
Vol. 44 No. 8 IPSJ Journal Aug. 2003

Regular Paper

Bridging Physical and Virtual Worlds with Mobile Agents

Ichiro Satoh†,††

This paper presents a general-purpose framework for building and managing location-aware
applications in ubiquitous computing settings. The goal of the framework is to provide people,
places, and things with computational functionalities to support and annotate them. Using
location-tracking systems such as RF (radio-frequency) or IR (infrared)-based sensors, the
framework can navigate Java-based mobile agents to stationary or mobile computers near the
locations of the entities and places to which the agents are attached, even when these locations
change. It allows a mobile user to access personalized services available from computing
devices in the environment, and provides location-dependent services to portable computing
devices. The paper presents basic concepts of the framework and describes its prototype
implementation and several practical applications, including follow-me applications and a
navigational assistance system.

1. Introduction

As envisioned by Weiser 21), the goal of ubiq-
uitous computing is to enhance computer use by
making multiple computers available through-
out the physical environment, but, in effect,
making them invisible to the user. When ar-
ticulated, this might seem exotic and unrealis-
tic, but after a decade of progress in hardware
we now have many clues as to how to make
this vision a reality. Computers interconnected
through wired or wireless networks are present
in almost every room of a modern office and
are rapidly invading our homes. Another im-
portant characteristic of ubiquitous computing
is that it integrates the physical world with cy-
berspace. Perceptual technologies have made
it possible to measure and track the locations
of people, computers, and practically any other
object we care about. For example, indoor lo-
cation systems, such as radio frequency (RF)
or infrared (IR) identification tags, detect the
locations of physical entities in a building and
allow applications to respond to these loca-
tions. Positioning and tracking systems are
likely to become even more ubiquitous in the fu-
ture. Location-awareness is becoming an essen-
tial feature of software applications, especially
for applications targeted at ubiquitous and mo-
bile computing settings.

Several researchers have explored such
location-aware services. Existing services can
be classified into two approaches. The first is
to make the computing devices move with the

† National Institute of Informatics
†† Japan Science and Technology Corporation

user. It often assumes that such devices are
attached to positioning systems, such as GPS
receivers that enable them to determine their
own locations. For example, in HP’s Cooltown
project 6), mobile computing devices such as
PDAs and smart phones are attached to GPSs
to provide location-awareness to web-based ap-
plications running on the devices. The second
approach assumes that a space is equipped with
tracking systems which establish the location
of physical entities, including people and ob-
jects, within it so that application-specific ser-
vices can be provided at appropriate computers.
A typical example of this approach is the so-
called follow-me application, which was studied
by Cambridge University’s Sentient Computing
project 3), to support ubiquitous and personal-
ized services at computers located near users.

The two approaches are posed as polar op-
posites, although their final goals seem to co-
incide. This paper presents a framework for
integrating the two approaches, to mitigate the
disadvantages of one by juxtaposing them with
the advantages of the other. That is, the
framework does not distinguish between mo-
bile and stationary computing devices. It also
permits tracking sensors to be moved with the
user and dynamically added to and removed
from a space, because it dynamically creates
a world model when detecting the appearance
and movement of sensors, as well as physical
entities including people, objects, and comput-
ing devices. Moreover, it is unique among ex-
isting location-aware systems in using mobile
agent technology. It enables mobile agents to be
spatially bound to people, places, and things,
which the agents support and annotate. By

2218

Vol. 44 No. 8 Bridging Physical and Virtual Worlds with Mobile Agents 2219

using tracking systems, the framework dynami-
cally deploys, such agents at stationary and mo-
bile computing devices near the locations of the
entities and places to which the agents are at-
tached, even when the locations of the entities
change.

In the remainder of this paper, we describe
our design goals (Section 2), the design of our
framework, called SpatialAgent, and a proto-
type implementation of the framework (Section
3). We also discuss our experience with several
applications, which we used the framework to
develop (Section 4), and briefly review related
work (Section 5). We also briefly discuss some
future issues (Section 6) and provide a summary
(Section 7).

2. Approach

The framework presented in this paper aims
to enhance the capabilities of users, particu-
larly mobile users; things, including computing
devices and non-electronic objects; and places,
such as rooms, buildings and cities, by pro-
viding computational functionalities to support
and annotate them.

2.1 Application-specific Services
Various kinds of infrastructures have been

used to construct and manage location-aware
services. However, such infrastructures have
mostly focused either on a particular applica-
tion or on a specific sensor technology. By
separating application-specific services from in-
frastructures, our framework provides a gen-
eral infrastructure for location-aware services
and enables application-specific services to be
implemented within mobile agents. Since mo-
bile agents can travel between computers, the
framework can naturally map the movements of
physical entities such as people and objects to
the movements of mobile agents in mobile and
ubiquitous computing systems. Mobile agent
technology also has the following advantages in
ubiquitous computing settings.
• After arriving at its destination, a mobile

agent can continue working without los-
ing the results of work, such as the con-
tent of instance variables in the agent’s pro-
gram, at the source computers. Thus, the
technology enables follow-me applications
as proposed by Sentient Computing 3) to
be operated locally at the destination com-
puter without communication latency.

• Mobile and ubiquitous computers often
have only limited resources, such as re-

stricted CPU power and memory. Mobile
agents can help to conserve these limited
resources, since each agent only needs to
be present at the computer during the time
that the computer requires the services pro-
vided by that agent.

