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1 Abstract
In this paper, we present a simple method to model
the diffuse reflection in an image which allows the
user to turn on and off the lights, without knowing
the scene geometry nor the camera parameters. The
user first roughly marks the area lit by a light source
in the input image and then our method will approx-
imate the diffuse lighting by creating a virtual light
source and fitting its lighting effect to the input im-
age. With the obtained model, the user can modify
the lighting in the input image very intuitively.

2 Related Work
As a typical problem in computer graphic field, there
are a large amount of research about rendering and
estimating the lighting in a scene or in an image. Yu
et al.[3] estimate the specular reflectance and diffuse
albedo of the surfaces in a scene by several input im-
ages. Bai et al.[1] presented a method of seeking the
inverse lighting process from forward lighting pro-
cess to eliminate the whole lighting from a single
image. However, both research require the knowl-
edge of geometry of the whole scene and all of the
parameters of camera, which are difficult to be com-
puted even with assistance from user.

3 Algorithm
We assume that the diffuse lighting which is to be
processed in the input image is produced by a point
light source, and is a circle on a plane of isotropic
material, which means that the intensity of reflec-
tion light is independent of viewing direction.
Our method starts by requiring the user to mark

five points on the boundary of the lit area: the cen-
ter, the top, the left, the right, and the bottom of
the area, as shown in Figure 1(b). Section 3.1 de-
scribes how intensity and position of light source will
be iteratively optimized, and then we introduce an
idea to estimate the color of reflection by material
segmentation in Section 3.2. The method of light
intensity modification will be mentioned in Section
3.3.SSSSSSSS

3.1 Diffuse Light Approximation
Eqn. 1 is the diffuse lighting model used in our
method.

L(p) = M(P )Lsrc cos(P ) +M(P )Lmin

where cos(P ) =
∆P ·N
|∆P | and ∆P = Psrc − P .

(1)
L(p) is the color of pixel p in image. P , M(P ),
and N are the corresponding position of pixel p in
virtual 3D space, the color of material on P , and the
normal vector on P , respectively. Lsrc and Psrc are
the color and the position of the light source. Lmin

is the ambient light and is assumed to be a constant
gray light everywhere.

Initial Guess
Proper estimation of Psrc is needed to optimize the
approximation, however, during optimization, the
intensity of Lsrc is also necessary, so we have to deal
with both of them together. For simplisity, we let
I(p), Imin, and Isrc represent the intensity of L(p),

Lmin, and Lsrc, and let A represent the area marked
by user.
The initial guess I0src is obtained by subtracting

Imin from the intensity of brightest pixel in A. The
roughly estimation of Imin is computed by averaging
the intensity of the darkest 1/10 pixels in A. 0 can
be the initial guess of x and z coordinate of P 0

src but
not for the y coordinate unless the light source is set
on the ground. The initial guess of y coordinate is
inferred as

P 0
srcy =

1

n

∑

p∈A

√

cos2(P )∆Px2 + cos2(P )∆Pz2

1− cos2(P )
,

(2)
where n is the number of pixels in A. Notice that
cos(P ) in Eqn. 1 is just a common definition and the
value is still unknown. Fortunately, we can calculate
it by

cos(P ) =
I(p)− Imin

I0src
. (3)

Optimization
We first define the error caused by one pixel as

E(P ) = (I(p)− Imin)−
∆Py

|∆P |
Isrc. (4)

The error can be minimized by updating Psrc and
Isrc as

P k+1
src y = P k

srcy+
1

n

∑

P∈A

(

E(P )Iksrc
∆P kx2 +∆P kz2

|∆P k|3

)

,

(5)

P k+1
src x = P k

srcx−
1

n

∑

P∈A

(

E(P )Iksrc
∆P kx∆P ky

|∆P |3

)

,

(6)

Ik+1
src =

ΣP∈A

(

∆Pky
|∆Pk| (I(p)− Imin)

)

ΣP∈A

(

∆Pky

|∆Pk|

)2 , (7)

The z coordinate of P k
src can be updated by Eqn. 6

with ∆P kx replaced by ∆P kz.

