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A-stable and Stiffly-stable Formulas in Generalized Linear Multistep

Methods for Ordinary Differential Equations

Ken-ichiro Mitsuda†,☆ and Chisato Suzuki††

In this paper, generalized linear multistep methods for ODEs whose predictor of off-grid
point is an implicit formula are proposed and stability properties are investigated for the
methods. Then, it is proved that there exists a family of A-stable methods of order 3 and,
furthermore, there exists a unique A-stable one-step method of order 4. Also, it is numerically
shown that there exist two families of stiffly stable methods, with orders 5 and 7, respectively.

1. Introduction

The order of accuracy of stable k-step linear
multistep methods (LMMs) for solving the ini-
tial value problem of the ordinary differential
equation (ODE),


dy

dx
=f (x, y) ,

y (x0) = y0,

is at most k + 2, which is about the half of
the attainable order with the methods without
stability conditions.3),4).

In order to overcome the barrier, Gragg
& Stetter 5) and Butcher 1),2) proposed and
developed k-step generalized linear multistep
method (GLMM) in the form


(I)

k∑
i=0

αiyn+i+h
k∑

i=0

βifn+i+hγfn+s=0,

(II) yn+s=
k∑

i=0

α̂iyn+i+h
k∑

i=0

β̂ifn+i,

(1.1)
with αk= − 1, βk �=0, α̂k=0, β̂k=0, where s is
a non-integer, h a step size of integration, yn

an approximation to y(x) at xn=x0 +nh, and
fn=f (xn, yn). In fact, their methods possess
about 2k order and satisfy a zero-stability con-
dition. However, unfortunately these methods
never have not a property of A-stability but a
property of stiff-stability.

This paper is concerned with a modification
to the form of the GLMM formulas (1.1) such
that higher stability can be attained. In the for-
mulas (1.1), especially we are very much inter-
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ested in the case where αk = −1, βk �=0, α̂k �=0,
and β̂k �=0. Under these assumptions, there-
fore the formula (II) is implicit with respect to
yn+k together with the formula (I). This ap-
proach which assumes α̂k �=0 and β̂k �=0 is es-
sentially different from the methods that are
proposed and developed by Gragg & Stetter 5)

and Butcher 1),2).
In this paper, stability properties of GLMM

proposed above are mainly investigated: It is
proved that there exists a family of A-stable
one-step GLMMs with order 3 and, further-
more, there uniquely exists the A-stable one-
step GLMM of order 4. It is also shown that
there exists a family of stiffly stable two-step
GLMMs with order 5 and a family of stiffly sta-
ble three-step GLMMs with order 7. In order
to verify stability of those methods, also some
problems with high stiffness ratio are numeri-
cally solved.

For simplification of discussions, the con-
struction of GLMM is accomplished for a scalar
ODE, since it is able to apply GLMM to a sys-
tem of ODEs without any modification. On the
other hand, stability analysis for GLMM will be
not only done for a scalar ODE, but for a sys-
tem of ODEs.

2. Generation of Coefficients and Or-
der of GLMM

In this section, we derive the coefficients of
GLMM (1.1) and investigate orders of those for-
mulas. For the formula (I) in (1.1), in particu-
lar, an optimization of the order is done.

2.1 Associated Difference Operator
Suppose that y is a sufficiently smooth func-

tion. Let y(xn+i) and y′(xn+i) be values of y and
its derivative y′, respectively, at x=xn+i.
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Recall that, for the given data { y(xn), . . .,
y(xn+k) } and { y′(xn), . . ., y′(xn+k) }, the Her-
mite interpolation polynomial for y is given as

H(x) =
k∑

i=0

ri(x)y(xn+i)

+
k∑

i=0

si(x)y′(xn+i), (2.1)

where
ri(x) = {1−2gi(xn+i)(x−xn+i)} �i(x)2,
si(x) = (x−xn+i)�i(x)2,

gi(x) =
k∑

p=0

1
x−xn+p

,

�i(x) =
ω(x)

(x−xn+i)ω′(xn+i)
,

ω(x) =
k∏

p=0

(x−xn+p).

