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Evolutionary Robot with Competitive-Cooperative Neural Network

Masayoshi Tabuse,† Tatsuro Shinchi,†† Akinobu Todaka†††

and Tetsuro Kitazoe†††

This paper describes a new approach to control systems for autonomous mobile robots, using
sandwiches of two different kinds of neural networks. One is a neural network for recognizing
sensor information with mechanisms of competition and cooperation (CCNN), where synaptic
couplings are fixed. The other is a neural network controller with adaptive synaptic couplings
corresponding to genotypes in creatures and used for self-learning of wheel controls (NNC).
In a computer simulation model with both of neural network, we were successful in obtaining
typical types of robot that performed well in following a curved wall. The role of CCNN is to
decide which sensor signals to select in a noisy environment, while NNC adjusts the synaptic
couplings through genetic operations so that it can transfer the outputs from CCNN to the
rotation of robot’s wheel. A test was performed to show the superiority of CCNN . A robot
with CCNN can pass through a narrow entrance to a concave space, and is very robust with
respect to several kinds of noises. We also tested a real robot by using the synaptic couplings
obtained from the simulation, and showed that the robot performs well in a real environment.

1. Introduction

Many attempts have been made to develop
autonomous mobile robots inspired by animals
or humans, which have robust adaptation and
stable behavior in complicated and changing
environments. One approach along these lines
is to use neural networks to connect input from
sensors and output to controllers, and to adapt
synaptic couplings in the networks to the envi-
ronment. Many researchers have proposed evo-
lutionary robot control systems using evolution-
ary adaptations of neural networks 1)∼3), ge-
netic programming 4), and a classifier system 5).

There are certainly some parts of our brain
which do not include a training procedure, but
which use processes inherited from our parents.
Some early stages of image processing do not
need a learning procedure when, for instance,
we are learning driving techniques. Stereovi-
sion neural networks, for example, do not need
a learning procedure, since we have an auto-
matic focusing ability without training. Even if
it is thought that early vision neural networks
themselves have developed by means of genetic
algorithms, we may assume that their synaptic
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couplings can be considered fixed when training
the mobile control systems of robots.

The strategy of the present paper is to di-
vide the neural networks into two parts. One,
which we call a competitive-cooperative neu-
ral network (CCNN), is a sensor recognition
processor in which sensor input data are pro-
cessed with competition and cooperation, re-
ducing noise from the environment and reach-
ing definite decisions on the selection of sensor
data. We consider the network parameters in
this part to be fixed. The other is a processor
with self-training ability, called a neural net-
work controller (NNC), where the input data
from CCNN are processed. After the proces-
sor NNC has been trained, it outputs signals
to control a robot’s motion. The synaptic cou-
plings between input and output are considered
as genotypes and trained to adapt to the envi-
ronment by means of genetic algorithms.

The idea of neural networks with compe-
tition-cooperation originated from stereovision
pattern recognition in early vision processing.
Marr and Poggio treated stereovision in their
famous calculation theory 6). The neural net-
work model for stereovision was studied by
Amari and Arbib, who called it a primitive
competitive model 7). Reimann and Haken pro-
posed a neural network with cooperation and
competition 8). Kitazoe, et al. presented a neu-
ral network model capable of stereovision recog-
nition of moving objects 9). In neural networks
with competition and cooperation, competition
makes only one neuron active and cooperation
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maintains the active state. In a real robot, com-
petition is performed among neural activities
corresponding to different sensors, while coop-
eration takes place among time-delayed neural
activities of the same sensor. Thus, the robot
recognizes the nearest object in the surround-
ing environment, maintains this recognition in
response to small fluctuations of sensor values,
and behaves correctly in a dynamically chang-
ing environment.

After the CCNN processing, we use evolu-
tionary algorithms for NNC. In general, evolu-
tionary processes require a large population and
a number of generations. Thus, experiments
for evolutionary robotics are usually carried out
in computer simulations, which are helpful for
training and testing robot control systems. In
this case, the simulator must include appropri-
ate noises similar to those a real robot will en-
counter.

The purpose of the present paper is to study
1. how well a combined use of CCNN and

NNC works in enabling a mobile robot to
carry out tasks,

2. what types of robots are typically obtained
after self-training, and

3. what roles CCNN play in enabling a mo-
bile robot to carry out tasks and to main-
tain robustness in noisy environment.