3.2 Material Segmentation
Since we know the position of light source, it is pos-
sible to esitimate the reflection color in pixel p by

M(P )Lsrc =
L(p)−M(P )Lmin

cos(P )
. (8)

The M(P )Lmin term can be determined by similar
way how a rough Imin is computed if all pixels have
similar reflection property. Nevertheless, as shown
in Figure 2, in most cases the materials of pixels are
so different that it is difficult to find aM(P )Lmin for
all pixels. Therefore, it is necessary to distinguish
the materials and their reflection property.
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(a) Input image (b) User input (c) Result with the
lamp turned off

(d) Result with
the lamp intensity
decreased to 80%

(e) Result with
the lamp intensity
increased to 120%

Figure 1: The input and result images.

Figure 2: Comparison between the result of turn-
ing off the lamp after material segmentation pro-
cess(left) and the result computed with an unique
reflection color(right).

We refer to the work of Wang et al.[2] to build
superpixels. Their work uses only the pixel’s color
when separating superpixels, however, the color is
largely effected by lighting. To avoid being effected,
we use both color and reflection coefficient, where
reflection coefficient is L(p)/(L′

src cos(P )) and L′
src

is a rough estimation of Lsrc by averaging Eqn. 8
over all pixels in A. Then apply kNN Clustering to
superpixels to segment the different materials. The
result of segmentation is shown in Figure 3.
For each segment i, all pixels in it should have a

unique material M i. We sort and separate the su-
perpixels into two groups Ai

max and Ai
min according

to cos(P j), where P j is the centroid of superpixel j.
Then we can compute M iLi

src for segment i by

M iLi
src =

Li(p)max − Li(p)min

cosi(P )max − cosi(P )min
, (9)

where Li(p)max and Li(P )min are the average color,
and cosi(p)max and cosi(P )min are the average value
of cos(P j) of superpixels in Ai

max and Ai
min. Then

M iLi
min can be estimated as

M iLi
min =

1

ni

∑

j∈Ai

L(p)−M iLi
src cos(P

j), (10)

where Ai is the set of superpixels in segment i and
ni is the size of the set.
Finally, the terms M(P )Lsrc and M(P )Lmin of

pixel p can be computed by weighted average over
all estimated M iLi

src and M iLi
min.

M(P )Lsrc =
1

prob
t

∑

i prob
i(L(p))M iLi

src

M(P )Lmin = 1
prob

t

∑

i prob
i(L(p))M iLi

min,

(11)
where probi(L(p)) is computed by first using 3-
dimensional gaussian model to approximate the
color distribution of pixels in segment i and then
calculating the possibility of pixel p belonging to
segment i, which stands for similarity between pixel

Figure 3: The result of segmentation using reflection
coefficient(left) and without using reflection coeffi-
cient(right). The red line is the boundary of seg-
mented materials and the green line is the boundary
of superpixels.

p and segment i, and probt is the sum of all
probi(L(p)) for normalization.
3.3 Light Intensity Modification
Now all necessary information is known, the light-
ing in input image can be modified by decreasing or
increasing the M(P )Lsrc term in Eqn. 1.
Notice that if we set the value of M(P )Lsrc term

to 0, then we actually ”turned off” the light, as
shown in Figure 1(c).
4 Result
Figure 1 shows the result of lighting after intensity
modification by our algorithm. The processor of the
machine we used for experiments is AMD Phenom
II X4 940, and the memory is 4GB. The size of input
image is 800x536 and the total computation time for
the estimation is about 10 seconds and the relighting
process costs less than 0.1 second.

5 Conclusion
We proposed a simple method to model the diffuse
reflection in an image without any requirements of
pre-knowledge or assumptions on the scene and cam-
era and a novel idea to utilize the reflection coeffi-
cient for segmentation to prevent from being effected
by lighting. Furthermore, we provided a friendly
user interface to manipulate the lighting intuitively.
However, there are still many issues to be solved

such as estimating the lighting on a complex geom-
etry, and challenging more different types of light
sources.
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