p ∈ Aug and B1,

B2 ∈ V
(proof) Same as the discussion on CFG 8). //

Theorem 4.12 The language class of ε-free
RCFG is properly included by that of CSG.
(proof) First, we sketch a construction strategy
of CSG G′ which language is identical to given
ε-free RCFG G which has Normal Form.
1) All production rules of G with some trans-

lations are contained in G′. Production
rules are translated so as that i) G is trans-
lated to Normal Form, and ii) all rules
that form p → [B1 > B2] are translated
to p → [pB1 > B2]p, where p ∈ Aug,
and [p and ]p are newly introduced syntac-
tic variables to complete coping embedded
portions in 2) and 3). With these syntactic
variables, production rules [p →[ and ]p →]
are introduced for each p ∈ Aug.

2) G′ has production rules for seeking an em-
bedded portion positioning in left of focus-
ing position, and then replace a syntactic
variable due to found embedded portion.

3) For a case of derivations such that a
production rule used first in a deriva-
tion (X, P, P ′, w) ⇒ (α, P, P ′, w) ∗⇒
(α′, P, P ′, w) is augmented during this
derivation sequence, a new syntactic vari-
able Ex is introduced for each X ∈ f(D).
According to the introduction, new syntac-
tic variable ex and production rules ex →
tx and X → Ex are introduced, where
f(tx) = Ex. And also, resemblance pro-
duction rules which are almost identical to
the rules of 1) are introduced so as to pro-
duce ex instead of tx, and new produc-
tion rule Ex → px is introduced for each
p ∈ Aug and px is resemblance to p. Any
derivations from Ex never complete until
produce [pxex > αp

x
β]px. Once produce

[pxex > αp
x
β]px, α is copied into left of

[px and β into right of ]px.

On constructed CSG G′, production sequences
of RCFG G are emulated non-deterministically
due to above three cases.
Note: we must be careful that the rule Ex→
px might be nullable and [px . . .]px might be
nested.

We finish this theorem with a tedious exam-
ple which is contained in CSL, but in RCFL,
i.e., {w[A > w] | w ∈ (T \ {[, ]})∗}. //

Finally, we will guess on leftmost derivation
and rightmost derivation. It is trivial from
the definition of leftmost (rightmost) derivation
that if there is a leftmost (rightmost) derivation
sequence, we can consider the derivation se-
quence is merely a derivation of RCFG. Follow-
ing propositions argue that if there is a deriva-
tion sequence, there exists a leftmost (right-
most) derivation sequence.

Lemma 4.13 If there is a derivation se-
quence

(α, P0, P1, w1)(β, P1, P2, w2)(γ, P2, P3, w3)
∗⇒ (α′, P0, P1, w1)(β′, P1, P2, w2)

(γ′, P2, P3, w3),
then there exists a derivation

(β, P1, P2, w2)
∗⇒ (β′, P1, P2, w2).

(proof) By induction on length of derivations.//
Lemma 4.14 If there are derivation se-

quences,

(α, P0, P1, w1)
∗⇒ (α′, P0, P1, w1),

(β, P1, P2, w2)
∗⇒ (β′, P1, P2, w2),

then there exists a derivation sequence, such as,
(α, P0, P1, w1)(β, P1, P2, w2)
∗⇒ (α′, P0, P1, w1)(β′, P1, P2, w2).

(proof) Straightforward from the definition of
derivation.//

Theorem 4.15 If there is a derivation se-
quence

(α, P0, P1, w) ∗⇒ (w, P0, P1, w),

then there exists a leftmost derivation sequence,
such as,

(α, P0, P1, w) ∗⇒L (w, P0, P1, w),

and also, there exists a rightmost derivation se-
quence, such as,

(α, P0, P1, w) ∗⇒R (w, P0, P1, w).

(proof) By induction on length of AF sequences
and length of derivations on them.//
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5. General Parsing Algorithm for
RCFG

The parsing algorithm is grounded on the ar-
guments of Proposition 4.2 and Corollary 4.5.
The difference between this algorithm and orig-
inal Earley’s parsing algorithm is mostly on
items.