The task for the mobile robot described in the
present paper is to follow walls of various shapes
and in a noisy environment. Many authors
have investigated this task, using various meth-
ods 10)∼12). Our work differs from theirs in that
we propose a new approach to control systems
for a mobile robot, using CCNN and NNC
with evolutionary adaptation. Therefore, we
chose this particular task not only to show how
well our neural network system works in a noisy
environment but also so that we can develop
future realistic applications. For instance, we
could consider an autonomous wheelchair trav-
eling along a corridor with sensors installed in it
or autonomous mobiles (with no humans inside)
that travel along a highway, guided by sensory
information reflected from guardrails or some
other reflective devices.

2. The Robot and the Environment

In our experiments, we use a miniature mo-
bile robot named Khepera 13). Khepera is
3.2 cm height and 5.5 cm in diameter, with
eight infrared sensors and two wheels controlled
by independent motors, as shown in Fig. 1.

Fig. 1 Mobile robot Khepera.

Fig. 2 Khepera’s control system.

Khepera’s sensors detect obstacles and return
integer values from 0 to 1023 corresponding to
the distances between Khepera and the obsta-
cles. A low value means that there are no
obstacles near the sensor, while a high value
means that there is an obstacle close to the sen-
sor. Khepera communicates with a computer
by means of a serial line, so that the computer
obtains the sensor values from Khepera and
provides Khepera with the information neces-
sary to control the wheel speed.

The control system of Khepera consists of two
kinds of neural networks, CCNN and NNC,
shown in Fig. 2. CCNN is a sensor recogni-
tion processor in which raw infrared sensor val-
ues Sa (a = 0, 1, . . . , 5) are input from Khepera
and processed data xa (a = 0, 1, . . . , 5) are out-
put to NNC. NNC controls Khepera’s motors
according to data from CCNN . Synaptic cou-
plings of NNC are trained to perform a given
task by using genetic algorithms.

To train the synaptic couplings by means
of genetic algorithms, we investigated robot
movement in a computer simulation model. A
difficult problem in computer simulations is
how to simulate the real world with respect to
noises. Khepera Simulator Package ver.2.0,
by Olivier Michel 14), is an excellent software
tool that takes account of uncertainties as-
sumed to exist in the real world. Noises of
±10%, ±10% and ±5% are randomly added to
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Fig. 3 Khepera’s environment.

the amplitude of the sensor value, the ampli-
tude of the motor speed, and the direction of
Khepera resulting from the difference in speeds
of the left and right motors, respectively.

As a typical example, we take a rectangu-
lar area with two concave spaces surrounded
by a wall, shown in Fig. 3, in which Khepera
is required to follow the wall counterclockwise.
Khepera keeps a safe and short distance from
the wall on the right, and enters a wide space
A and also a narrow space B.

3. Two-Layered CCNN

We used a two-layered CCNN 9) to apply a
stereovision neural network to a robot sensory
system that processes Khepera’s sensor values.
The two-layered CCNN equations are as fol-
lows:

τ1
d

dt
αa

u(t) = −αa
u(t) + Aλa

u

−B
∑
a′ �=a

g(ξa′
u (t))

+D
u∑

u′=u−l

g(ξa
u′(t)), (1)

τ2
d

dt
ξa
u(t) = −ξa

u(t) + f(αa
u(t)). (2)

In Eqs. (1) and (2), t denotes an internal pro-
cessing time and u is an actual external time
step to control a robot, where one step of u is
carried out after dozens of internal steps of t
carried out in numerical calculations. αa

u(t) is
a neural activity of the first layer to which λa

u is
input from infrared sensor #a (a = 0, 1, . . . , 5).
ξa
u(t) is a neural activity of the second layer,

which outputs xa to CNN after a certain in-
ternal processing time. τ1 and τ2 are decay
time constants for neural activities αa

u(t) and
ξa
u(t), respectively 7). The neural network for

these equations has a two-layered structure, as
shown in Fig. 4. f(x) is a well-known sigmoid
function, and g(x) is a function given by Amari
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Fig. 4 Image of two-layered CCNN .

and Arbib 7):

f(x) =
1
2
(tanh(x − h) + 1), (3)

g(x) = x+ =
1
2
(x + |x|). (4)

A, B, D, h, and l are positive constants, which
are intended chosen appropriately.