• Each mobile agent is locally executed on
the computing device it is visiting and
is able to directly access various items of
equipment belonging to that device, as long
as the security mechanisms of the device
permit this.

2.2 Location-sensing Systems
Our goal is to realize a location-aware sys-

tem in which spatial regions can be determined
within a few square feet, that distinguishes be-
tween one or more portions of a room or build-
ing. Existing location-aware applications are
typically tailored to a particular type of track-
ing or positioning technology. The framework
itself is designed to be as independent as pos-
sible of any particular tracking or positioning
technology, and is accompanied by one or more
locating systems. It determines the positions of
objects by identifying the spatial regions that
contain the objects. In general, such locating
systems consist of RF or IR sensors, which de-
tect the presence of small RF or IR transmit-
ters, often called tags, each of which periodi-
cally transmits a unique identifier. The frame-
work assumes that physical entities and places
are equipped with their own unique tags, and
are thus automatically locatable. Each mobile
agent can be tied to an radio-ID or infrared-ID
tag attached to a person, place, or thing in the
physical world.

2.3 Architecture
The framework consists of three parts:

(1) location information servers, called LISs,
(2) mobile agents, and (3) agent hosts. The first
part provides a layer of indirection between the
underlying locating sensing systems and mobile
agents. Each LIS manages more than one sen-
sor and provides the agents with up-to-date in-
formation on the identifiers of tags, which are
present in the specific places its sensors cover
instead of on tags in the whole space. The sec-
ond offers application-specific services, which
are attached to physical entities and places, as
collections of mobile agents. The third con-
sists of computing devices that can execute mo-
bile agent-based applications and issue specific
events to the agents running in them when loca-
tion sensors detect the movement of the physi-

2220 IPSJ Journal Aug. 2003

cal entities and places that the agents are bound
to. When an LIS detects the movement of a
tag, it tries to notify mobile agents attached
to tags about the network addresses and capa-
bilities of the candidate hosts that the agents
should visit. Each of the agents selects one host
from the list of candidates recommended by the
LIS and migrates to that host. When the ca-
pabilities of a candidate host do not satisfy all
the requirements of an agent, the agent itself
should decide, on the basis of its own config-
uration policy, whether or not it will migrate
itself to the destination and adapt itself to the
destination’s capabilities.

Our final goal is widespread building-wide
and city-wide deployment. It is almost impos-
sible to deploy and administer a system in a
scalable way when all of the control and man-
agement functions are centralized. LISs are in-
dividually connected to other servers in a peer-
to-peer manner and exchange information with
each other. LISs and agent hosts may be mo-
bile and frequently shut down. The framework
permits each LIS to run independently of the
other LISs, offers an automatic mechanism for
the registration of agent hosts and sensors. This
mechanism requires agent hosts and sensors to
be equipped with tags so that they are locat-
able and can advertise their capabilities. In the
framework, not only portable components but
also system components, such as sensors and
agent hosts, are movable. As a result, it is
almost impossible to maintain a geographical
model of the whole system. To solve this prob-
lem, the framework provides a demand-driven
mechanism to discover the agents and agent
hosts that are required.

2.4 Narrowing the Gap between Phys-
ical and Logical Mobilities

This framework can inform mobile agents at-
tached to tags about their appropriate destina-
tions according to the current positions of the
tags. It supports four types of linkages between
a physical entity such as a person, thing, or
place, and one or more mobile agents as shown
in Fig. 1.
• The first type of linkage assumes that a

moving entity carries more than one tagged
agent host and that a space contains a
place-bound tag and sensors. When the
sensor detects the presence of the tag that
is bound to one of the agent hosts, the
framework instructs the agents attached to
the tagged place to migrate to the visiting

Fig. 1 Four linkages between physical and logical
entities.

agent hosts to offer location-dependent ser-
vices of the place as shown in Fig. 1 (a).

• The second type of linkage assumes that
tagged agent hosts and sensors have been
allocated. When a tagged moving entity
enters the coverage area of one of the sen-

Vol. 44 No. 8 Bridging Physical and Virtual Worlds with Mobile Agents 2221

sors, the framework instructs the agents at-
tached to the entity to migrate to the agent
hosts within the same coverage area to offer
the entity-dependent services of the entity
as Fig. 1 (b) shows.

• The third type of linkage assumes that an
entity carries a sensor and more than one
agent host and that a space contains more
than one place-bound tag. When the entity
moves near a place-bound tag and the sen-
sor detects the presence of the tag within
its coverage area, the framework instructs
the agents attached to the tagged place to
migrate to the visiting agent hosts to of-
fer the location-dependent services of the
place, as shown in Fig. 1 (c).

• The fourth type of linkage assumes that an
entity carries a sensor and that a space con-
tains place-bound tags and tagged agent
hosts. When the entity moves in the
space and the sensor detects the presence
of an agent host’s tag within its coverage
area, the framework instructs the agents at-
tached to the moving entity to migrate to
the agent hosts within the same coverage
area to offer the entity-dependent services
of the entity, as shown in Fig. 1 (d).

The framework allows physical places to
have their own agents that support location-
dependent services. When a user with network-
enabled computing devices is in a given place,
the framework instructs the agents attached to
the place to migrate themselves to the visit-
ing devices, where they provide the location-
dependent services of the place.

Existing location-aware systems, such as Sen-
tient Computing 3), EasyLiving 1), Cooltown 6),
NEXUS 4), and user-tracking agents 18) can
support only one of the above linkages, whereas
our framework does not have to distinguish be-
tween the linkages and can synthesize them
seamlessly.