5.1 Algorithm
We must firstly note that in the formalism of

RCFG, “self-definitions” of any embedded por-
tions are not enabled. The important point is ‘[’
and ‘]’ present directly on the right-hand side
of production rules on p ∈ Aug. To define
self-definition on a variable p, any embedded
portion for the purpose must form “[p > α]”
for some string α, and α must be equal to the
whole string. Thus, to define self-definition in
RCFG formalism, it is need an infinite length
string.

Definition 5.1 (item for parsing)
An item is given as 5-tuple (Rule, Scanned,
Rest, Pre-Rules, Augmented-Rules), each el-
ements are as following; Rule is a production
rule which might be used to produce input text.
We assume that Rule forms A → αβ, where
A ∈ V and α, β ∈ (V ∪ T )∗. Scanned is
a left portion of right-hand side of Rule, i.e.,
equal to α, which denotes a portion in input
text consumed during parsing so far. Rest
is a right portion of right-hand side of Rule,
i.e., equal to β, which would be scanned from
now on. Pre-Rules denotes a finite set of
production rules, which is ascertained at the
time when the item arises in use on parsing.
Augmented-Rules denotes a finite set of pro-
duction rules, which might be augmented with
rules associated with embedded portions ap-
peared so far. We also adopt ‘dot notation’
to represent items. For example (A → α • β,
R1, R2) is identical to (A → αβ, α, β, R1,
R2). From now on, items are represented with
3-tuples.

Algorithm 5.2
When an RCFG G = (V, T, M, D, Aug, f, P, s)
and n-length input text a1 · · · an are given,
parse lists I(0, 0), . . . , I(i, j), . . . , I(n, n)(0 ≤
i ≤ j ≤ n) are calculated during parsing,
where I(i, j) consists of items. If an item
(X → α • β, R1, R2) is in a parse list I(i, j),
a portion of input string ai+1ai+2 . . . aj would
be derived from α that is the left of dot in
the first argument of the item. And moreover,
during derivations from α, production rule set

R1 would be augmented with some production
rules. The result of the augmentation would be
R2. Additionally, finite sets of production rules
P0, . . . , Pn are constructed, where Pi holds a
maximum set of production rules possible at
the point of i-th input character.
Initial phase:
1) initialize all of P0, . . . , Pn to P ,
2) initialize all of I(i, j) to φ,
3) Add (X → •α, P, P ) to I(i, i), for each

X → α ∈ P and each i = 0, . . . , n,
Main Loop:
repeat 4), 5), 6), 7) until no new 3-tuple
is added to any I(i, j)
4) if (X → α•aβ, R1, R2) ∈ I(i, j) and aj+1 =

a, and moreover X �∈ Aug or β �= ε, then
add (X → αa • β, R1, R2) to I(i, j + 1),

5) if (X → [α • ], R1, R2) ∈ I(i, j), aj+1 = ],
X ∈ Aug and f(ai+2 . . . aj) has valid
form, then add (X → [α]•, R1, R2 ∪
{f(ai+2 . . . aj)}) to I(i, j + 1),

6) if (Y → γ•, R2, R3) ∈ I(j, k) and Y →
γ ∈ R3 and (X → α • Y β, R1, R2) ∈ I(i, j)
for some 0 ≤ i ≤ j ≤ k ≤ n, then add
(X → αY • β, R1, R3) to I(i, k),

7) if (p → α•, R1, R2) ∈ I(i, j) and p ∈ Aug
and p → α ∈ R2 and [w] = ai+1 · · · aj and
f(w) has valid form, then let Z → γ =
f(w), add Z → γ to Pj , . . . , Pn and then
add (Y → •β, P ′, P ′) to I(k, k) for each
k = 0, . . . , n, each Y → β ∈ Pj and each
P ′ s.t. P0 ⊆ P ′ ⊆ Pk

Judgement:
8) if (s → α•, P, P ′) ∈ I(0, n) and s → α ∈ P ′

for some set of production rules P ′, then
accept input, else reject input.

Note: On operation 7), only one kind of items
(Z → •γ, P ′, P ′) is newly added to I(k, k) for
each k = 0, . . . , j − 1, where Z → γ is aug-
mented production rule at that point. On op-
eration 8), there are valid cases that P ′ �= Pn.
On those cases, some actions on 5) and 7) have
occurred, but some of them would not be used
in effective derivations.