The two-layered CCNN was originally in-
tended to realize stereovision recognition by
fusing two 2D images from the left and right
eyes. In stereovision, input similarities λa

u for
the u-th coordinate at a certain disparity a
are fed to the neural equations, which develop
neural activities ξa

u to a stable point, enabling
recognition of a definite disparity. For Khepera,
we use input λa

u normalized by −1 to 1 as fol-
lows:

λa
u = 2.0 · Sa

u

1023.0
− 1.0, (5)

where Sa
u is the value of sensor #a at an actual

time step u.
In Eq. (1), the third term represents a compe-

tition with other neural activities ξa′
u (a′ �= a),

and the fourth term measures cooperation with
past neural activities ξa

u′ , which is executed at
every step from the l-th past time u′ = u− l to
the present u′ =u.

The control of Khepera by means of CCNN
is based on the consideration that the neural
activities related to Khepera’s sensors compete
with each other and that a sequence of time-
delayed neural activities for each sensor coop-
erate with each other. We calculate the neural
network equations competing with other neu-
ral activities and cooperating with past time
activities (a = 0, 1, . . . , 5, u′ = u − l, . . . , u −
2, u − 1, u), and eventually obtain recognition
of a particular sensor after arriving at a stable
state.

The qualitative features of this neural net-
work can be described as follows:
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Fig. 5 Parameter ranges A, B, and D for h = 1.0 and
l = 6 of CCNN .

Fig. 6 Feature (2). All neural activities ξ become
almost zero when all λ are equal to −0.1.
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Fig. 7 Feature (3) with λ = 0.3 for a = 0 and λ = −0.1
for other values of a. ξ for a = 0 increases to
almost 1, while other ξ become almost zero.

1) According to the values of λ, each ξ is ac-
tive (ξ ≈ 1.0) or inactive (ξ ≈ 0.0).

2) When all λ have small values (≤ 0.0), all
activities ξ are inactive, having values near
zero.

3) When one λ has a large value (0.0 < λ ≤
1.0), it becomes active, having a value close
to 1.

4) When two or more λ have large values, ξ
of the largest λ is active and the others are
suppressed on account of the competition
term.

5) When two or more λ have very large values
(λ ≈ 1.0), ξ of these λ are all active.

6) Even if the value of λ for the active ξ be-
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to λ > 0 increase initially, #0 ξ for the larger
λ becomes almost one and others go to almost
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Fig. 9 Feature (5) with λ = 1.0 for a = 0, λ = 0.9 for
a = 5, and λ = −0.1 for other values of a. In
this case both ξ for a = 0 and a = 5 increase to
almost one and others become almost zero.

comes somewhat smaller, this ξ remains in
an active state because of the cooperative
term.

These features of the neural network re-
main invariant in wide ranges of parameters
A, B, D, h, and l, showing robustness with re-
spect to a change of parameters. For example,
Fig. 5 shows parameter ranges of B and D for
0 < A ≤ 10.0, h = 1.0, and l = 6, where the
above features (1)–(6) are satisfied. We show
the features (2)–(6) in Figs. 6, 7, 8, 9, 10, 11
by using a typical set of parameters: A = 8.0,
B = 4.0, D = 2.0, h = 1.0, and l = 6. Stable
solutions of Eqs. (1) and (2) do not depend on
the values of τ1 and τ2. We choose τ1 = τ2 = 1,
and take 50 steps of t in numerical calculations
hereafter so that neural activities take values
close to the stable points, as shown in Figs. 6–
11.

When Khepera with CCNN is applied to a
real environment, the above features (1)–(6)
provide a clear-cut signal processing. While
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Fig. 10 Feature (6). From the beginning the sensor
value for a = 0 is kept larger than for a = 5
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active for a = 0 and inactive for other values
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u . Nevertheless, ξa=0
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mains active and ξa=5
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due to the cooperative term, though the value
of ξa=0

u decreases slightly at the time interval.
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Fig. 11 Feature (6). From the beginning the sensor
value for a = 0 is kept larger than for a = 5
(Sa=0

u = 717 and Sa=5
u = 665), so that ξ is ac-

tive for a = 0 and inactive for other values of
a. At actual time steps u = 50 to 52, Sa=5

u be-
comes greater than Sa=0

u . Nevertheless, ξa=0
u

remains active and ξa=5
u does not become ac-

tive due to the cooperative term, though the
value of ξa=0

u decreases slightly.

each raw sensor returns a value simultaneously,
as shown in Fig. 12, almost only one neural
activity returns a high value after processing
with CCNN , as shown in Fig. 13. Therefore,
Khepera with CCNN has the ability to decide
or choose the sensor value to which Khepera
should react.

