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An Unlinkable Divisible Electronic Cash

Using Secure Proxy Computation for DL One-way Function

Toru Nakanishi† and Yuji Sugiyama†

Electronic cash (e-cash) should satisfy the unlinkability and divisibility, for the privacy
protection and the convenience, respectively. The unlinkability means the infeasibility of
determining whether two payments are made by the same customer. The divisibility means
that an e-coin can be divided to spent, and thus the exact payments are available. In the
existing unlinkable divisible e-cash system, the customer suffers from the inefficiency of the
payment protocol, because of the vast computations of zero-knowledge proofs. This paper
proposes an improved system, where the customer’s load is vastly reduced. Instead of the
customer, the proofs are computed by the active proxies, called trustees. As a side result, the
distributed proxy computation protocol for a DL one-way function is also proposed. In the
protocol, given a ciphertext of a value a, a quorum of parties verifiably computes a ciphertext
of f(a) that is a discrete log type of one-way function, without revealing a and f(a).

1. Introduction

1.1 Background and Previous Works
As the core to realizing the electronic com-

merce, the electronic cash (e-cash) 1)∼9) is in
great demand. In e-cash systems, a customer
withdraws electronic coins from a bank, and
the customer pays the coins to a merchant in
the off-line manner. The off-line means that
the customer has no need to communicate with
the bank or a trusted third party during the
payment. Finally, the merchant deposits the
paid coins to the bank.

To protect the privacy of customers, each
payment should be anonymous, and further-
more unlinkability should be satisfied. The
unlinkability means that any other one ex-
cept the trusted third party cannot determine
whether two payments are made by the same
customer. In linkable anonymous e-cash sys-
tems, the linked payments enable the other one
to trace the payer by other means (i.e., corre-
lating the payments’ locality, date, frequency,
etc.), as noted by Pfitzmann and Waidner 10).

In practice, it is desirable that payments of
arbitrary amounts can be performed, as well as
currently available physical payments. As dis-
cussed by Chan, et al. 6), the known best solu-
tion is divisible e-cash. The divisibility means
that payments of any amount up to the mone-
tary amount of a withdrawn coin can be made.
Some divisible e-cash systems have been pro-
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posed 2),4),6), among which, the system 6) by
Chan, et al. is the most efficient. However,
these systems do not satisfy the unlinkability
among the payments derived from the same
coin. Thus, the oftener a customer divides a
coin to pay it, the more easily the customer
may be traced owing to the linked payments.

As a solution for this problem, Nakanishi and
Sugiyama recently proposed an unlinkable di-
visible electronic cash system 9), where even the
payments derived from the same coin are un-
linkable. The key of the solution is the use
of the group signature scheme 11). Owing to
the scheme, during the payment, the customer
can prove the ownership of the coin authenti-
cated by the bank without revealing the coin.
This means the unforgeability of the paid coin,
together with the unlinkability of any pair of
payments. On the other hand, to enable the
detection of over-spending of the coin, the sys-
tem furthermore uses a tree, where the root
indicates the amount of the withdrawn coin,
and any other node indicates a part of the par-
ent’s amount. Then, the customer has to pay
only the nodes without the ancestor-descendant
relationship. For the detection, the customer
sends some values, called F values, assigned to
the paid nodes during the payment. The F
value is computed by applying a sequence of
DL (Discrete Log) one-way functions for a se-
cret key correspondent to the coin. To assure
the correctness of the computation, the cus-
tomer proves the sequence of one-way functions
in the zero-knowledge fashion. However, for the
zero-knowledge proof of the one-way function,
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the protocol using the so-called cut-and-choose
method is only known, and thus the proof pro-
tocol is inefficient. Therefore, in this e-cash sys-
tem, customers with less computational power
(e.g., PDA or cellular phone) suffer from the
inefficiency of the payment protocol including
the proof protocol.

1.2 Contributions
Based on the previous system 9), this pa-

per ☆ proposes an unlinkable divisible e-cash
system, where the customer’s computations in
the payment protocol are vastly reduced, while
the computations are conducted by distributed
proxy TTPs (trusted third parties) instead.
Namely, the idea is that the TTPs compute
the F values and prove the correctness. Dur-
ing the payment, the customer sends only the
ciphertext of the root F value, together with
the proof of the correctness. This proof in-
cludes efficient zero-knowledge proofs and a sin-
gle cut-and-choose zero-knowledge proof. Af-
ter the merchant sends the bank the ciphertext
for the deposit, the bank requests the TTPs
the proxy computations to obtain the F val-
ues. This computations are conducted as the
secure multiparty computation via ElGamal ci-
phertexts 13). This means that any quorum of
the TTPs can compute the correct result, while
the TTPs not containing the quorum can not
obtain any information. Therefore, the intro-
duce of the proxy computation does not influ-
ence the security. On the other hand, the pay-
ment protocol is more efficient, since the ineffi-
cient proof is used once during a payment trans-
action (The previous payment protocol uses in-
efficient proofs about T times, where T is the
product of the number of all the paid nodes and
the depth of the nodes). The above secure mul-
tiparty computation requires the secure multi-
party computation for a DL one-way function.
However, the protocol to accomplish this is un-
known. Therefore, this paper also proposes the
concrete secure multiparty computation proto-
col for the DL one-way function.

The organization of this paper is as follows:
In Section 2, the requirements on e-cash sys-
tems are reviewed. In Section 3, the used known
cryptographic tools are reviewed. In Section 4,
a secure proxy computation protocol for the DL
one-way function is constructed. In Section 5,
an improved unlinkable divisible e-cash systems

☆ A preliminary version of the paper appeared in
ISITA2002 12).

is proposed, as followed by the security and ef-
ficiency discussions. Finally, we conclude this
paper in Section 6.