It is also well-known that its interpolation error
e(x)=y(x)−H(x) is given by

e(x)=
ω(x)2

(2k + 2)!
y(2k+2)(ξ0), (2.2)

where ξ0 is an appropriate point belonging to
the minimum interval including {x, xn, xn+1, . . .,
xn+k}. Hereafter we denote this interval by Î.

In order to derive a difference operator asso-
ciated with the formula (I) in GLMM, differ-
entiate e(x)=y(x)−H(x) with respect to x and
divide its derivative by r′k(x). Then we have

e′(xn+s)
r′k(xn+s)

=
y′(xn+s)
r′k(xn+s)

−H ′(xn+s)
r′k(xn+s)

.

In addition, after differentiating the Hermite in-
terpolation polynomial H(x) given in (2.1) and
substituting it for the equation above, we have

e′(xn+s)
r′k(xn+s)

= hγy′(xn+s)+
k∑

i=0

αiy(xn+i)

+h
k∑

i=0

βiy
′(xm+i), (2.3)

where the coefficients αi, βi, and γ are defined
as, for i=0, . . ., k,

αi(s)=− r′i(xn+s)
r′k(xn+s)

, βi(s)=− 1
h

s′i(xn+s)
r′k(xn+s)

,

and γ(s)=
1
h

1
r′k(xn+s)

. (2.4)

By using (2.3), the associated difference opera-
tor Lk for the formula (I) can be defined as

Lk(y; h) = hγy′(xn+s)+
k∑

i=0

αiy(xn+i)

+h
k∑

i=0

βiy
′(xm+i).

From this operator, a local truncation error of
the formula (I) is defined as

Tn(s)=
e′(xn+s)
r′k(xn+s)

. (2.5)

The other difference operator L̂n associated
with the formula (II) can be immediately de-
rived from e(x)=y(x)−H(x). In fact, putting
x=xn+s in the equation, we have

e(xn+s) = y(xn+s)−
k∑

i=0

α̂i(xn+s) y(xn+i)

−h

k∑
i=0

β̂i(xn+s) y′(xn+i), (2.6)

where the coefficients α̂i and β̂i are defined as

α̂i(s)=ri(xn+s), β̂i(s)=si(xn+s)/h. (2.7)

By using (2.6), the associated difference opera-
tor for the formula (II) can be defined as

L̂n(y; h) = y(xn+s)−
k∑

i=0

α̂i(xn+s) y(xn+i)

−h

k∑
i=0

β̂i(xn+s) y′(xn+i).

Then the local truncation error of the formula
(II) becomes

T̂n(s)=e(xn+s). (2.8)

It should be noted that the coefficients de-
fined by (2.4) and (2.7) depend only on s, and
art given by

αi (s) =
r̂′i (s)
r̂′k (s)

, βi (s) =
ŝ′i (s)
r̂′k (s)

,

α̂i (s) = r̂i (s) , β̂i (s) = ŝi (s) ,

and γ (s) =
1

r̂′k (s)
,

where


r̂i(s) = {1 − 2ĝi(i)(s − i)} �̂i(i)2,

ŝi(s) = (s − i)�̂i(s)2,

�̂i (s) =
k∏

p=0
p�=i

s − p

i − p
, ĝi (s) =

k∑
p=0
p�=i

1
s − p

.

The subject considered hereafter is restricted to
a family of GLMMs determined by coefficients
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defined above. In Appendix A.1, each coeffi-
cient for k = 1, 2, and 3 is shown for convenient.

2.2 Order of k-Step GLMM
The definition of order for formulas follows

Henrici 6). To investigate orders of GLMM with
coefficients (2.4), we need an evaluation of the
local truncation error Tn(s). The following
lemma is useful to evaluate the truncation error
of the formula (I).