4. Evolutionary Adaptation

To train robot control systems, we perform
adaptation under a computer simulation model
of a robot and its environment. As shown in
Fig. 14, the data x0, x1, x2, . . . , x5 output from
CCNN are fed to second neural networks with
self-training ability. The synaptic couplings in
NNC are then revised by genetic algorithms.
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The control signals to the right wheel and left
wheel, R and L, and the speeds of the right
motor and left motor, VR and VL, are given by

R = F

(
5∑

i=0

WRi · xi + WR6

)
, (6)

L = F

(
5∑

i=0

WLi · xi + WL6

)
, (7)

F (x) = tanh(x), (8)
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VR = Vmax · R, (9)
VL = Vmax · L. (10)

WRi and WLi (i = 0, 1, . . . , 5) are synaptic cou-
plings, as shown in Fig. 14, connecting data
from CCNN with the control of the right or left
motor. WR6 and WL6 are thresholds, which ad-
just the values of sigmoid function (8). Vmax is
a maximum speed of the right and left motors.

We determine WRi and WLi by using the ge-
netic algorithms 15)∼17). The algorithms for ob-
taining the best genes are as follows:
1) Make N1 robots with randomly generated

synaptic couplings and let them run in the
area shown in Fig. 3 for a certain period.

2) Make new N2 robots from the old N1 robots
by using genetic algorithms in which the
synaptic couplings of new robots are gen-
erated by real-coded genetic algorithms 18),
in which α of BLX-α is set to 0.5. Then, let
them run for the same period as in step 1.

3) Measure all the robots N1 + N2 by using
a given evaluation function, and choose N1

robots with the highest scores. If the to-
tal score of the N1 robots exceeds a given
threshold, stop the loop; otherwise go to
step 2.

5. Experiments

We investigate movements along a wall in
order to estimate the possibility of controlling
Khepera by means of combined use of CCNN
and NNC with genetic algorithms. Sensor #5
has a crucial role in counterclockwise movement
along a wall. If x5 is active, it is near a wall,
so it should follow the wall. Since we do not
need independent information from each sensor
to perform the task of following a wall, we can
degenerate variables xi to Xi, which are defined
as follows:

X0 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4, (11)
X1 = x5, (12)

where ⊕ means that X0 = x0+x1+x2+x3+x4

for x0 + x1 + x2 + x3 + x4 ≤ 1.0 and X0 =
1.0 for x0 + x1 + x2 + x3 + x4 > 1.0. Let us
substitute Eqs. (11) and (12) into Eqs. (6) and
(7), as follows:

R = F

(
1∑

i=0

WRiXi + WR2

)
, (13)

L = F

(
1∑

i=0

WLiXi + WL2

)
. (14)

Table 1 Coupling values of the best 10 robots after
100 generations.

No. WR0 WR1 WR2 WL0 WL1 WL2 fitness
1 1.06 1.18 −0.05 −2.54 0.09 1.50 7685.05
2 0.96 1.13 0.02 −2.64 0.15 1.52 7679.29
3 1.02 1.18 −0.04 −2.46 0.01 1.47 7636.54
4 1.11 1.20 −0.04 −2.85 0.56 1.48 7623.72
5 4.80 1.11 −0.03 −3.11 0.65 1.51 7620.40
6 0.91 1.12 −0.06 −2.51 0.09 1.48 7612.27
7 4.47 1.08 −0.08 −2.95 0.41 1.55 7602.17
8 4.70 1.04 0.05 −2.94 0.64 1.48 7598.13
9 1.26 0.99 0.01 −3.38 0.99 1.64 7585.33

10 1.19 0.98 0.05 −3.50 0.91 1.64 7581.13

Table 2 Typical behaviors of the best 10 robots in
Table 1.