Figure 1 illustrates a parsing process for in-
put [ s > p ] and the grammar G2 given in Ex-
ample 3.9. Figure 1 is the snapshot at the point
when production rule s → p is augmented,
which is caused by the embedded portion [ s >
p ]. In the figure, items which do not concern to
the acceptance of the input are omitted. From
the item (A → •p, P, P ) in parse list I(3, 3),
which is added by operation 3) in initial phase,
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Fig. 1 Parse lists at augmentation of s → p.

an item (A → p•,P, P ) is added to I(3, 4) by
operation 4). Also, items (p → [ • s > A], P,
P ), · · ·, (p → [s > A • ], P, P ) are successively
added to parse list I(0, 1),· · ·,I(0, 4), from item
(p → •[s > A], P, P ) in I(0, 0) by operation
4), and finally an item (p → [s > A]•, P, P ′)
is added to I(0, 5) by operation 5), where P ′ =
P ∪ {s → p}. This operation 5) causes oper-
ation 7) and an augmentation of a production
rule s → p to P5, and moreover, the addition of
an item (s → •p, P, P ) to I(0, 0). Finally, from
this item and the item included in I(0, 5), we
obtain an item (s → p•, P, P ′) in I(0, 5) by op-
eration 6), and conclude the input is accepted
by judgement 8).

5.2 Soundness and Completeness
Lemma 5.3 If (A → α • β, R1, R2) ∈

I(i, j), then a derivation relation (A, R1, R′,
u) ∗⇒ (ai+1 . . . aj , R1, R2, ai+1 . . . aj) (β, R2,
R′, u′) holds.
(proof) By induction on times of actions 4), 5)
and 6) to obtain the element (A → α • β, R1,
R2) ∈ I(i, j). On the case of i = j, i.e the case
| α | = 0, the proposition holds vacuously. We
assume that α = α′X.

On the case X ∈ T and A �∈ Aug or β �= ε of
operation 4), it is easy to see that the proposi-
tion is true, from the induction hypothesis.

On the case X = ] and A ∈ Aug and more-
over f(ai+2 . . . aj−1) has valid form of produc-
tion rule. This case concerns to the operation
5) of the algorithm. On this case, we must
be careful on the augmentation of a new pro-

duction rule. From the definition of the algo-
rithm of operation 5), (A → α′ • ]β, R1, R′

2)
must be involved in I(i, j − 1), for appropri-
ate R′

2. Using induction hypothesis, there is a
derivation (A, R1, R′, u) ∗⇒ (ai+1 . . . aj−1, R1,
R′

2, ai+1 . . . aj−1) (], R′
2, R2, ]) (β, R2, R′, u′′)

and R2 must equal to R′
2 ∪ {f(ai+2 . . . aj−1)}.

This derivation is also a candidate of deriva-
tions which concerns to the element (A → α•β,
R1, R2). So, on this case, induction hypothesis
also holds.

On the case X ∈ V of operation 6), it is also
easy to see that the proposition holds, from the
induction hypothesis.//

Theorem 5.4 (Soundness) If w is ac-
cepted by the algorithm, then w is a word of
given RCFG G.

To establish completeness of the algorithm,
we restrict derivations to leftmost ones.

Lemma 5.5 Suppose there exists a left-
most derivation (γ1, P, R1, u1) (A, R1, R3,
w1w2) (γ2, R3, P ′, u2)

∗⇒ (u1, P, R1, u1) (A,
R1, R3, w1w2) (γ2, R3, P ′, u2) ⇒ (u1, P, R1,
u1) (α, R1, R2, w1) (β, R2, R3, w2) (γ2, R3, P ′,
u2)

∗⇒ (u1, P, R1, u1)(w1, R1, R2, w1) (w2, R2,
R3, w2) (γ2, R3, P ′, u2). Then for some input
a = u1w1w2u2, an element (A → α•β, R′

1, R2)
is in I(| u1 |, | u1 | + | w1 |).
(proof) By induction on pair of length of deriva-
tions and frequency of augmentation of pro-
duction rules. In following, (l, m) denotes the
case of l-length derivation sequence which in-
cludes or assumes m times augmentations of
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new rules. There is partial order between (l, m)
and (l′, m′), (l, m) < (l′, m′) iff m < m′ or m
= m′ and l < l′. In the following descriptions,
we use concatenation on derivations implicitly.
The supposition of leftmost derivation is needed
to hold the induction hypothesis, mostly on fre-
quencies of augmentations.