Lemma 1 If y is a sufficiently smooth func-
tion, then there exists a point ξ1∈Î such that

e′(x) =
2ω(x)ω′(x)
(2k + 2)!

y(2k+2)(ξ0)

+
ω(x)2

(2k + 3)!
y(2k+3)(ξ1).

The proof of this lemma is easy 9).
By Lemma 1, the local truncation error of the

formula (I) can be evaluated as follows.
Tn(s) =

− 1
r′k(xn+s)

{
2ω(xn+s)ω′(xn+s)

(2k+2)!
y(2k+2)(ξ0)

+
ω(xn+s)2

(2k+3)!
y(2k+3)(ξ1)

}
.

In addition, putting xn+i=xn+ih and xn+s=xn

+sh, we get

Tn(s) = −h2k+2

r̂′k(s)

{
2ω̂(s)ω̂′(s)
(2k + 2)!

y(2k+2)(ξ0)

+h
ω̂(s)2

(2k + 3)!
d

dx
y(2k+3)(ξ1)

}
,

ω̂(s) =
k∏

p=0

(s − p).

This means that the order of the formula (I) is
at least 2k+1.

On the other hand, the local truncation error
of the formula (II) is

T̂n(s) =
ω(xn+s)2

(2k + 2)!
y(2k+2)(ξ0),

from (2.2). By putting xn+i=xn+ih and
xn+s=xn+sh, then we get

T̂n(s) = h2k+2 ω̂(s)
(2k + 2)!

y(2k+2)(ξ0).

Therefore the formula (II) is of order 2k+1.
It should be noted that both formulas, (I) and

(II), generally have same order 2k+1. However
it is sufficient to have the accuracy of order 2k
with respect to yn+s, because it is used in the

Table 1 Point s that gives maximum order.

Optimum Point sk
op (k = 1, . . . , 7)

　
s1
op=

1

2

s2
op=1+

√
3

3
≈1.57735

s3
op=

3+
√

5

2
≈2.6803

s4
op=

20+
√

150+10
√

145

10
≈3.64443

s5
op=

15+
√

105+24
√

7

6
≈4.66345

s6
op=3+

√
1395+42 · 7 2

3 · 2481997
1
6 cos θ6

3

21
≈5.67084

s7
op=

7+

√
21+8 · 7 1

2 cos θ7
3

2
≈6.68972

Here

(
θ6=tan−1 54

√
591

871

) (
θ7= tan−1 3

√
31

8

)

term hf(xn+s, yn+s) . Conversely if the order
of the formula (I) is just one higher than the
formula (II), then the accuracy of yn+k has or-
der 2k+2. The following theorem concerns with
the order of the formula (I).

Theorem 1 For each k, if there exists a
points sk

op such that ω̂′(sk
op)=0, then the for-

mula (I) of k-step GLMM at s=sk
op has order

2k+2. Such order is said to be optimum.
The value of sk

op that gives the optimum order
for each k (1 ≤ k ≤ 7) is shown in Table 1.

3. Zero-Stability Property

The zero-stability property of k-step GLMM
is determined on the basis of the associated
characteristic polynomial,

πk(ξ) =
k∑

i=0

αiξ
i,

with k-th order linear difference equation ob-
tained by vanishing the step size h in the for-
mulas of (I) and (II). In fact, a GLMM is said
to be zero-stable if the modulus of any root of
πk(ξ) is less than or equal to 1 and the root
of modulus 1 is simple 7). Since this πk(ξ) is
consisting of terms that not contain h in the
formulas, the zero-stability is independent of
the formula (II). Therefore the zero-stability of
GLMM in this paper exactly agrees with the
Butcher’s zero-stability result 1) which had been
shown in graph.
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Table 2 Range of s for GLMM to be zero-stable.