X0 \ X1 0 1
0 Sharp right Wide right
1 Sharp left Sharp left

The evaluation function in genetic algorithms
is given as

g =
|VR + VL|

2.0
·
(

1 − |(VR + 1) − VL|
2Vmax + 1.0

)

·
(

1.0 − 1
5

4∑
a=0

Sa
u

1023.0

)

·
(

VR + VL + 2Vmax

4Vmax

)
·S5

u/1023.0. (15)

Each term in Eq. (15) evaluates the robot per-
formance from different points of view, measur-
ing Khepera’s speed, counterclockwise rotation,
movements without obstacles on the X0 side,
going forward and following a wall to its right
side. The evaluation function g has a high value
if a robot follows a wall without colliding with
anything and if it moves forward as fast as pos-
sible. We set A = 8.0, B = 4.0, D = 2.0, and
l = 6 in Eq. (1) and h = 1.0 in Eq. (3). We take
N1 = N2 = 20 and Vmax = 8. The evaluation
function is calculated for each 2000 step run of
a robot.

5.1 Behavior Type by Evolutionary
Adaptation

As a result of evolutionary adaptation, the
coupling values of the best 10 robots are shown
in Table 1 together with the fitness value,
which is the sum of g for 2000 steps. It is in-
teresting to see that these best 10 robots have
almost the same behaviors, which are shown in
Table 2. The data xi (i = 0, 1, . . . , 5) output
from CCNN show that all values of xi are al-
most zero or that one value of xi is almost 1



Vol. 44 No. 10 Evolutionary Robot with Competitive-Cooperative Neural Network 2509

Fig. 15 Trail of a robot with CCNN , which takes
about 1200 simulation steps to complete a cir-
cuit. Dots on the line indicate intervals of 100
steps, and u1 corresponds to Fig. 16.

and the others are almost zero. Therefore, we
can assume that X0 and X1 have values of 0 or
1. The robot reacts to obstacles on two sides of
Khepera: the right side (X1 Side) and the left or
front side (X0 Side). A robot moves with sharp
right-handed rotation if it does not encounter
any obstacle (X0, X1) = (0, 0). It moves with
sharp left-handed rotation if it encounters ob-
stacles on both sides (1, 1) or only on the X0

Side (1, 0). When a robot encounters obstacles
only on the X1 Side (0, 1), it moves with wide
right-handed rotation.

5.2 Effects of CCNN
In order to see the effects of CCNN , we

investigate the behaviors of Khepera with
CCNN . Figure 15 shows the trail of a robot
in environment with some concave spaces of
varying sizes that are wide enough for a robot
to enter. The widths of the entrances to space
A and space B are four body lengths and two
body lengths of Khepera. The values in Fig. 15
show the step number after the commencement
of a simulation. The behavior shown in Fig. 15
occurs with two neural networks, CCNN and
NNC. In NNC, the values xa are processed
with the self-adapted coupling values. The
movement in Fig. 15 is presented with the best
set of coupling values in Table 1, which is the
typical one with the coupling values shown in
Table 1. A robot can follow a wall and enter
both the wide space A and the narrow space B.
Though information from many sensors tends
to confuse a robot moving in general, this robot
moves smoothly alongside a curved wall. Note
the movements in the narrow concave space B,
where the robot reaches the inner part of the
space and exits from the space.

The four graphs each in Fig. 16 (a) and 4
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Fig. 16 Time-series value of a sensor. The four graphs
in (a) and (b) are obtained from the robot
movement with CCNN , as shown in Fig. 15.
In (a) the values are directly returned from the
robot’s raw sensor data. In (b), xa are values
of Sa

u processed with CCNN . u1 corresponds
to the time in Fig. 15.

graphs in Fig. 16 (b) show the sensor values Sa
u

of the robot and xa after Sa
u have been pro-

cessed with CCNN , respectively, correspond-
ing to Fig. 15. As Fig. 16 (a) indicates, the robot
has sensor values for a = 0 at u1 ≈ 680 when
the robot reaches the entrance of space B and
detects the wall on the left-hand side of the
robot. Therefore, if the sensor values Sa

u are
output to NNC directly, the robot turns sharp
left and cannot enter space B. On the other
hand, the processed values with CCNN be-
come zero for a = 0 at u1 ≈ 680, because of the
competitive and cooperative terms of CCNN ,
and the robot turns right. In other words, the
robot with CCNN can enter concave space B
and keep following a wall effectively.