2. Model and Requirements

As well as the previous system, we adopt the
model of the escrow e-cash 5),7), where trusted
third parties, called trustees, participate in the
system. The trustees can cooperatively revoke
the anonymity of the payments to protect illegal
acts of anonymous customers, such as money
laundering, blackmailing attack 14) and so on.
Thus, the escrow e-cash model equips a tracing
protocol to revoke the anonymity, in addition
to setup, withdrawal, payment, deposit proto-
cols equipped in the conventional e-cash model.
When the revocation is requested by a court
for example, due to an illegal act, the trustees
cooperatively execute this tracing protocol to
revoke the anonymity. To make the trust high,
this model adopts multiple trustees, which are
trusted in the threshold setting. Namely, it is
trusted that any quorum (more than a desig-
nated threshold) of trustees is not corrupted.
The trust is concerned with only the protection
of the customers’ privacy. That is, if the quo-
rum colludes, the privacy (the anonymity and
unlinkability below) is compromised. Of course,
the merchants tend to know the private infor-
mation, and in addition the banks may want
the information since they are also commercial
presence. Therefore, though the bank may be
a member of the trustees, noncommercial third
parties should be included in the trustees, such
as ombudsmans. The previous system 9) is also
on this model, though only the case of a single
trustee is concretely described for simplicity.

Our escrow e-cash model has a difference:
The previous system uses the passive trustees,
that is, they act only in case of dispute. How-
ever, to accomplish customer’s less computa-
tions, this paper uses the active trustees, that
is, they always act in the e-cash protocols. Con-
cretely, in all the deposit protocols, they in-
stead perform the computations that customers
should perform in the previous system. The
trust for the active trustees is the same as the
previous model. Namely, the trust is concerned
with only the customers’ privacy in the thresh-
old setting. Therefore, as for only the trust,
the reality to set up the trustees is the same
as the previous model. On the other hand, the
proxy computations may bring the problem on
the scalability. The problem and the reality
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concerned with the scalability are discussed in
Section 5.4.

In our model, the trustees are assigned to
two types of tasks, as mentioned above: The
anonymity revocations and the proxy compu-
tations. If only the trust is considered, it is not
too meaning to partition the trustees into the
passive trustees to perform the revocation and
the active trustees to perform the proxy compu-
tations. However, these two types of tasks re-
quire the different managements and the proxy
computations may have the problem on the
scalability. Thus, in such a sense, the partition
is sufficiently meaning. However, for simplic-
ity, we concentrate on the model where a single
group of active trustees with the threshold trust
manage the both tasks.

The requirements for divisible e-cash systems
are as follows 9):
Unforgeability: A coin and a transcript of a

payment can not be forged.
No over-spending: The customer who over-

spends a coin can be identified.
No swindling: No one except the customer

who withdraws a coin can spend the coin.
The deposit information can not be forged.

Anonymity: No one except the payer and the
quorum of trustees can trace the payer from
the payment.

Unlinkability: No one except the payer and
the quorum of trustees can determine
whether any pair of payments is executed
by the same customer, unless the payments
cause over-spending.

Anonymity revocation: Anonymity of a
transcript of a payment can be revoked only
by the quorum of trustees and when neces-
sary, where the following revocation proce-
dures should be accomplished:
Owner tracing: To identify the payer of

a targeted payment.
Coin tracing: To link a targeted with-

drawal of a coin to the payments de-
rived from the coin.

Divisibility: Payments of any amount up to
the monetary amount of a withdrawn coin
can be made.

Off-line-ness: During payments, the payer
communicates only with the merchant.

3. Building Blocks

3.1 Signature of Knowledge
As building blocks, the previous system

uses signatures converted by so-called Fiat-

Shamir heuristic 15) from honest-verifier zero-
knowledge proofs of knowledge, which is called
as signatures of knowledge. We abbreviate
them as SPKs. The SPKs are secure in the ran-
dom oracle model 16), if the underlying interac-
tive protocols are the zero-knowledge proofs of
knowledge. The SPKs are denoted as

SPK{(α, β, . . .) : R(α, β, . . .)}(m),
which means the signature for message m by a
signer with the secret knowledge α, β, . . . sat-
isfying the relation R(α, β, . . .). In this nota-
tion, the Greek letters denote the signer’s secret
knowledge, and other parameters denote public
values. Let G = 〈g〉 be a cyclic group of order p,
which is a subgroup of Z∗

p′ for a prime p′ satisfy-
ing p|(p′−1). Let G′ = 〈g′〉 be a cyclic group of
order p′, which is a subgroup of Z∗

p′′ for a prime
p′′ satisfying p′|(p′′ − 1). Then, the following
SPKs are used. For the concrete constructions,
refer to the previous paper 9).
SPK of representations: An SPK of rep-

resentations of y1, . . . , yw ∈ G to bases
g1, . . . , gv ∈ G is denoted as

SPK {(α1, . . . , αu) : (y1 =
�1∏

j=1

g
αe1j

b1j
)

∧ · · · ∧ (yw =
�w∏

j=1

g
αewj

bwj
)}(m),

where constants �i ∈ {1, . . . v} indicate the
number of bases of yi, the indices eij ∈
{1, . . . , u} refer to the elements α1, . . . , αu

and the indices bij ∈ {1, . . . , v} refer to the
bases g1, . . . , gv.