3. Design and Implementation

This section presents the design of the Spa-
tialAgent framework and describes a prototype
implementation of the framework. Figure 2
shows the basic structure of the framework.

3.1 Location Information Servers
All LISs can run on a stationary or mobile

computer and provide the following functional-
ity:

Management of Locating Sensors:
Each LIS manages more than one sensor that

Fig. 2 Architecture of the SpatialAgent framework.

detects the presence of tags, and maintains up-
to-date information on the identities of those
that are within the zone of coverage by means
of its sensors. This is achieved by polling the
sensors or receiving events issued of the sensors
themselves. An LIS does not require any knowl-
edge of other LISs, but they need to be able
to exchange their information with each other
through multicast communication. To hide the
differences between the underlying locating sys-
tems, each LIS maps low-level positional infor-
mation from each of these to information in
a symbolic model of location. An LIS repre-
sents an entity’s location in symbolic terms of
the unique identifier of the sensor that detects
the entity’s tag. We call each sensor’s coverage
a cell, as in the model of location studied by
several other researchers 8). In the framework,
multiple sensors do not have to be neatly dis-
tributed in a space such as rooms or buildings
to completely cover the spaces; instead, they
can be placed near more than one agent host,
and the coverage of sensors can overlap.

Mechanism for Agent Discovery:
Since mobile agents can travel through a

network under their own control, LISs cannot
always know the current locations of mobile
agents. When LISs detect changes in the physi-
cal world, they inform each agent about the net-
work address and the capabilities of more than
one candidate destination that the agent should
visit, but they never send the agent to the desti-
nation. Moreover, when the capabilities of such
a destination do not satisfy the requirements of
an agent, the agent itself should decide whether
or not to migrate itself to the destination and
adapt itself to the limited capabilities according
to its own configuration policy.

Each LIS is responsible for discovering mo-
bile agents bound to the tags within its cells.
It maintains a database in which it stores infor-
mation about each of the agent hosts and each
of the mobile agents attached to a tagged entity

2222 IPSJ Journal Aug. 2003

Fig. 3 Agent discovery and deployment.

or place. When an LIS detects a new tag in a
cell, the LIS multicasts a query that contains
the identity of the new tag and its own network
address to all of the agent hosts in its current
sub-network. It then waits for reply messages
from the agent hosts. Here, there are two pos-
sible cases: it may be attached to an agent host
or the tag may be attached to a person, place,
or thing other than an agent host.
• In the first case, the newly arriving agent

host will send its network address and de-
vice profile to the LIS; the profile describes
the capabilities of the agent host, e.g., its
input devices and screen size. After receiv-
ing this reply, the LIS stores the profile in
its database and forwards the profile to all
agent hosts within the cell.

• In the second case, agent hosts that have
agents tied to the tag will send their net-
work addresses and the requirements of ac-
ceptable agents to the LIS; the require-
ments for each agent specify the capabil-
ities of the agent hosts that the agent can
visit and perform its services at.

The LIS then stores the requirements of the
agents in its database and moves the agents to
appropriate agent hosts in the way discussed
below. If the LIS does not have any reply mes-
sages from the agent hosts, it multicasts a query
message to other LISs. When the absence of a
tag is detected in a cell, each LIS multicasts a
message with the identifier of the tag and the
identifier of the cell to all agent hosts in its cur-
rent sub-network. Figure 3 shows a sequence
for migrating an agent to a proper host when
an LIS detects the presence of a new tag.

Agent Navigation:
We will explain how agents navigate to reach

appropriate agent hosts. When an LIS detects
the movement of a tag attached to a person or
thing to a cell, it searches its database for agent
hosts that are present in the current cell of the

tag. It also selects candidate destinations from
the set of agent hosts within the cell, accord-
ing to the respective capabilities. The frame-
work offers a language based on CC/PP (com-
posite capability/preference profiles) 22). The
language is used to describe the capabilities
of agent hosts and the requirements of mobile
agents in an XML notation. For example, a de-
scription contains information on the following
properties of a computing device: the vendor
and model class of the device (i.e., PC, PDA,
or phone), its screen size, number of colors,
CPU, memory, input devices, secondary stor-
age, and the presence/absence of loudspeakers.
The framework also allows each agent to specify
the preferable capabilities of agent hosts that it
may visit, as well as the minimal capabilities in
a CC/PP-based notation. Each LIS is able to
determine whether or not the device profile of
each agent host satisfies the requirements of an
agent by symbolically matching and quantita-
tively comparing properties.

The LIS then unicasts a navigation message
to each of the agents that are bound to the
tagged entities or places, where the message
specifies the profiles of those agent hosts that
are present in the cell and satisfy the require-
ments of the agent. The agents are then able
to autonomously migrate to the appropriate
hosts. When there are multiple candidate des-
tinations, each of the agents that is tied to a
tag must select one destination on the basis of
the profiles of the destinations. When one or
more cells geographically overlap, a tag may be
in multiple cells at the same time; agents tied
to that tag may then receive candidate destina-
tions from multiple LISs. However, since the
message includes the network address of the
LIS, the agents can explicitly ask the LIS about
the ranges of the cells.☆ Our goal is to provide
physical entities and places with computational
functionality from locations near them. There-
fore, if there are no appropriate agent hosts in
any of the cells at which a tag is present but
there are some agent hosts in other cells, the
current implementation of our framework is not
intended to move agents tied to the tag to hosts
in different cells.