Interval Ik
z (k=1, . . . , 4)

　
I1
z =[ 1

2
, ∞)

I2
z =[1, ∞)

I3
z =[ 1

2
(3+

√
3), 1

14
(21+5

√
21)]≈(2.366, 3.136)

I4
z≈(3.527, 4.000)

I5
z≈(4.605, 4.755)

I6
z≈(5.633, 5.717)

I7
z≈(6.663, 6.693)

If there exists an interval of s in which the
method is zero-stable, then we call it zero-stable
interval and denote it by Ik

z . The following the-
orem guarantees the existence of zero-stable in-
terval for GLMMs of k=1 up to 3

Theorem 2 Let 1 ≤ k≤3. For each k, if s
belongs to the interval Ik

z in Table 2, then the
k-step GLMM is zero-stable.

Unfortunately, any zero-stable interval for
the k-step GLMM of k exceed 3 is not ex-
actly obtained yet. Therefore the zero-stable
interval of s shown in Table 2 for GLMM with
k = 4, . . . , 7 is approximately given.

It should be noted that Butcher 1) numer-
ically showed that the GLMMs for k=1 up
to 7 have such zero-stable intervals of s and
Suzuki 8) also showed up to 8 for a slight modi-
fied GLMM. Under these zero-stable interval of
s, the following theorem is obtained.

Theorem 3 For each k (1≤k≤7), the k-
step GLMM with s=sk

op is zero-stable, and of
order 2k+2.

4. Absolute stability Property

If the numerical solution obtained by ap-
plying GLMM with h>0 to the test problem
y′=λy, (λ∈C, �λ<0) with any initial value y0

tends to zero as n tends to ∞, the method is
said to be absolute stable at λh. The k-step
GLMM is absolute stable if and only if the mod-
ulus of any root of the associated characteristic
polynomial

πk(ξ; z, s) = ρ(ξ)

+λh
(
σ(ξ)+γ

(
ρ̂(ξ)+λhσ̂(ξ)

))
,

=
k∑

i=0

(
αi+

(
βi+γα̂i

)
z+γβ̂iz

2
)
ξi

is less than one, where z=λh, αk=−1,

ρ(ξ) =
k∑

i=0

αiξ
i, σ(ξ) =

k∑
i=0

βiξ
i,

ρ̂(ξ) =
k∑

i=0

α̂iξ
i, σ̂(ξ) =

k∑
i=0

β̂iξ
i.

(4.1)

For given GLMM, we call an absolute sta-
bility region the set of λh for which GLMM
is absolute stable, and if the absolute stability
region contains C−={z∈C : �z<0}, then the
GLMM is said to be A-stable.

In this section, we investigate the property of
absolute stability by analysing the characteris-
tic polynomial. The characteristic polynomial
for k=1 is given by

π1(ξ; z, s) =
(
1 − s + 1

3
z +

s

6
z2
)
ξ

−
(
1 − s − 2

3
z − s − 1

6
z2
)
,

and, for k=2, . . ., 5, the coefficients of charac-
teristic polynomials are given in Appendix A.2.

4.1 A-Stable One-Step GLMMs with
Order 3 and with Order 4

By computing the root of the characteristic
polynomial π1(ξ; z, s) for the one-step GLMM,
the following theorem is proved.

Theorem 4 If s≥1/2, then the one-step
GLMM with any s is A-stable. In this GLMM,
furthermore, the method with s>1/2 has order
3 and the method of s=1/2 has order 4.

Proof The root of π1(ξ; z, s) with respect
to z is given by

ξ(z; s) =
1 − 1

3 (s − 2)z − 1
6 (s − 1)z2

1 − 1
3 (s + 1)z + 1

6sz2
,

and by setting t=s−1/2, the root can be rewrit-
ten as

ξ(z; t)=
12−2(2t−3)z−(2t−1)z2

12−2(2t+3)z+(2t+1)z2
, (t≥0).

In order to prove that this GLMM is A-
stable for some t, it is sufficient to show that
ξ(z; t) satisfies |ξ(z; t)|<1 for any z∈C−. By the
Möbius transformation, ζ=(ξ−1)/(ξ+1), from
ξ to ζ, we have

ζ =
2(3z − tz2)(12 − 4tz̄ + z̄2)

|12 − 4tz + z2|2 .