SPKs of e-th root of representation:
An SPK of the e-th root of the DL of y ∈ G
to the base g ∈ G on m is denoted as

SPK{β : y = gβe}(m).

An SPK of the e-th root of the g-part of a
representation of y ∈ G to the bases h, g ∈
G on m is denoted as

SPK{(γ, δ) : y = hγgδe}(m).

SPK of the same DL as a double DL:
The double discrete logarithm (double DL)
of y′ ∈ G′ to the bases g′ ∈ G′ and h ∈ G
implies x ∈ Zp satisfying y′ = g′(h

x) if such
an x exists. Then, an SPK of the DL of
y ∈ G to the base g ∈ G and the double DL
of y′ to the bases g′ and h on m, where the
DL equals the double DL, is denoted as



Vol. 44 No. 8 An Unlinkable Divisible E-cash Using Secure Proxy Computation 2129

SPK{ε : y = gε ∧ y′ = g′(h
ε)}(m).

Only the last SPK needs vast exponentiations,
about 40 exponentiations, because of using so-
called cut-and-choose method, as shown in the
paper 9). The previous payment protocol suffers
from the inefficiency of this SPK.

3.2 Threshold ElGamal Cryptosystem
In addition, we use the threshold ElGamal

cryptosystem 17) as the trunk of the improve-
ment. Thus, here we review the cryptosystem
in detail. The ElGamal ciphertext for mes-
sage m ∈ G with the secret key x ∈R Zp

and the public key y = gx is computed as
(G = gr, Y = myr) where r ∈R Zp. In the
threshold setting, the secret key x is shared
among the multiparty, that is the trustees in
this application. Assume that the trustee Ti

is numbered as i = 1, . . . , N . Each Ti keeps
his share xi of x secret, and publishes his
public key yi = gxi . We use Shamir secret
sharing scheme, where x equals Σi∈QxiL(Q,i)

(mod p), for any Q ⊆ {1, . . . , N} satisfying
|Q| ≥ K with the threshold K, and each La-
grange coefficient L(Q,i) =

∏
j∈Q,j �=i

j
j−i . As

for the protocol to distribute the secret, refer to
Pedersen’s 18) and Gennaro et al.’s 19) papers.
In this setting, we use the following scheme
used in many literatures (e.g., Abe 20), Jakobs-
son and Juels 13)):
Verifiable threshold decryption: Trus-

tees can cooperatively decrypt the cipher-
text (G, Y ) as follows: Ti publishes Gi =
Gxi . Furthermore, Ti proves the correct-
ness by publishing SPK{α : Gi = Gα∧yi =
gα}(0̃), where 0̃ is the empty string. When
the SPK is not accepted, the corresponding
Ti is removed as dishonest. Let Q be the set
of indices of Ti not removed. Then, anyone
can decrypt the ciphertext by computing
Y/

∏
i∈Q G

L(Q,i)
i = Y/

∏
i∈Q GL(Q,i)xi =

Y/G

∑
i∈Q

L(Q,i)xi = m.

4. Secure Proxy Computation for DL
One-way Function

In the construction of the proposed e-cash
system, we use a one-way function based on the
DL, that is, it is f(a) = ha for an element h of a
cyclic group G, and a ∈ Z|G|. Furthermore, we
need for the distributed proxy servers to cooper-
atively compute Enc(f(a)) from Enc(a) with-
out revealing a and f(a), where Enc is an El-
Gamal encryption. This section provides the

protocol, together with the security considera-
tion.

4.1 Definitions
The proxy computation for the one-way func-

tion via ciphertexts is abbreviated as PCOWF.
Let G be a cyclic group of order p, which is
a subgroup of Z∗

p′ for a prime p′ satisfying
p|(p′ − 1). Let G′ be a cyclic group of order
p′, which is a subgroup of Z∗

p′′ for a prime p′′

satisfying p′|(p′′ − 1).
Definition 1 The participants of PCOWF

protocol is N proxy servers T1, . . ., TN that
share secret keys of the ElGamal threshold
cryptosystems on the groups G and G′. In the
PCOWF protocol, the server’s common pub-
lic input is (g, y, y1, . . . , yN , g′, y′, y′

1, . . . , y
′
N , h′,

(G, Y )), where g (resp., g′) is a generator of G
(resp., G′), y, y1, . . . , yN (resp., (y′, y′

1, . . . , y
′
N ))

are the whole public key and T1, . . . , TN ’s indi-
vidual public keys of the threshold cryptosys-
tem on the group G (resp., G′), h′ is an element
of G′, and (G, Y ) is an ElGamal ciphertext of
unknown a ∈ G, w.r.t. y. The private input of
Ti is (xi, x

′
i), where xi (resp., x′

i) is his share of
the secret key of the threshold ElGamal cryp-
tosystem on G (resp., G′). The common output
is an ElGamal ciphertext (G′, Y ′) of h′a w.r.t.
y′.

Definition 2 Secure PCOWF protocol sat-
isfies the following properties.
Completeness: Any quorum of honest proxy

servers can complete the protocol.
Robustness: Any server who disobeys the

protocol is detected by the honest servers.
This property allows the honest servers to
remove the dishonest server for completing
the correct computation.

Public verifiability: Anyone can verify that
the output is computed correctly.

Privacy: The protocol view does not leak any
information about a and ha, even if any
set of servers smaller than the quorum col-
ludes.

4.2 SPK of DL of Representation
We define the following SPK used in the pro-

posed PCOWF protocol.
Definition 3 An SPK of a representation

of z′ ∈ G′ to the bases g′, h′ ∈ G′, and further-
more of the DL of the h′ part of the represen-
tation to the base h ∈ G, which equals the DL
of z ∈ G to the base g ∈ G, on message m, is
denoted as
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SPK{(α, β) : z′ = g′αh′(hβ) ∧ z = gβ}(m).