Vacuous cases are that for any production
rules X → α in initial production rule set P ,
(X → •α, P, P ) is in I(k, k), for each k = 0,
. . .n, each of which corresponds to 1-length
derivation,

(X, P, R3, w2) ⇒ (α, P, R3, w2)
for some appropriate R3 and w2. Using oper-
ation 4) from this vacuous cases, it is easy to
see that items such as (X → v • α′, P, P ) are
included in appropriate item lists, where α =
vα′, v ∈ T∗, excepting the case X ∈ Aug and
α = v]. Thus, the induction hypothesis on the
induction case (l, m) = (1, 0) holds.

Suppose that as a reflective case of derivation,
there is a derivation (p, R1, R3, [w2]) ⇒ ([, R1,
R1, ]) (β, R1, R2, w2) (], R2, R3, ]) ∗⇒ ([, R1,
R1, ]) (w2, R1, R2, w2) (], R2, R3, ]) on the case
that p ∈ Aug and f(w2) has valid form for a
production rule. We assume that the derivation
sequence from (β, R1, R2, w2) to (w2, R1, R2,
w2) is under the induction case (l2, m2). From
the induction hypothesis and from the fact that
p → [β] ∈ R3 by the constraint of derivation,
items (p → •[β], R1, R1), . . ., (p → [β • ], R1,
R2) are in appropriate item lists as the induc-
tion cases (1, m2) to (l2 + 1, m2), respectively.
By operation 5), an item (p → [β]•, R1, R3) is
added to appropriate item list as the induction
case (l2+1, m2+1), where R3 = R2 ∪ {f(w2)},
and induction proceeds. And moreover, items
(Z → •γ, R′, R′) and (X → •α, R3, R3) are
added to appropriate item list by operation 7)
as the induction case (1, m2 + 1), where Z → γ
= f(w2), P ⊆ R′ ⊆ Pk and X → α ∈ Pk for
corresponding k.

It is easy to see that on the ordinal derivation
cases, the induction hypothesis holds.//

Theorem 5.6 (Completeness) If w is a
word of given RCFG G, then w is accepted by
the algorithm.

5.3 Discussion on Complexity
If we ignore costs of seeking a production rule,

which are done at 6), and costs of matching be-
tween sets of production rules, which are done
at 6) and 7), and also if no new rules are added,
from Theorem 4.7, whole cost of parsing is sim-

ilar to Earley’s parsing algorithm 7). Because
the cost of seeking or matching of production
rules can be assumed to constant on operation
6), and number of items which would be con-
tained in

⋃
i,j I(i, j) at the end of the algorithm

is proportional to n2 on worst case, we can con-
clude that the complexity of the algorithm is
O(n3).

If embedded portions are contained in input
texts, where the number of embedded portions
is denoted by m, the number of items contained
in

⋃
i,j I(i, j) is roughly 2m times of above case,

which is caused by the condition P0 ⊆ P ′ ⊆ Pk

in 7). Thus, roughly the complexity on worst
case in which m embedded portions are con-
tained is O(n32cm), where c is a constant. The
worst case is caused by the deal of embedded
portions which are derived from syntactic vari-
ables other than of Aug. If we can suppose
that given grammar is not ambiguous, and any
strings derived from the grammar never con-
tains sub-strings [α] which does not cause aug-
mentation of production rules, we can acceler-
ate the algorithm so as to change the condition
P0 ⊆ P ′ ⊆ Pk in operation 7) to P ′ = Pk. On
such acceleration, the worst case is O(n × n2

× m2) = O(n3m2) (⊂ O(n5)).

6. Conclusion

We formalize a formal language system
RCFG, which deals with texts including aug-
mentations of parts of grammar rules, show
RCFG has good properties, give a general pars-
ing algorithm and show soundness and com-
pleteness of the algorithm. We consider that
RCFG will be a helpful base model for system
programmers to construct self-referential sys-
tems or to use it as a rapidly prototyping sys-
tem, because of the simple and natural feature
of RCFG.
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