☆ The current implementation can specify the contain-
ment of tagged entities or spaces in a cell, but not
the spatial distance between them. Other proper-
ties of sensors, such as precision and directionality,
are not specified because they depend on the envi-
ronment.

Vol. 44 No. 8 Bridging Physical and Virtual Worlds with Mobile Agents 2223

3.2 Agent Host
Each agent host must be equipped with a tag.

It has two forms of functionality: one for adver-
tising its capabilities and another for executing
and migrating mobile agents. When a host re-
ceives a query message with the identifier of a
newly arriving tag from an LIS, it replies with
one of the following three responses: (i) if the
identifier in the message is identical to the iden-
tifier of the tag to which it is attached, it re-
turns profile information on its capabilities to
the LIS; (ii) if one of the agents running on it
is tied to the tag, it returns its network address
and the requirements of the agent; and (iii) if
neither of the above cases applies, it ignores the
message.☆

This framework is currently implemented on
a Java-based mobile agent system called Mo-
bileSpaces 13).☆☆ Each MobileSpaces runtime
system is built on the Java virtual machine,
which conceals differences between the platform
architecture of source and destination hosts,
such as the operating system and hardware.
Each of the runtime systems moves agents to
other agent hosts over a TCP/IP connection.
The runtime system governs all the agents in-
side it and maintains the life-cycle state of each
agent. When the life-cycle state of an agent
changes for example, when it is created, termi-
nates, or migrates to another host the runtime
system issues specific events to the agent. This
is because the agent may have to acquire or re-
lease various resources, such as files, windows,
or sockets, which it had previously captured.
When a notification on the presence or absence
of a tag is received from a LIS, the runtime sys-
tem dispatches specific events to the agents tied
to that tag and run inside it.

3.3 Mobile Agent Program
Each mobile agent is a collection of Java ob-

jects and is equipped with the identifier of the
tag to which it is attached. It is a self-contained
program and is able to communicate with other
agents. An agent that is attached to a user al-
ways internally maintains that user’s personal
information and carries all its internal informa-
tion to other hosts. A mobile agent may also

☆ The current implementation assumes that LISs and
agent hosts can be directly connected through a
wireless LAN such as IEEE802.11b, and thus does
not support any multiple-hop query mechanisms.

☆☆ The framework itself is independent of the Mo-
bileSpaces mobile agent system and can thus work
with other Java-based mobile agent systems.

have one or more graphical user interfaces for
interaction with its users. When such an agent
moves to other hosts, it can easily adjust its
windows to the screen of the new host by us-
ing the compound document framework for the
MobileSpaces system that was presented in our
previous paper 14). We will next explain the
programming interface for our mobile agents.
Every agent program must be an instance of a
subclass of the abstract class TaggedAgent, as
follows:

class TaggedAgent extends Agent
implements Serializable {
void go(URL url) throws

NoSuchHostException { ... }
void duplicate() throws

IllegalAccessException { ... }
void destroy() { ... }
void setTagIdentifier(TagIdentifier tid) { ... }
void setAgentProfile(AgentProfile apf) { ... }
URL getCurrentHost() { ... }
boolean isConformableHost(HostProfile hpf) { ... }
CellProfile getCellProfile(CellIdentifier cid)

throws NoSuchCellException { ... }
....

}

We explain some of the methods defined in
the TaggedAgent class. An agent executes the
go(URL url) method to move to the destina-
tion host specified as the url by its runtime sys-
tem. The duplicate() method creates a copy
of the agent, including its code and instance
variables. The setTagIdentifier method ties
the agent to the identity of the tag specified
as tid. Each agent can specify a requirement
that its destination hosts must satisfy by invok-
ing the setAgentProfile() method, with the
requirement specified as apf. The class has a
service method named isConformableHost(),
which the agent uses to decide whether or
not the capabilities of the agent hosts speci-
fied as an instance of the HostProfile class
satisfy the requirements of the agent. The
getCellProfile() method allows an agent to
investigate the measurable range and types of
the sensor specified as cid.

Each agent can have more than one listener
object that implements a specific listener inter-
face to hook certain events issued before or after
changes in its life-cycle state or the movements
of its tag.

interface TaggedAgentListener
extends AgentEventListener {
// invoked after creation at url
void agentCreated(URL url);
// invoked before termination
void agentDestroying();
// invoked before migrating to dst
void agentDispatching(URL dst);
// invoked after arrived at dst
void agentArrived(URL dst);

2224 IPSJ Journal Aug. 2003

// invoked after the tag arrived at another cell
void tagArrived(HostProfile[] apfs,

CellIdentifier cid);
// invoked after the tag left from the current cell
void tagLeft(CellIdentifier cid);
// invoked after an agent host arrived
// at the current cell
void hostArrived(AgentProfile apfs,

CellIdentifier cid);
....

}

The above interface specifies the fundamental
methods that are invoked by the runtime sys-
tem when agents are created, destroyed, or mi-
grate to another agent host. In addition, the
tagArrived() callback method is invoked af-
ter the tag to which the agent is bound has en-
tered another cell, to obtain the device profiles
of agent hosts that are present in the new cell.
The tagLeft() method is invoked after the tag
is no longer in a cell.