Now, we describe only the interactive version
of this SPK protocol, since Fiat-Shamir heuris-
tic 15) converts the interactive one into the cor-
responding SPK. Let k be a security parameter
for the forgery probability 2−k.
Interactive version of the SPK:

Repeat k times the following steps:
( 1 ) The prover chooses r1 ∈R Zp′ and r2 ∈R

Zp. Then, the prover sends t1 = g′r1h′hr2

and t2 = gr2 to the verifier.
( 2 ) The verifier returns c ∈R {0, 1}.
( 3 ) If c = 0, the prover sends s1 = r1

and s2 = r2. The verifier checks t1 =
g′s1h′hs2 and t2 = gs2 .
Otherwise, the prover sends s1 = r1 −
αhr2−β (mod p′), and s2 = r2 − β
(mod p). The verifier checks t1 =
g′s1z′h

s2 and t2 = gs2z.
Theorem 1 The above protocol is an any-

verifier zero-knowledge proof of knowledge of
(α, β) such that z′ = g′αh′(hβ) and z = gβ.

Proof:
The completeness in the case of c = 1 holds

because of the equations
g′s1z′h

s2 = g′r1−αhr2−β

(g′αh′hβ

)hr2−β

= g′r1−αhr2−β

g′αhr2−β

h′hβhr2−β

= g′r1h′hr2 = t1,
and

gs2z = gr2−βgβ = gr2 = t2.

The case of c = 0 is straightforward.
For the soundness, it is sufficient to ex-

tract secrets from the two accepting triples
(t1, t2, c = 0, s1, s2) and (t1, t2, c̃ = 1, s̃1, s̃2),
as follows: Assume z′ = g′αh′hβ

and z = gβ .
Then, t1 = g′s1h′hs2 and t1 = g′s̃1z′h

s̃2 =
g′s̃1(g′αh′hβ

)hs̃2 = g′s̃1+αhs̃2
h′hβ+s̃2 . On the

other hand, t2 = gs2 and t2 = gs̃2z = gs̃2gβ =
gs̃2+β . Thus, s1 = s̃1 + αhs̃2 (mod p′) and
s2 = β + s̃2 (mod p) hold. Thus, we can ex-
tract α by (s1 − s̃1)/hs̃2 (mod p′), and β by
s2 − s̃2 (mod p).

Finally, we show the zero-knowledgeness.
Consider the following simulator. For any
round, the simulator guesses c′ ∈R {0, 1}. If
c′ = 0, the simulator obeys the protocol hon-
estly, whose view is statistically indistinguish-
able from the real one. If c′ = 1, the simu-
lator chooses ṡ1 ∈R Zp′ and ṡ2 ∈R Zp, and
sends ṫ1 = g′ṡ1z′h

ṡ2 and ṫ2 = gṡ2z. When

receiving c = 1 (If c = 0, rewind the sim-
ulator), the simulator sends ṡ1 and ṡ2, which
satisfies the verification equations. Then, note
that ṫ1 = g′ṡ1+αhṡ2

h′hβ+ṡ2 and ṫ2 = gβ+ṡ2

hold. When ṙ1 = ṡ1 + αhṡ2 (mod p′) and
ṙ2 = β + ṡ2 (mod p) are set, ṙ1 and ṙ2 inde-
pendently distribute uniformly over Zp′ and Zp,
respectively. Thus, the view of the simulator
(ṫ1 = g′ṙ1h′hṙ2

, ṫ2 = gṙ2 , c = 1, ṡ1 = ṙ1−αhṙ2−β

(mod p′), ṡ2 = ṙ2 − β (mod p)) is statistically
indistinguishable from the real protocol’s view.

4.3 Proposed Protocol
We describe the PCOWF protocol in detail.

PCOWF protocol:
For simplicity, assume that the quorum of

servers consists of T1, . . . , TK . For the quorum,
let the Lagrange coefficient of each Ti be Li.
The protocol is sequentially executed by servers
T1, . . . , TK . Note that the input ciphertext of a
is (G, Y ).
( 1 ) T1 first chooses r1 ∈ Zp′ , and publishes

(G′
1, Y

′
1) = (g′r1 , y′r1(h′Y )(G

−L1 )x1 ). Fur-
thermore, T1 publishes SPK{(α1, β1) :
G′

1 = g′α1 ∧ Y ′
1 = y′α1(h′Y )β1}(0̃) and

SPK{(γ1, δ1) : Y ′
1 = y′γ1(h′Y )(G

−L1 )δ1 ∧
y1 = gδ1}(0̃), where 0̃ denotes the empty
message.

( 2 ) For 2 ≤ i ≤ K, let the out-
put of Ti−1 be (G′

i−1, Y
′
i−1). Any

other Ti (2 ≤ i ≤ K) chooses
ri ∈ Zp′ , and publishes (G′

i, Y
′
i ) =

(g′riG′(G−Li )xi

i−1 , y′riY ′(G−Li )xi

i−1 ). Further-
more, Ti publishes SPK{(αi, βi) : G′

i =
g′αiG′βi

i−1 ∧ Y ′
i = y′αiY ′βi

i−1}(0̃) and
SPK{(γi, δi) : G′

i = g′γiG′(G−Li )δi

i−1 ∧ yi =
gδi}(0̃).

The output (G′, Y ′) of the protocol is TK ’s out-
put (G′

K , Y ′
K).

