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1 Introduction
In Japan’s aging society and abroad, interviews reveal that the
elderly consider communication and social contact as important
as their health [1]. Conveying emotion clearly is an important
part of social communication [2]. Since care robots for the
elderly are becoming more popular, our work focuses on making
robots understand and express emotion for better quality of life.

In this study, we develop and test an emotion framework that
encompasses both voice and gesture for humanoid robots. Until
now, robot emotion studies have been limited to one modality
at a time. For example, Laban Movement analysis [3] was used
for robot movement, and DECTalk was used to add affect to
Kismet’s voice [4]. We attempt to find a general approach or
“underlying code” for emotion focusing on how one moves, or
how one speaks. The eventual goal is to analyze and convey
emotions in a rich, multi-modal manner using one unified
emotional framework. This framework would be useful not only
for multiple modalities, but arbitrary robot forms, such as robot
vacuum cleaners [5]. In this paper, we propose such an emotion
framework, and test it by implementing an emotion transfer
system, which converts emotional voice to robot gesture.

2 An Emotion Transfer Framework
We propose a framework (Fig. 1) that models emotion through
dynamic parameters of speed, intensity, regularity and extent.
For short, we call this parameter set DESIRE: Description of
Emotion through Speed, Intensity, Regularity and Extent,
or simply SIRE. Speed and extent have been widely accepted in
the Human-Robot Interaction (HRI) community to convey some
aspects of emotion [3] [5], and here we study two other parame-
ters called regularity and intensity. Our hypothesis is that certain
values of SIRE underlie the same emotions in voice and gesture.
An extension to music and a full description of the approach is
discussed in [6]. In short, the DESIRE framework consists of:
1. Dynamic parameters, representing universally accepted

perceptual features relevant to emotion (SIRE). We define
them as a 4-tuple of numbers S,I,R,E ∈ [0,1].

2. Parameter mappings, between the dynamic parameters and
robot-specific implementation.
The parameter mappings can be divided into two layers as

shown in Figure 1: (1) a hardware-independent layer and (2)
a hardware-specific layer.

2.1 Hardware-independent layer
The DESIRE framework was inspired by commonalities found
between emotion in movement, voice and music [7] [8]. For
example, speed is called rate in speech literature [9] or velocity
in gesture [12]. We have summarized our review in Table 1.

2.2 Hardware-specific implementation
We provide here the mappings shown in Fig. 1 for 1) extracting
SIRE from emotional speech audio samples, and 2) generating
motions from SIRE on the NAO Humanoid robot.

2.2.1 Extracting SIRE from Voice
The studies in Table 1 provide a good theoretical basis for how
to map voice to SIRE parameters. In this section, we assume an

Figure 1: Overview of DESIRE cross-modal emotion transfer frame-
work.

input speech sample x(t) with sample rate fs and length N. In
our experiments, these result from audio files recorded at 16kHz.

Speed is mapped here to speech rate, or more specifically,
syllables per second. For the purposes of this study, we
manually provide the number of syllables b. We assume that
the sentence sample is clipped at the beginning and end of the
utterance, giving us b∗ fs/N syllables per second.

Intensity is implemented here as voice onset rapidity.
More specifically, we find the power trajectory p(k) of
x(t) and calculate its maximum rate of change. The power
is given for every frame of size n (in our experiments,

n = 1024) by p(k) =
n−1
∑

i=0
x(k · n+ i)2, and onset rapidity is

maxk=1,...,N/n(p(k)− p(k−1)).
Regularity is mapped here to the inverse of jitter in the

voice sample, as jitter has been related to vocal “rough-
ness” in [10]. Jitter is defined for each utterance as

1/(N−1)
N
∑

t=1
|x(t)−x(t−1)|.

Extent is defined as the range of pitch in the speaker’s voice.
We used the Snack sound toolkit3 implementation of the average
magnitude difference function (AMDF) [11] to extract the
utterance’s F0 trajectory, taking extent as the difference between
the lowest and the highest F0’s.