3.4 Security and Privacy
Security is essential in mobile agent comput-

ing. The framework can be built on many Java-
based mobile agent systems with the Java vir-
tual machine. Therefore, it can directly use
the security mechanism of the underlying mo-
bile agent system. The Java virtual machine
can explicitly restrict agents so that they can
only access specified resources to protect hosts
from malicious agents. To protect against the
arrival of malicious agents from agent hosts,
the MobileSpaces system supports a Kerberos-
based authentication mechanism for agent mi-
gration 16). It authenticates users without ex-
posing their passwords on the network, and
generates secret encryption keys that can selec-
tively be shared by mutually suspicious parties.

The framework only maintains per-user pro-
file information within those agents that are
bound to the user. It promotes the movement
of such agents to appropriate hosts near the
user in response to the user’s movement. Since
agents carry the profile information of their
users within them, they must protect such pri-
vate information while they are moving over a
network.☆ The MobileSpaces system can trans-
form agents into an encrypted form before mi-
grating them over a network and decrypt them
after they arrive at the destination. Moreover,
since each mobile agent is just a programmable
entity, it can explicitly encrypt its inner partic-
ular fields and migrate itself with the fields and

☆ The framework itself cannot protect agents from
malicious hosts, because this problem is beyond the
scope of this paper.

its own cryptographic procedure, except for its
secret keys.

3.5 Current Status
The framework presented in this paper was

implemented in Sun’s Java Developer Kit ver-
sion 1.1 or later versions, including Personal
Java. The remainder of this section discusses
some features of the current implementation.

Locating Systems:
The current implementation of this frame-

work supports two commercial locating sys-
tems: RF Code’s Spider and Elpas’s EIRIS.
The former provides active RFID tags. Each
tag has a unique identifier that periodically
emits an RF-beacon conveying an identifier (ev-
ery second). The system allows us to explicitly
control the omnidirectional range of each of the
RF readers to read tags within a range of 1 to 20
meters. The other system provides active IR-
tags, which periodically broadcast their iden-
tifiers through an IR interface (every four sec-
onds), like the Active Badge system 20). Each
IR reader has omnidirectional infrared cover-
age, which can be adjusted to cover distances
from 0.5 to 10 meters. Although there are many
differences between the two locating systems,
the framework abstracts these differences away.

Performance Evaluation:
Although the current implementation of the

framework was not built for performance, we
measured the cost of migrating a 3 KB agent
(zip-compressed) from a source host to the des-
tination host recommended by the LIS. This
experiment was conducted with two LISs and
two agent hosts, each of which was running on
one of four computers (Pentium III-1GHz with
Windows 2000 and JDK 1.4), which were di-
rectly connected via an IEEE802.11b wireless
network. The latency of an agent’s migration
to the destination after the LIS had detected
the presence of the agent’s tag was 380msec,
and the cost of agent migration between two
hosts over a TCP connection was 48 msec. The
latency includes the cost of the following pro-
cesses: UDP-multicasting of the tags’ identi-
fiers from the LIS to the source host, TCP-
transmission of the agent’s requirements from
the source host to the LIS, TCP-transmission
of a candidate destination from the LIS to the
source host, marshaling of the agent, migration
of an agent from the source host to the des-
tination host, unmarshaling of the agent, and
security verification. We believe that this la-
tency is acceptable for a location-aware system

Vol. 44 No. 8 Bridging Physical and Virtual Worlds with Mobile Agents 2225

Fig. 4 Follow-Me desktop applications.

used in a room or building.

4. Initial Experience

To demonstrate the utility of the SpatialA-
gent framework, we developed several typical
location-aware applications for mobile or ubiq-
uitous computing settings.

4.1 Follow-Me Desktop Applications
A simple application of the framework is a

desktop teleporting system, like a follow-me
application 3), within a richly equipped, net-
worked environment such as a modern office.
The system tracks the current location of a user
and allows him/her to access the user’s applica-
tions at the nearest computer as the user moves
around within the building. Unlike previous
studies of such applications, our framework can
migrate not only the user interfaces of appli-
cations but also the applications themselves to
appropriate computers in the cell that contains
the tag of the user. In a previous paper 14),
we also developed a mobile window manager,
which is a mobile agent that can carry its desk-
top applications as a whole to another computer
and control the size, position, and overlap of the
windows of the applications. Using the frame-
work presented in this paper, the window man-
ager and desktop applications can be automat-
ically moved to and then executed at the com-
puter that is in the current cell of the user and
has the resources required by the applications
in the manner described in Fig. 4.

4.2 User Navigation System
We also developed a user navigation system

that assists visitors to a building. Several re-
searchers have reported on similar systems 2),4).
In our system, tags are distributed through sev-
eral places within a building, such as its ceil-
ings, floors, and wall. Each visitor carries a
wireless-LAN-enabled tablet PC that includes
an LIS and an agent host, which is equipped
with a locating sensor to detect tags. The sys-
tem initially deploys place-bound agents to in-
visible computers within the building. When a

Fig. 5 The migration of an agent, which is attached
to a place, to a visiting computer in the place.

tagged position is detected within the cell of the
moving sensor, the LIS running on the visitor’s
tablet PC detects the presence of the tag. The
LIS detects the place-bound agent that is tied
to the tag. It next instructs the agent to mi-
grate to its agent host and performs the agent’s
location-dependent services at the host. Fig-
ure 5 shows a situation where a visitor with a
sensor-equipped tablet PC and sensor is roam-
ing, first approaching place A and then place B.
The system enables one or more agents tied to
place A to move to the tablet PC. The agents
then return to their home computer and other
agents, which are tied to place B move to the
tablet PC. Figure 6 shows a place-bound agent
displays a map of the surrounding area on the
screen of a tablet PC.