Remark 1 This protocol must be sequen-
tially executed by trustees, though the original
threshold decryption 13),20) or threshold DSS
signature generation 21) etc. does not need such
a sequential execution. This limitation makes
the removal of the dishonest trustee more deli-
cate. If the SPK published by a trustee is not
accepted, the other honest trustees should stop
the current protocol. Then, Q is changed such
that the dishonest trustee is removed, and they
should restart from the beginning of this proto-
col.
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4.4 Security
We discuss the security of the proposed pro-

tocol.
Completeness: Let x′ be the secret key cor-

respondent to y′. Note that y′ = g′x
′
. The

T1’s output (G′
1, Y

′
1) satisfies the equations

(Y ′
1/G′x′

1 )=(y′r1(h′Y )(G
−L1 )x1 )/(g′r1)x′

=(y′r1h′Y/GL1x1 )/y′r1 =h′Y/GL1x1
.

Then, the next T2’s output (G′
2, Y

′
2) satis-

fies the equations

Y ′
2/G′x′

2 =
y′r2Y ′(G−L2 )x2

1

(g′r2)x′(G′x′
1 )(G−L2 )x2

=
y′r2Y ′(G−L2 )x2

1

y′r2(G′x′
1 )(G−L2 )x2

= (Y ′
1/G′x′

1 )(G
−L2 )x2

= (h′Y/GL1x1 )(G
−L2 )x2

= h′Y/GL1x1+L2x2
.

The similar equations hold for the other
Ti’s output. Therefore, the last output
(G′, Y ′) satisfies the equations Y ′/G′x′

=
Y ′

K/G′x′
K = h′Y/GL1x1+···+LK xK = h′a.

This implies that (G′, Y ′) is a ciphertext
of h′a.

Robustness and public verifiability: To
satisfy these properties, Ti only has to
prove the knowledge of (α, β) such that
G′

1 = g′α ∧ Y ′
1 = y′α(h′Y )(G

−L1 )β ∧ y1 =
gβ if i = 1, or G′

i = g′αG′(G−Li )β

i−1 ∧
Y ′

i = y′αY ′(G−Li )β

i−1 ∧ yi = gβ other-
wise. Consider only the case of i ≥ 2,
since the same discussion holds for i =
1. In the PCOWF protocol, Ti performs
SPK{(αi, βi) : G′

i = g′αiG′βi

i−1 ∧ Y ′
i =

y′αiY ′βi

i−1}(0̃) and SPK{(γi, δi) : G′
i =

g′γiG′(G−Li )δi

i−1 ∧ yi = gδi}(0̃). Thus, from
two accepting triples of these SPKs, we can
extract (αi, βi, γi, δi) satisfying the above
predicates. Then, for the extracted val-
ues, G′

i = g′αiG′βi

i−1 = g′γiG′(G−Li )δi

i−1 , and
thus αi = γi and βi = (G−Li)δi , since
it is infeasible to compute two represen-
tations to the same bases. Therefore, the
pair (γi, δi) satisfies G′

i = g′γiG′(G−Li )δi

i−1 ,

Y ′
i = y′γiY ′(G−Li )δi

i−1 , and yi = gδi This im-
plies that these SPKs prove the knowledge
of the wanted (α, β).

Privacy: Since the used SPKs do not reveal

any information, consider only (G′
i, Y

′
i ). As

inspired by the discussion for the complete-
ness, each (G′

i, Y
′
i ) is a random ciphertext

of h′Y/G
Σ1≤j≤iLj xj

w.r.t. public key y′. Fur-
thermore, all T1, . . . , Ti provide the ran-
domness of the ciphertext. Thus, the col-
luding servers not containing a quorum ob-
tain only h′Y/G

Σ1≤j≤ĩ
Ljxj

for ĩ < K or
values computed from a ciphertext of an
unknown value. Therefore, the colluding
servers obtain no useful information on a
and f(a).

5. Improved Unlinkable Divisible E-
cash System

5.1 Basic Idea
Our system is based on the previous

system 9), which uses the group signature
scheme 11). The group signature scheme al-
lows a group member to anonymously sign on
a group’s behalf. Furthermore, the anonymity
of the signature can be revoked by the trusted
party. In the scheme 11), the group consists of
owners of unforgeable certificates issued from
the group manager. In the previous e-cash sys-
tem, the certificate is used as a coin issued from
the bank and the group signature is used as a
payment transcript. This simple replacement
brings the system the anonymity, unlinkabil-
ity, unforgeability, no swindling, off-line-ness,
and owner tracing of the anonymity revocation.
Furthermore, in the previous system, mecha-
nisms to enable coin tracing and to detect over-
spending of a coin are added. The former mech-
anism is that, in a withdrawal, a customer is
forced to send the ciphertext of a value, which
is linked to payments derived from the with-
drawal, with the trustees’ key.

To protect over-spending, the previous sys-
tem uses the tree approach. For simplicity, we
describe only the system using a binary tree,
though we can also construct the system us-
ing a general tree with three or more children,
such as the previous system. The withdrawn
coin is assigned to a tree, where the root in-
dicates the monetary amount of the coin, and
any other node indicates the half amount of
the parent. In this situation, to protect over-
spending, a customer can spend only nodes
without the ancestor-descendant relationship.
For the detection, the customer has to send
some values, called F values, assigned to the
nodes with the paid amount during the pay-
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ment. The F value of the root node is proper
to the coin, which is concretely a value applied
by a DL one-way function for a secret key in
the group signature. The F value of any other
node is applied by a DL one-way function for
F value of the parent node. Thus, the nodes
which have the ancestor-descendant relation-
ship can be linked by a sequence of functions,
while the nodes without the relationship do not
have such a sequence. However, to assure the
correctness of the F value, the customer has
to prove the sequence of one-way functions in
the zero-knowledge fashion. However, for the
zero-knowledge proof of the one-way function,
the protocol using the so-called cut-and-choose
method is only known, and thus the proof pro-
tocol is inefficient. Therefore, customers with
less computational power suffer from the ineffi-
ciency of the payment protocol.