5.3 Robustness of a Robot’s Behavior
in a Noisy Environment

We examine the robustness of a robot’s be-
havior with CCNN in a noisy environment.
A random noise is added to the sensor value
of a robot, where it takes a value ranging be-
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Fig. 17 Average raw value of sensor #5 correspond-
ing to the maximum value of noise νmax.
The solid line, which remains high for large
amounts of noise, represents a value of the
robot with CCNN , while the dotted line,
which decreases rapidly, represents the value
of a robot without CCNN .

Fig. 18 Trails of a robot with CCNN , which takes
about 1200 simulation steps to complete the
circuit. The sold, dotted, and broken lines
denote the trails for νmax = 0, 50, and 100,
respectively.

tween 0 and the maximum value νmax. If a sen-
sor value is over 1023, it is set to 1023. Since
the amount of noise is represented by νmax, we
measure the average raw value of sensor #5 by
changing νmax. For the robot with CCNN , we
use the same coupling values as in the previ-
ous subsection. For the robot without CCNN ,
we use the best set of adaptive coupling values
in NNC, which are WR0 = 4.74, WR1 = 0.65,
WR2 = −0.28, WL0 = −3.90, WL1 = 1.45, and
WL2 = 1.80, obtained in a computer simula-
tion of the robot without CCNN . In Fig. 17,
we see that the average value of sensor #5 of a
robot without CCNN decreases rapidly, while
that of one with CCNN maintains a high value
and decreases slowly. Since the value of sensor
#5 represents the distance between the right-
hand side of a robot and a wall, a high value of
sensor #5 means that a robot behaves very well
in following a wall. The actual trails of a robot
with and without CCNN in a noisy environ-

Fig. 19 Trails of a robot without CCNN , which takes
about 1200 simulation steps to complete the
circuit. The solid, dotted, and broken lines
denote the trails for νmax = 0, 50, and 100,
respectively.

Fig. 20 Real environment.

ment are also shown in Figs. 18 and 19, respec-
tively. A robot with CCNN has good behavior
in following a wall for noises νmax = 0, 50, 100.
On the other hand, a robot without CCNN
fails in the movement task of following a wall
for νmax = 50, 100. These results show that a
robot with CCNN has much more robust be-
havior in a noisy environment than one without
CCNN .

5.4 Experiments in a Real Environ-
ment

We investigate Khepera’s behaviors in a real
environment, using synaptic couplings obtained
from the simulation. All the parameters of
CCNN and NNC are set to the same values
as in the simulation. Figure 20 shows a real
environment, in which the color of all walls is
white, because white enables Khepera’s sensors
to detect obstacles more easily. The widths of
the entrances to spaces A and B are 27 cm and
12 cm, respectively. Khepera is controlled by a
workstation (Sun UltraSparc 450MHz) through
a serial line. Figures 21 and 22 show the trails
of Khepera with and without CCNN , respec-
tively, in a real environment. The solid and dot-
ted lines indicate the trails under natural light
from windows and the light of fluorescent lamps



Vol. 44 No. 10 Evolutionary Robot with Competitive-Cooperative Neural Network 2511

Fig. 21 Trails of Khepera with CCNN in the real en-
vironment, where it takes about 6000 actual
time steps (60 seconds) to complete a circuit.
The solid and dotted lines show the trails un-
der natural light and the light of fluorescent
lamps, respectively.

Fig. 22 Trails of Khepera without CCNN in the real
environment, where it takes about 6000 actual
time steps (60 seconds) to complete a circuit.
The solid and dotted lines show the trails un-
der natural light and the light of fluorescent
lamps, respectively.

in the ceiling, respectively. The light of fluo-
rescent lamps fluctuates temporally, so that it
adds to the noise detected by Khepera’s sensors.
Figure 12 shows the sensor values of Khepera,
whose fluctuation is the effect of the light of
fluorescent lamps and reaction to the walls.

Khepera with CCNN follows along a wall
and enters both wide and narrow spaces, A
and B, very well in both natural light and the
light of fluorescent lamps. On the other hand,
Khepera without CCNN cannot enter a nar-
row space B and does not follow a wall correctly
under the light of fluorescent lamps. These re-
sults are similar to those in the simulation, and
we think Khepera with CCNN performs better
both in the simulation and in the real environ-
ment.