4.3 Proactive Control of Home Appli-
ances

We also used this framework to implement
two prototype systems to for controlling elec-
tric lights in a room. Each light was equipped
with a tag and was within the range at covered
by a sensor in the room. We controlled power
outlets for the lights through a commercial pro-
tocol called X10. In both of the approaches
we describe here, the lights were controlled by

2226 IPSJ Journal Aug. 2003

Fig. 6 A screen-shot of a map-viewer agent running
on a tablet PC.

switching their power sources on or off accord-
ing to the X10 protocol.

User-Aware Automatic Controller:
The first system provides proactive control

of room lighting, which is a similar approach to
that used by the EasyLiving project 1). Our ap-
proach enables turn the lights in a room to be
autonomously turned whenever a tagged user
is sufficiently close to them. Suppose that each
light is attached to a tag and is within the 3-
meter range of the RF Code’s Spider sensor.
The tag attached to each of the lights corre-
lates with the mobile agent, which is our X10-
based server’s client and runs on the stationary
agent host in the room. When a tagged user ap-
proaches a light, an LIS in the room detects the
presence of the user’s tag in the cell that con-
tains the light. The LIS then moves the agent
bound to the tag to the agent host on which the
light’s agent is running. The user’s agent then
requests the lights’ agent to turn the light on
through inter-agent communication.

Location-Aware Remote Controller:
The second system allows us to use a PDA to

remotely control nearby lights. In this system,
place-bound controller agents, which can com-
municate with X10-base servers to switch lights
on or off, are attached to places with room
lights. Each user has a tagged PDA, which
supports the agent host with WindowsCE and
a wireless LAN interface.☆ When a user with
a PDA visits the cell that contains a light, the
framework moves a controller agent to the agent
host of the visiting PDA. As shown in Fig. 7,
the agent, now running on the PDA, displays a
graphical user interface for controlling the light.

☆ Since existing Java VMs for WindowsCE-based
PDAs are lacking in terms of function and perfor-
mance, the current implementation of this example
uses a lightweight version of the MobileSpaces sys-
tem.

Fig. 7 Controlling a desk lamp from a PDA.

When the user leaves the location, the agent au-
tomatically closes its user interface and returns
to its home host.

5. Related Work

This section discusses several systems that
have influenced various aspects of this frame-
work, which seamlessly integrates two different
approaches, i.e., ubiquitous and mobile com-
puting.

We compared several projects that support
mobile users in a ubiquitous computing en-
vironment with our framework. Research on
smart spaces and intelligent environments has
become popular at many universities and cor-
porate research facilities. Cambridge Univer-
sity’s Sentient Computing project 3) provides a
platform for location-aware applications using
infrared-based or ultrasonic-based locating sys-
tems in a building. Using the VNC system 12),
the platform can track the movement of tagged
entities, such as individuals and things, so that
the graphical user interfaces of the user’s ap-
plications follow them while they are moving
around. Although the platform provides simi-
lar functionality to that of our framework, its
management is centralized and it is difficult to
dynamically reconfigure the platform when sen-
sors are added to or removed from the envi-
ronment. Since the applications must be exe-
cuted in remote servers, the platform may have
non-negligible interactive latency between the
servers and the hosts that the user accesses lo-
cally. On the other hand, our framework en-
ables various applications, including user inter-
faces, to be dynamically deployed and directly
run on computers close to him/her so that it
can minimize temporal and spatial distances
in interactions between him/her and the ap-

Vol. 44 No. 8 Bridging Physical and Virtual Worlds with Mobile Agents 2227

plications. Recently, the project provided a
CORBA-based middleware system called Lo-
cARE 10). The middleware can move CORBA
objects to hosts according to the location of
tagged objects, but CORBA objects are not al-
ways suitable for implementation on user inter-
face components.

Microsoft’s EasyLiving project 1) provides
context-aware spaces, with a particular focus
on the home and office. It uses mounted sen-
sors such as stereo cameras on the room’s walls
and tracks the locations and identities of people
in the room. The system can dynamically ag-
gregate network-enabled input/output devices,
such as keyboards and mice, even when they be-
long to different computers in the space. How-
ever, its management is centralized and it does
not dynamically migrate software to other com-
puters according to the position of users. Both
the projects assume that locating sensors have
initially been allocated in the room, and it is
difficult to dynamically configure the platform
when sensors are added to or removed from the
environment, whereas our framework permits
sensors to be mobile and scatteredly through-
out the space.

MIT’s Project Oxygen Alliance has tried to
introduce intelligent spaces that are as abun-
dant and accessible to use as oxygen in the
air into people’s lives by incorporating several
perceptual devices, including location systems.
It has provided agent-based infrastructures to
construct and manage location-aware services
in such spaces 9). The goal of these infras-
tructures has been to offer suitable services at
suitable locations within the space, based on
the contextual information within the environ-
ment and emanating from users, but they have
not been able to dynamically deploy service-
provider services at suitable computers in the
space, as we have done.