In the proposed system, instead of sending
the F values and the zero-knowledge proofs,
the customer sends only the verifiable ElGa-
mal ciphertext of the root F value. Therefore,
the payment protocol is much more efficient,
though the mechanism of coin tracing needs a
single cut-and-choose zero-knowledge proof, as
well as the previous protocol. After the mer-
chant sends the bank the payment transcript
for the deposit, the bank requests the trustees
to compute the F values and the proofs from
the ciphertext in the payment transcript, as
the proxy. The trustees cooperatively com-
pute them with the public verifiability and the
privacy, using the PCOWF protocol multiple
times and using the verifiable threshold decryp-
tion. From the result, the bank can check over-
spending, as well as the previous system.

5.2 Proposed System
5.2.1 Setup
This is the similar to the previous. The dif-

ference is the setup of the threshold ElGamal
cryptosystem. Notations are depicted in Ta-
ble 1.
( 1 ) The bank decides the monetary amount

of this coin, w = 2�−1, for a positive in-
teger �. Then, the bank computes an
RSA modulus n, two public exponents
e1, e2 > 1, and two integers f1, f2 > 1.
The choices are discussed by Camenisch
and Stadler 11). Then, the bank chooses a
cyclic group Gn = 〈gn〉 of order n which is
a subgroup of Z∗

p2
for a prime p2 satisfy-

ing n|(p2−1). Similarly, the bank chooses
a cyclic group Gpi

= 〈gpi
〉 of order pi

Table 1 Notations in proposed e-cash protocols.

w a monetary amount of a
coin

� a depth in a tree for the
divisibility with w = 2�−1

N number of trustees
n RSA modulus
e1, e2, f1, f2 public parameters for e-

coins
p2 a prime with n|(p2 − 1)
pi (3 ≤ i ≤ � + 1) a prime with pi−1|(pi − 1)
Gn, gn a subgroup with order n of

Z∗
p2

and its generator

Gpi , gpi (2 ≤ i ≤ �) a subgroup with order pi

of Z∗
pi+1

and its generator

h, h̃ public bases from Gn

h(i,0), h(i,1) public bases from Gpi

(2 ≤ i ≤ �)
yn, y(n,1), . . . , y(n,N) ElGamal public keys of

trustees on Gn

ypi , y(pi,1), . . . , y(pi,N)

(2 ≤ i ≤ �)
ElGamal public keys of
trustees on Gpi

which is a subgroup of Z∗
pi+1

for a prime
pi+1 satisfying pi|(pi+1−1) with all i (2 ≤
i ≤ �). Furthermore, the bank chooses el-
ements h, h̃ ∈ Gn, h(2,0), h(2,1) ∈ Gp2 ,. . . ,
h(�,0), h(�,1) ∈ Gp�

whose DL to the
bases gn, gp2 , . . . , gp�

are unknown, re-
spectively. Finally, the bank publishes
Y = (n, e1, e2, f1, f2,Gn,Gp2 , . . . ,Gp�

, gn,
gp2 , . . ., gp�

, h, h̃, h(2,0),. . ., h(�,0), h(2,1),
. . ., h(�,1)) as the public key, and keeps
the factorization of n secret.

( 2 ) N trustees T1, . . . , TN cooperatively set
up keys of the threshold ElGamal cryp-
tosystems on the groups Gn,Gp2 , . . . ,Gp�

.
Let the public key (y, y1, . . . , yN ) of the
cryptosystem on the group Gn (resp.,
Gpi

) be (yn, y(n,1), . . . , y(n,N)) (resp.,
(ypi

, y(pi,1), . . . , y(pi,N))). Then, the DL
of yn to the base gn is the secret key,
which is shared by each trustee Ti as the
DL of y(n,i) to the base gn. The cases of
all Gpi

are similar.
5.2.2 Withdrawal
This is the same as the previous.

( 1 ) A customer chooses xC ∈R Z∗
n to com-

pute yC = xe1
C mod n and zC = hyC .

Then, the customer chooses r1, r2 ∈R Z∗
n

to compute ỹC = re2
1 (f1yC + f2) mod

n, Ġn = gr2
n , and Ẏn = yr2

n h̃yC . Further-
more, the customer computes the follow-
ing SPKs:

V1 =SPK{α : zC =hαe1 }(0̃),
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V2 =SPK{β : hỹC =(zf1
C hf2)βe2}(0̃),

V3 =SPK{(γ, δ) : Ġn =gγ
n

∧Ẏn =yγ
nh̃δ ∧ zC =hδ}(0̃).

The customer sends the bank (ỹC , zC ,
Ġn, Ẏn, V1, V2, V3).

( 2 ) If V1, V2 and V3 are correct, the bank
sends the customer ṽC = ỹ

1/e2
C mod n

and charges the customer’s account the
amount w.

( 3 ) The customer computes vC = ṽC/r1 mod
n to obtain the coin (xC , vC), where vC ≡
(f1x

e1
C + f2)1/e2 (mod n).