6. Discussion on CCNN Parameters

Finally, we discuss the parameters of CCNN .
In biological development of multistage neural
networks with different functions, it seems nat-
ural to assume that, each has been trained se-
quentially rather than that all were trained in

Table 3 Parameters and coupling values of the best
10 robots after 100 generations.

No. A B D h
WR0 WR1 WR2 WL0 WL1 WL2 fitness

1 17.32 5.33 0.91 3.93
1.95 1.19 0.09 −2.90 0.53 1.47 7881.31

2 12.13 3.64 0.85 4.41
2.25 1.32 −0.08 −2.98 0.51 1.54 7796.91

3 21.28 4.26 1.29 5.18
2.12 0.83 0.21 −3.04 0.59 1.57 7746.14

4 12.84 4.03 0.12 6.00
2.50 0.96 0.10 −2.83 0.68 1.43 7741.23

5 28.50 6.73 1.31 5.75
1.51 1.24 −0.07 −2.86 0.62 1.51 7709.41

6 11.31 4.61 0.06 2.96
2.47 0.94 0.12 −3.28 0.87 1.44 7697.68

7 9.16 4.12 0.59 3.03
2.40 1.01 0.07 −3.16 0.94 1.44 7683.49

8 6.05 2.75 0.09 1.77
0.63 0.92 0.18 −2.83 0.81 1.38 7664.65

9 10.21 4.33 1.43 1.00
1.46 1.01 −0.00 −3.07 1.16 1.166 7657.10

10 9.60 4.20 0.51 3.17
2.33 1.06 0.10 −3.36 0.82 1.56 7649.83

Table 4 Typical behaviors of the best 10 robots in
Table 3.

X0 \ X1 0 1
0 Sharp right Wide right
1 Sharp left Sharp left

parallel. In the present paper, the parameters
A, B, D, and h for CCNN are set to typical val-
ues showing the features (1)–(6) in Section 3,
because we think that the sensor recognition
neural network already had competitive and
cooperative features before the NNC network
was trained. However, in order to optimize from
the computational point of view, it seems mean-
ingful to train CCNN and NNC in parallel by
using evolutionary adaptation, though it takes
a lot of CPU time. Thus, we may determine
these parameters by using genetic algorithms.

We tested an approach in which the param-
eters of CCNN and the synaptic couplings of
NNC are determined in parallel by using ge-
netic algorithms in the same environment as the
previous computer simulation described in Sec-
tion 5. We set N1 = N2 = 100 and l = 6. The
parameters and coupling values of the best 10
robots after evolutionary adaptation are shown
in Table 3 together with the fitness value,
which is the sum of g for 2000 steps. Typical
behaviors of these robots are shown in Table 4.
We find that Khepera was adapted to the envi-
ronment, having the same features as and simi-
lar effectiveness to the robots listed in Tables 1
and 2, and that it performed a wall-following
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task very well in this approach. We conclude
that a parallel adaptation of CCNN and NNC
does not lead to a drastic improvement over a
sequential adaptation of CCNN and NNC.

7. Conclusion

We have presented a control system for a mo-
bile robot using a competitive and cooperative
two-layered neural network (CCNN) and also
a self-adaptive neural network (NNC). The
competitive term makes only one neuron ξ ac-
tive for large input values and the cooperative
term makes ξ maintain the active state in re-
sponse to a small fluctuation of the input value.
As a result, a self-learning neural network cre-
ated wall following behavior by using ξ output
from the two-layered network. We found that
Khepera, controlled by CCNN , showed robust
behaviors in response to many kinds of noises
while following a curved wall. Moreover, we
have found the robot with CCNN follows a
wall smoothly and does not fail to pass through
a small entrance. We also tested Khepera in a
real environment, using the synaptic couplings
obtained from the simulation. Khepera with
CCNN followed a wall and entered a wide
space A and a narrow space B, while without
CCNN it failed to perform well a the real envi-
ronment. We conclude that a robot with a two-
layered competitive-cooperative neural network
and self-adaptive neural network is capable of
very effective movements in a complex environ-
ment. The success of the present approach sug-
gests future applications in various kinds of en-
vironment.
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