There have also been several studies on en-
hancing context-awareness in mobile comput-
ing. HP’s Cooltown 6) is an infrastructure that
supports context-aware services on portable
computing devices. It is capable of automat-
ically providing bridges between people, places,
and things in the physical world and the web
resources that are used to store information
about them. The bridges that it forms allow
users to access resources stored on the web
via a browser, using standard HTTP commu-
nication. Although user familiarity with web
browsers is an advantage in this system, all the

services available in the Cooltown system are
constrained by the limitations of web browsers
and HTTP. Our framework, however, is not
limited in its web-based approach and can dy-
namically change mobile agent-based applica-
tions, including viewer programs for location-
sensitive information based on the locations and
requirements of users.

The NEXUS system 4), developed by Stuttgart
University, offers a generic platform that sup-
ports location-aware applications for mobile
users. Like the Cooltown system, users re-
quire a PDA or tablet-PC, which is equipped
with GPS-based positioning sensors and wire-
less communication. Applications that run
on such devices (e.g., user-navigation) main-
tain a spatial model of the current vicinity
of users and gather spatial data from remote
servers. Unlike our approach, however, neither
Cooltown nor NEXUS can support mobile users
through stationary computers distributed in a
smart environment.

Even though a number of mobile agent sys-
tems have been developed, few researchers have
attempted to apply mobile agent technology to
mobile and ubiquitous computing. Kangas 5)

developed a location-aware augmented-reality
system that enables the migration of virtual ob-
jects to mobile computers, but only when the
computer was in a particular space, in a simi-
lar way to our framework. However, the system
is not designed to move such virtual objects to
ubiquitous computing devices. Hive 11) is a dis-
tributed agent middleware for building decen-
tralized applications. It can deploy agents at
devices in ubiquitous computing environments
and organize the devices as groups of agents.
Although it can provide contextual information
for agents, it does not support any mechanisms
for monitoring sensors and deploying agents ac-
cording to changes in the environment, unlike
ours.

Several researchers have explored location-
sensitive servers like our LIS. Their location
models can be classified into two types: spa-
tial models based on the concrete geographi-
cal coordinates of objects and spatial models
based on the geographical containment between
objects. For example, the EasyLiving project
provides a geometric model based on the for-
mer approach, so it accurately represents the
physical relationships between entities in the
world. Leonhardt 8) developed a location-tree
model based on the latter approach and used

2228 IPSJ Journal Aug. 2003

location-aware directory servers. Our frame-
work is based on a symbolic location model
similar to the geographical containment model.
However, it is unique in having the ability to
dynamically manage spatial models. That is, it
provides a demand-driven mechanism that dis-
covers the locations of agent hosts and agents,
because it permits all its elements, such as hosts
and sensors to be mobile in and to be dynami-
cally added to or removed from a space.

In a previous paper 18), we described an ap-
proach for developing location-aware mobile
agents. The approach allows mobile agents to
follow their users as they move, like the frame-
work presented in this paper. However, the pre-
vious approach allows the positions of the users
to be detected through a computer vision tech-
nique and it maintains a geographical model of
the environment, including the positions of the
users. On the other hand, our present frame-
work uses RF or IR sensors to detect their pres-
ence, and maintains a symbolic location model
in the sense that it can only detect the pres-
ence of tagged entities that are within the cov-
erage of the sensors. Since the aim of the previ-
ous approach was to support mobile users from
stationary computers in a ubiquitous comput-
ing environment, it could not support mobile
users from portable computing devices, whereas
our framework can support both ubiquitous and
mobile computing environments. Another pre-
vious paper 17) presented an early prototype of
the present framework, but did not provide four
linkages between physical and virtual worlds as
described in the second section of this paper.

6. Future Work

Since the framework presented in this pa-
per is general-purpose, in future work we need
to apply it to specific applications, as well as
the three applications presented in this paper.
The MobileSpaces system, which is the basis of
this framework, allows application-specific ser-
vices to be implemented as a collection of mul-
tiple agents rather than a single agent. We are
now developing a mechanism that enables an
application-specific service to be divided into
multiple mobile agents. For example, a mobile
agent-based service may often require various
I/O devices, such as keyboards and speakers,
but it cannot locate an agent host that has all
of these. If there are two hosts, where one has
a keyboard and the other host has speakers,
the service can be provided by the two in com-

bination. The current mechanism for the ex-
change of information between LISs is not satis-
factory. We therefore plan to develop a publish-
subscribe system for the framework. We have
an approach for managing sensor networks 19).
The approach can dynamically customize our
location information servers. We have also de-
veloped an approach to testing context-aware
applications on mobile computers 15). We are
interested in developing a methodology that
would test applications that were based on the
framework.

7. Conclusion

We have presented a novel framework for
the development and management of location-
aware applications in mobile and ubiquitous
computing environments. The framework pro-
vides people, places, and things with mobile
agents to support and annotate them. Us-
ing location-tracking systems, the framework
can migrate mobile agents to stationary or mo-
bile computers near the locations of the peo-
ple, places, and things to which the agents
are attached. The framework is decentralized,
and is a generic platform independent of any
higher-level applications and locating systems.
We also designed and implemented a prototype
system based on the framework, and demon-
strated its effectiveness in several practical ap-
plications.

References

1) Brumitt, B.L., Meyers, B., Krumm, J., Kern,
A. and Shafer, S.: EasyLiving: Technologies for
Intelligent Environments, Proc. International
Symposium on Handheld and Ubiquitous Com-
puting, pp.12–27 (2000).

2) Cheverst, K., Davis, N., Mitchell, K. and
Friday, A.: Experiences of Developing and De-
ploying a Context-Aware Tourist Guide: The
GUIDE Project, Proc. Conference on Mobile
Computing and Networking, pp.20–31, ACM
Press (2000).