5.2.3 Payment
Consider a binary tree with � levels. Let nj1

(j1 = 0) denote the root node, and let nj1···ju

denote the left (resp., right) child of the par-
ent node nj1···ju−1 if ju = 0 (resp., ju = 1),
for u = 2, . . . , �. In the payment protocol,
the customer pays the merchant any amount
w̃ (≤ w = 2�−1). Let [w̃� · · · w̃1] be the bi-
nary representation of w̃. Then, if w̃�−u+1 =
1 (1 ≤ u ≤ �), the customer pays a node nj1···ju

among the nodes in the u-th level that have
not been previously paid and do not have the
ancestor-descendant relationship with the pre-
viously paid nodes. Here, the payment protocol
for a node nj1···ju

is shown. By executing this
payment protocol for multiple nodes parallel,
the payment for any amount is accomplished.
Let m be the concatenation of the identifier of
the merchant obtaining the payment, the time
when the payment is made, and the location of
the currently paid node in the tree. To detect
over-spending of the node, an F value of the
paid node is used, as well as the previous sys-
tem. The F value of the root node, denoted Fj1 ,
is h̃yC . The F value of a node nj1···ju

, denoted
Fj1···ju

, is h
Fj1···ju−1

(u,ju) where Fj1···ju−1 is the F
value of the parent node. Note that, in the pro-
posed system, the F value of the paid node is
computed by the trustees after the deposit. The
detail payment protocol is as follows:
( 1 ) The customer computes G̃n = gr̃

n and
Ỹn = yr̃

nhyC for r̃ ∈R Z∗
n, and computes

żn = g̃yC
n and z̃p2 = g̃h̃yC

p2
for g̃n ∈R Gn

and g̃p2 ∈R Gp2 . In addition, the cus-
tomer computes the following SPKs:

Ṽ1 =SPK{(α, β) : Ỹn =yα
nhβe1}(m),

Ṽ2 =SPK{(γ, δ) :
Ỹ f1

n hf2 =yγ
nhδe2}(m),

Ṽ3 =SPK{(ε, ζ) : G̃n =gε
n

∧Ỹn =yε
nhζ ∧ żn = g̃ζ

n}(m),
Ṽ4 =SPK{(η) : żn = g̃η

n

∧z̃p2 = g̃h̃η

p2
}(m).

Note that these are the same as the pre-
vious. Furthermore, instead of comput-
ing the F value of the paid node with the
verifiability, the customer computes a ci-
phertext of the root F value, Gn = gr

n

and Yn = yr
nh̃yC , for r ∈R Z∗

n. The cus-
tomer proves the correctness by

Ṽ5 =SPK{(ι, κ, λ) : Gn =gι
n

∧Yn =yι
nh̃κ ∧ Ỹn =yλ

nhκ}(m).

Finally, the customer sends the merchant
A = (G̃n, Ỹn, g̃n, żn, g̃p2 , z̃p2 , Gn, Yn, Ṽ1,
Ṽ2, Ṽ3, Ṽ4, Ṽ5).

( 2 ) The merchant verifies that A is correctly
formed. If the merchant is successful,
this payment is permitted.

Remark 2 In the previous protocol, in ad-
dition to (G̃n, Ỹn, g̃n, żn, g̃p2 , z̃p2 , Ṽ1, Ṽ2, Ṽ3, Ṽ4),
the customer sends the merchant the F value
Fj1···ju

of the paid node, after computing all
the F values Fj1 , . . . , Fj1···ju−1 of intermedi-
ate nodes from the root to the target, such
as Fj1 = h̃yC , Fj1j2 = h

Fj1
(2,j2)

, . . . , Fj1···ju
=

h
Fj1···ju−1

(u,ju) . Furthermore, he sends the cor-
responding commitments F̃1 = ḣyC

1 , F̃2 =
ḣ

Fj1
2 , . . . , F̃u−1 = ḣ

Fj1···ju−2
u−1 for randomly cho-

sen bases ḣ1, . . . , ḣu−2, and confirms the mer-
chant the correctness of Fj1···ju

by sending the
SPKs to prove the knowledge of DLs and dou-
ble DLs:

logḣ1
F̃1 = logh̃(logḣ2

F̃2),
. . . ,

logḣu−1
F̃u−1

= logh(u−1,ju−1)
(logh(u,ju)

Fj1···ju
).

In the proposed one, these are replaced by
(Gn, Yn, Ṽ5) only.

5.2.4 Deposit
( 1 ) The merchant sends the bank the tran-

script of the payment A.
( 2 ) The bank verifies that the transcript

is correctly formed. Only if it is cor-
rectly formed, the bank permits the pay-
ment to deposit the paid amount in the
merchant’s account. After that, to de-
tect over-spending, the bank sends the
trustees the transcript.

( 3 ) The trustees verify the correctness of the
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transcript. Only if the quorum of the
trustees agree on the correctness, they
cooperatively conduct the following:
( a ) Let nj1···ju

be the paid node in the
level u. Note that the ElGamal ci-
phertext (Gn, Yn) in the transcript
should include the plaintext Fj1 ,
that is the root F value. Then, the
quorum of trustees cooperatively
computes the ciphertext of the F
value of the paid node. In case of
the root, skip this substep. Oth-
erwise, they perform the PCOWF
for (Gn, Yn) w.r.t. the one-way
function f(2,j2)(a) = ha

(2,j2)
to

obtain a ciphertext (Gp2 , Yp2).
This ciphertext should include the
plaintext Fj1j2 = h

Fj1
(2,j2)

. Up to the
targeted ciphertext, they continue
to perform the PCOWF w.r.t.
the one-way functions f(3,j3)(a) =
ha

(3,j3)
, . . . , f(u,ju)(a) = ha

(u,ju).
Let (Gpu

, Ypu
) be the targeted

ciphertext including the paid F
value Fj1···ju

as the plaintext.
( b ) The quorum of the trustees per-

forms the verifiable threshold de-
cryption for (Gpu

, Ypu
) to obtain

Fj1···ju
. They return the bank

Fj1···ju
together with the SPKs in

the whole computations in these
substeps (a) and (b).

