ロボットに搭載可能な非接触による摩擦係数推定システム

佐々木良輔[†] 齋藤琢弥[†] 後藤泰介[‡] 高塚崇文[‡] 田村仁[†]

日本工業大学 工学部 創造システム工学科

1. はじめに

自動車やロボット等の車輪を搭載した製品 において、モータ駆動で移動する際の路面状 態の変化は非常に重要な問題である。

そのため、非接触での判断手法が必要と考 える。さらに、前方路面を予測できれば状況に 適した制御を行うことができ、安全に走行可能 となる。

そこで本研究では、田村らが考案した形状 通過型フィルタ^[1]を利用し、路面に存在する微 小な凹凸や溝等を特徴値として路面の判別と その状態推測を行う手順を考案する。

2. 微小形状特徵

微小形状特徴とは、図1に示すような、細長 い特徴や粒的特徴、角張った特徴などの計9 種類である。また画像を見ていくマスクサイズ は5から21 画素の5サイズで、これにより特徴 量は形状特徴9種類×5サイズ(5,7,11,15,21) で計45種類となる。

しかし、微小形状のみでは印刷された床 画像などを判断できないため、前年度の研 究^[2]で微小凹凸特徴が提案された。

図1 微小形状特徴の種類

3. 微小凹凸特徵

微小凹凸特徴とは、撮影画像に対して垂 直方向に光源を設置し、照射することによ って床表面の微小な凹凸を影の有無によっ

Estimation System of Coefficient of Friction by non Contact For Mobile Robot

†Ryosuke sasaki , Takuya Saitou , Hitoshi Tamura •Innovative Systems Engineering Nippon Institute of Technology

て判別する方法である。光源は LED を使用 する。凹凸が無い対象物は光を与えても影 ができないため,凹凸が無いと判断できる。 そのため、表面の微小凹凸特徴を検出し、 摩擦係数推定の精度向上を図る。微小凹凸 特徴の抽出イメージ図を図2に示す。

図2微小凹凸特徴の抽出

4. 測定手順

4-1 実摩擦係数の測定手順

実摩擦係数の測定は床画像の撮影と同時 に行う。

測定方法は、測定する表面のごみを除去 し、テグスを測定器に対して垂直に、測定 する表面に対して平行にして引く。測定器 本体が動き、ゲージが止まった値を測定結 果とする。これを 50 回測定し、その平均の 値を対象の摩擦係数とする。

4-2 床撮影の測定手順

サンプルの床画像の撮影には、一眼レフ カメラを使用する。真下の床画像の撮影に は、下部に LED 光源が設置されたマイコン ロボットを用いる。また、上部からも光源 を当てるためスタンドライトを使用してい る。

撮影は、床からカメラまでの距離を 60 セ ンチとする。前方の床画像は、カメラから 1m,2m,3m の位置を撮影した。撮影場所は 学内の 15 箇所で行った。

図3 撮影した画像例(左が前方2m,右が真下)

5. 各床画像の推定手順

推定式の構築には F-in、F-out を 2 に設 定した増減法の重回帰分析を用いる。説明 変数は、先に記した微小形状特徴 45 種類と し、目的変数は静止摩擦係数とした。推定 式は以下のような線形結合式である。

$$y = (a_0 * x_0) + (a_1 * x_1) + (a_2 * x_2) \dots + (a_n * x_n)$$

- x は分析によって選択された特徴値とし、 a はその係数。n は選択要素数である。 微小凹凸特徴の検出は、下記手順である。
- LED 光源有りの 45 種類の特徴(A)LED 光源無しの 45 種類(B)の特徴を合わせ、 全 90 種類の特徴とする。
- (B)から(A)の差分を取り、その差分画像 を(C)とし、それらを組み合わせた 90 種類の特徴とする。

以上の特徴量を重回帰分析する。さらに 前方の床画像には判別分析を行う。

6. 結果

撮影画像から抽出した微小形状特徴量を 図4に示す。

同一の床を撮影した25枚に別箇所で撮影 した1枚の画像を比較したもので、同一箇所の 特徴量は、ほぼ同じ特徴を抽出しており、別の 箇所と比較を行うことは可能であると言える。

前方路面で判別分析を行った結果、表1の ようになった。群1が同じ箇所の真下、1m、2m、 3mの画像である。群2はそれ以外の箇所で撮 影した画像である。結果から群1は比較的同じ 画像と認識された。

図4 形状通過型フィルタにかけたグラフ

表1 判別クロス

判別クロス表			
	群1	群2	全体
o以上	106	90	196
0未満	1	2264	2265
全体	107	2354	2461

表2 重回帰分析の結果

説明変数	偏回帰係数	F値			
WLine21	0.0102722	47.19	WSnake21	-0.01414299	17.12
Cliff21	-0.006619	23.59	WRoof11+	0.017409061	10.25
Cliff21-	0.0099788	36.74	WPepper7	0.011597661	52.33
WPepper1	0.0066903	5.955	BPepper7	-0.01416964	16.33
BPepper1	0.0125784	24.74	BPepper5	0.038990628	24.85
WRoof5	-0.032942	65.7	WPepper1	-0.01292853	6.276
WRoof7-	0.039804	69.96	BPepper7-	-0.03225209	34.54
BLine7+	-0.007008	6.49	BSnake5+	-0.03477115	8.21
WSnake21	0.0070893	24.31	BSnake7+	0.025184097	7.271
BPepper1	-0.01306	25.56	BSnake15	-0.00589961	9.338
Cliff21+	-0.002518	4.845	WSnake5	-0.02268761	3.028
Cliff5+	0.0058281	20.11	WPepper5	0.00985883	3.765
WSnake11	-0.029276	9.729	BLine7-	-0.00845534	9.432
BSnake21	-0.007826	36.1	BSnake5-	0.043205647	10.77
WSnake5-	0.0836521	25.98	BLine5	0.006205777	3.958
WSnake7-	-0.0756	33.36	WRoof15	-0.02062867	19
Cliff15+	-0.003477	10.43	BRoof21	0.014548175	29.33
BLine21	-0.004556	19.83	WRoof15+	0.018789289	8.338
WPepper5	-0.044578	45.71	BSnake5	-0.02825513	2.966
WPepper7	0.0331651	26.03	BLine15+	0.002405922	3.558
WPepper1	0.0110512	5.714	WRoof21+	-0.00643855	2.449
WSnake15	0.0304313	16.24	Cliff15-	-0.00404423	7.599
BSnake7	0.053017	26.43	WLine15-	-0.00397613	3.408
			WPepper2	0.004072041	2.17
			定数項	0.533850017	

[精度]		
決定係数	R2 =	0.940747
自由度修正ずみ決定係数	R2' =	0.933819
重相関係数	R =	0.969921
自由度修正ずみ重相関係数	R' =	0.966343
ダーヴィンワトソン比	DW =	1.474578
赤池のAIC	AIC=	-1885.02

図5 摩擦係数精度の数値

各特徴の値から推定式を行った結果、自由 度修正済み決定係数(R2')の値が 0.93 とい う値が出た。去年の 0.95 と比べると値が下 がったが、摩擦係数の推定式の精度は良好 と言える。

参考文献

[1]田村仁「微小形状特徴を用いた物体の堆積画像からの 堆積量の推定手法」

全国大会講演論文集 第71回平成21年(2), "2-5"-"2-6", 2009-03-10

[2]・金谷潤,陳君,高塚崇文,後藤泰介,田村仁,"移動体 用の撮影画像による前方路面の摩擦係数推定システム",情 報処理学会第 74 回全国大会講演論文集(分冊 2), pp.247-248, 2012.