3) Harter, A., Hopper, A., Steggeles, P., Ward,
A. and Webster, P.: The Anatomy of a Context-
Aware Application, Proc.Conference on Mobile
Computing and Networking, pp.59–68, ACM
Press (1999).

4) Hohl, F., Kubach, U., Leonhardi, A.,
Rothermel, K. and Schwehm, M.: Next Cen-
tury Challenges: Nexus — An Open Global
Infrastructure for Spatial-Aware Applications,
Proc. Conference on Mobile Computing and
Networking, pp.249–255, ACM Press (1999).

Vol. 44 No. 8 Bridging Physical and Virtual Worlds with Mobile Agents 2229

5) Kangas, K. and Roning, J.: Using Code Mo-
bility to Create Ubiquitous and Active Aug-
mented Reality in Mobile Computing, Proc.
Conference on Mobile Computing and Net-
working, pp.48–58, ACM Press (1999).

6) Kindberg, T., et al.: People, Places, Things:
Web Presence for the Real World, Technical
Report HPL-2000-16, Internet and Mobile Sys-
tems Laboratory, HP Laboratories (2000).

7) Lange, B.D. and Oshima, M.: Programming
and Deploying Java Mobile Agents with Aglets,
Addison-Wesley (1998).

8) Leonhardt, U. and Magee, J.: Towards a Gen-
eral Location Service for Mobile Environments,
Proc. IEEE Workshop on Services in Dis-
tributed and Networked Environments, pp.43–
50, IEEE Computer Society (1996).

9) Lin, J., Laddaga, R. and Naito, H.: Per-
sonal Location Agent for Communicating En-
tities (PLACE), Proc. Mobile HCI’02, LNCS,
Vol.2411, pp.45–59, Springer (2002).

10) Lopez de Ipina, D. and Lo, S.: LocALE:
A Location-Aware Lifecycle Environment for
Ubiquitous Computing, Proc. Conference on
Information Networking, IEEE Computer So-
ciety (2001).

11) Minar, N., Gray, M., Roup, O., Krikorian, R.
and Maes, P.: Hive: Distributed agents for net-
working things, Proc.Symposium on Agent Sys-
tems and Applications/Symposium on Mobile
Agents (ASA/MA’99), IEEE Computer Soci-
ety (2000).

12) Richardson, T., Stafford-Fraser, Q., Wood, K.
and Hopper, A.: Virtual Network Computing,
IEEE Internet Computing, Vol.2, No.1 (1998).

13) Satoh, I.: MobileSpaces: A Framework for
Building Adaptive Distributed Applications
Using a Hierarchical Mobile Agent System,
Proc. Conference on Distributed Computing
Systems, pp.161–168, IEEE Computer Society
(2000).

14) Satoh, I.: MobiDoc: A Framework for Build-
ing Mobile Compound Documents from Hier-
archical Mobile Agents, Proc. Symposium on
Agent Systems and Applications/Symposium
on Mobile Agents, LNCS, Vol.1882, pp.113–
125, Springer (2000).

15) Satoh, I.: Flying Emulator: Rapid Building
and Testing of Networked Applications for Mo-
bile Computers, Proc. Conference on Mobile
Agents, LNCS, Vol.2240, pp.103–118, Springer

(Nov. 2001).
16) Satoh, I.: Dynamic Configuration of Agent

Migration Protocols for the Internet, Proc.
Symposium on Applications and the Inter-
net, pp.119–126, IEEE Computer Society (Jan.
2002).

17) Satoh, I.: Physical Mobility and Logical Mo-
bility in Ubiquitous Computing Environments,
Proc. Conference on Mobile Agents, LNCS,
Vol.2535, pp.186–202, Springer (Oct. 2002).

18) Tanizawa, Y., Satoh, I. and Anzai, Y.: A Mo-
bile Agent Framework for Ubiquitous Comput-
ing Environments (in Japanese), Journal of In-
formation Processing Society of Japan, Vol.43,
No.12, pp.3774–3784 (Dec. 2002).

19) Umezawa, T., Satoh, I. and Anzai, Y.: A Mo-
bile Agent-based Framework for Configurable
Sensor Networks, Journal of Information Pro-
cessing Society of Japan, Vol.44，No.3，pp.779–
788 (Mar. 2003).

20) Want, R., Hopper, A., Falcao, A. and Gib-
bons, J.: The Active Badge Location System,
ACM Trans.Inf.Syst., Vol.10, No.1, pp.91–102,
ACM Press (1992).

21) Weiser, M.: The Computer for the 21st Cen-
tury, Scientific American, pp.94–104 (Sept.
1991).

22) World Wide Web Consortium (W3C): Com-
posite Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP (1999).

(Received July 2, 2002)
(Accepted May 6, 2003)

Ichiro Satoh Ichiro Satoh re-
ceived his B.E., M.E, and Ph.D.
degrees in Computer Science
from Keio University, Japan in
1996. From 1996 to 1997. Since
2001, he has been an associate
professor in National Institute of

Informatics, Japan. Also, he was a visiting re-
searcher of Rank Xerox Laboratory from 1994
to 1995 and a PRESTO researcher of Japan
Science and Technology Corporation from 1999
to 2002. His current research interests include
distributed and ubiqutious computing. He re-
ceived IPSJ paper award, IPSJ Yamashita SIG
research award, and JSSST Takahashi research
award. He is a member of six learned societies,
including ACM and IEEE.