( 4 ) The bank uses Fj1···ju
to detect whether

the corresponding node nj1···ju
were over-

spent, as well as the previous system.
If the same node is used, the sameness
of F value indicates over-spending. If
the nodes nj1···ju

and nj1···ju′ (u < u′)
with the ancestor-descendant relation-
ship are used which also means over-
spending, the corresponding Fj1···ju

and
Fj1···ju′ have relations as Fj1···ju+1 =

h
Fj1···ju

(u+1,ju+1)
, . . . , Fj1...ju′ = h

Fj1···j
u′−1

(u′,ju′ ) for
F values of the intermediate nodes,
Fj1···ju+1 , . . . , Fj1···ju′−1

. Thus, the re-
lation enables the bank to detect over-
spending. For the detail, refer to the
paper 9). If over-spending occurs, the
bank traces the over-spender by using the
owner tracing for the corresponding pay-
ment transcript.

Remark 3 In the previous protocol, since
the bank directly obtains the F value Fj1···ju

of the paid node from the payment transcript,
above Step (3) is not conducted.

5.2.5 Tracing
This is the same as the previous. For owner

tracing, the trustees decrypt the ciphertext
(G̃n, Ỹn) in the payment to obtain zC = hyC ,
which matches to the corresponding withdrawal
protocol. For coin tracing, the trustees decrypt
the ciphertext (Ġn, Ẏn) in the withdrawal to ob-
tain h̃yC . The merchant and bank can find the
matched z̃p2 = g̃h̃yC

p2
in each payment.

5.3 Security Consideration
As the anonymity revocation, divisibility and

off-line-ness are straightforward, the remaining
properties are discussed.
Unforgeability: As well as the previous, this

holds because the coin (xC , vC) is unforge-
able and SPK in the payment shows the
knowledge of the coin.

No over-spending: It is assured that (Gn,
Yn) in the payment is an ElGamal cipher-
text of Fj1 = h̃yC , because of the SPKs.
In the deposit, if the trustees obey the pro-
tocol, the trustees compute the target F
values from (Gn, Yn), since the PCOWF
protocol and the threshold decryption sat-
isfy the completeness. Furthermore, each
computation can be verified. Thus, the
bank obtains the correct F values of the
paid nodes, and can detect over-spending.
The over-spender can be traced by the
owner tracing.

No swindling: This depends on the secrecy
of xC . Since the original part does not re-
veal xC , consider the newly added parts.
In the payment, (Gn, Yn) and Ṽ5 are added.
They are a ciphertext and SPK, and thus
do not reveal xC . In the deposit, the
PCOWF and verifiable decryption proto-
cols are added. They do not also reveal
any information about xC .

Unlinkability and anonymity: We discuss
that the newly added parts have no influ-
ence. As mentioned in no swindling, the
ciphertext and SPK in the payment has no
information. In the deposit, the PCOWF
and verifiable decryption protocols reveal
only the target F value, which is revealed
in the previous system. Therefore, these
properties hold.

From the above discussion, the security of the
proposed system is the same as that of the pre-
vious. The unlinkability and anonymity depend
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Table 2 Worst approximate number of exponentia-
tions required in payment and deposit pro-
tocols in case of coin with value 100,000.

Payment Deposit
(Customer or Merchant) (Trustee)

Ref. 9) 600 0
Ours 80 600

on the trust of the trustees in the threshold set-
ting. Note that the trust is also the same among
both systems, as mentioned in Section 2

5.4 Efficiency Consideration
The payment protocol is very efficient, as fol-

lows. The original part (G̃n, Ỹn, g̃n, żn, g̃p2 , z̃p2 ,
Ṽ1, Ṽ2, Ṽ3, Ṽ4) needs about 70 exponentiations,
by the estimation in the paper 9). The newly
added (Gn, Yn) and Ṽ5 need less than 10 ex-
ponentiations. The previous payment protocol
needs about 600 exponentiations in total for the
worst, if the monetary amount is about 100,000.

On the other hand, in the deposit protocol,
the trustees have to compute the F values of
the paid nodes from the root via the ElGamal
ciphertexts. The dominant cost is the ZPKs
proving that the double DL equals the DL.
These costs are comparable to those of the pre-
vious payment protocol. Thus, in the same sit-
uation, a trustee computes about 600 exponen-
tiations. These discussions are summarized in
Table 2.

Note that the trustees’ vast computations
must be executed sequentially. Thus, the com-
putation time is in proportion to the number
of trustees, N . Furthermore, this cost is re-
quired for all the payment transcripts. This
may cause the problem on the scalability. How-
ever, the trustees can have the more powerful
computation ability than the users. In addition,
these computations can be executed by multiple
groups of trustees, where each group consists of
trustees with the threshold trust. Therefore,
the proposed system has the sufficient reality.

6. Conclusion

We have proposed an improved unlinkable di-
visible e-cash system, where the payment pro-
tocol is more efficient.

In the propose system (also the previous sys-
tem), to check over-spending, the bank has to
check the chain of one-way functions for all paid
nodes of all the payments, which is vast. Thus,
a further work is to reduce the vast computa-
tions of checking over-spending. This may be
accomplished by the payer’s computing online

with the bank.
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