Scaling was performed in a similar fashion for all of
SIRE. Given the minimum and maximum values for each
parameter (experimentally chosen), we linearly scale to achieve
a parameter between 0 and 1. For instance, pitch range
was linearly scaled between a minimum F0 of 40 Hz and a
maximum F0 of 255 Hz. As for speed, we used a minimum
speech rate of 2 syllables per second and a maximum speech
rate of 7 syllables per second. In future work, we should study
how this could be adapted to the speaker, for example by
defining extent as the user’s deviation from their pitch average.

2.2.2 Gestural mappings for NAO Humanoid
In this section we briefly describe how we implement the
perception of speed, intensity, regularity and extent on
Aldebaran Robotics’ humanoid robot NAO2. A gesture is
considered here as a simple motion from a “base posture” to
an “extended posture” and back to the “base posture”, each
reached at target times t0, t1 and t2, respectively. Figure 3 shows
example postures for arms; we define head gestures similarly.

Speed is mapped by performing a simple linear down-scaling
of all target times for higher speeds. Intensity is increased by

3www.speech.kth.se/snack/ 2www.aldebaran-robotics.com
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Table 1: DESIRE parameters and associated emotional features for modalities of voice, gesture. Features in italics were used in our study.

Parameter Description Voice Gesture

Speed slow vs. fast speech rate [9], pauses [7] velocity [12]
Intensity gradual vs. abrupt voice onset rapidity [7] acceleration [12], power [13]
Regularity smooth vs. rough jitter [7], voice quality [9] [7] directness [12], phase shift [14] [15]
Extent small vs. large pitch range [9], loudness [7] spatial expansiveness [13], contraction index [12]

Figure 2: Timeline of an arm gesture.

bringing t0 and t1 temporally closer together, effectively in-
creasing the relative acceleration to reach the extended posture.
Regularity is implemented either as joint phase shift and direct-
ness, which can be thought of as temporal and spatial regularity,
respectively; for arms, a more irregular movement is created by
temporally “shifting” one of the arm movements, and for the
head, an irregular movement is created by adding side-to-side
movements. The amount of side-to-side movement is deter-
mined by a random variable taken from a normal distribution
with variance inversely proportional to R. Finally, extent is cal-
culated by updating the effector’s extended position, scaling it
linearly between the base and extended positions depending on
the value of E.

3 Evaluation
We recruited 20 evaluators from Kyoto University Graduate
School of Informatics. As input, we used 16 audio samples
taken from the Berlin Database of Emotional Speech4, which
is a database of emotional speech recorded by professional
German actors. Each sample was a normalized wave file at
16 kHz, 1.5 to 3.9 s long, all of the same sentence. Four samples
each of happiness, sadness, fear, and anger were used, all with
recognition rates of 80% or higher by German evaluators.

Given SIRE values extracted from these audio samples, we
generated 16 movement sequences using a simulated NAO
shown on a projected screen. Only one type of gesture was
shown (an extension of both arms in front of the robot), repeated
four times in series for each sequence. After each sequence,
the participants chose one of happiness, sadness, anger, or fear
in a forced-choice questionnaire.

In Table 2, we outline the movements which have the highest
agreement between evaluators for each of the four emotions.
It shows that by changing the dynamics of the same gesture,
the robot can produce recognizable emotions at more than 60%
inter-rater agreement. These values are not an exhaustive list of
possibilities, but it gives a useful hint for designing motions with
these emotions. We also found that the average recognition rates
over all samples are significantly greater than chance (25%),
suggesting that the DESIRE framework indeed converts the
source vocal emotion to the same emotion in gesture.

4 Conclusions and future work
In this study, we verified a hypothesis that emotion from
voice could be effectively transferred to motion through only
four features (speed, intensity, regularity and extent), giving
evidence to our framework for cross-modal emotion analysis
and expression. Other future work includes exploring other

4http://pascal.kgw.tu-berlin.de/emodb/

Table 2: Sequences with best agreement between evaluators and their
corresponding SIRE values.

Emotion Agreement (%) S I R E

Happiness 60 0.72 0.20 0.22 0.74
Sadness 75 0.12 0.44 0.71 0.42
Anger 60 0.58 0.92 0.24 0.9
Fear 65 0.93 0.72 0.34 0.47

emotions, mappings to other robots, making the system run
online, and integrating other emotional cues such as pose.

This research was partially supported by Kakenhi (S) and GCOE
program.
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