By this transformation, it is sufficient to show
that ζ belongs to C− for any z∈C−. Let
t≥0 and Γ=(3z−tz2)(12−4tz̄+z̄2), then we can
show that �Γ<0 (z∈C−). In fact, the real part
of Γ becomes

�Γ = u
(
36 + (3 + 4t2)(u2 + v2)

)
−t
(
24u2 + (u2 + v2)2

)
,
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Table 3 Functions ϕk(s) specifying absolute stability interval.

ϕ2(s)=
15(s−1)

3s2−6s+1

ϕ3(s)=
35(2s2−6s+3)

(5s2−15s+1)(2s−3)

ϕ4(s)=
105(3s3−18s2+29s−10)

35s4−280s3+685s2−500s+12

ϕ5(s)=
231(6s4−60s3+195s2−225s+62)

126s5−1575s4+6860s3−12075s2+7024s−60

ϕ6(s)=
1001(s5−15s4+81s3−189s2+176s−42)

77s6−1386s5+9380s4−29400s3+41783s2−20874s+60

ϕ7(s)=
143(30s6−630s5+5075s4−19600s3+36799s2−29498s+6378)

286s7−7007s6+67837s5−328790s4+829759s3−1013663s2+454938s−420
　

where z=u+iv (u, v∈R) since Γ can be devel-
oped as

Γ = 36z − 12t|z|2 + 3z̄|z|2 − 12tz2

+4t2z|z|2 − t|z|4.
Consequently, we have that �Γ<0 since u<0
and t≥0 by assumption .

4.2 Absolute Stability Interval on Real
Axis and Stiffly-Stable GLMM

Let us introduce a new concept of stability.
Definition 1 For a method having an ab-

solute stability region RA, if there exists an in-
terval IA on the real axis such that IA⊂�RA

and the closure of IA contains the origin of the
complex plane C, then we call IA a real absolute
stability interval.

In general, the real absolute stability in-
terval for GLMM depends on the parameter
s by which the coefficients are determined,
and the interval can be represented in form
Ik
A=(ϕk(s), 0) for k-step GLMM (2≤k≤y) if

ϕk(s) < 0 for s ∈ Ik
z , where each ϕk(s) is given

in Table 3.
Theorem 5 For the k-step GLMM, the fol-

lowing propositions are satisfied.
(i) For each k (2≤k≤y), there exists a subin-

terval (of Ik
z ) consisting of s such that the k-step

GLMM has the real absolute stability interval
Ik
A.
(ii) For each k (2≤k≤4), there exists a point

sk
c∈Ik

z with which Ik
A becomes the left-half infi-

nite interval (−∞, 0). Hereafter, we call a crit-
ical point such sk

c (see Table 4).
Assertion 1 The two-step GLMM with s

is stiffly stable if the value of s is grater than
the critical point s2

c , and the GLMM is of order
5 (see Fig. 1-(b)).

Assertion 2 If the value of s∈I3
z is grater

Table 4 Critical point of s in GLMM.

sk
c (k = 2, . . . , 4)

　
s2
c =

3+
√

6

3
≈ 1.8165

s3
c =

15+
√

205

10
≈ 2.9318

s4
c =

140+
√

10850+70
√

13945

70
≈ 3.9752

　

than the value of the critical point s3
c , then the

three-step GLMM with s is stiffly stable (see
Fig. 2-(b)). Here

I3
z = ((3+

√
3)/2, (21+5

√
21)/14).

It should be noted that this GLMM is of order
7.

4.3 Stability Property of GLMM for
System of ODEs

Applying GLMM to the system of ordinary
differential equations, y′=Ay, where y∈Rd and
A is a d×d constant matrix whose each compo-
nent may be a complex number, we can obtain
the corresponding characteristic polynomial

π
(d)
k (ξ; hA) = det

[
ρ(ξ)I + {σ(ξ)I

+γhA
(
ρ̂(ξ)I + hAσ̂(ξ)

)}],
where I is the d×d identity matrix. By using
this polynomial, therefore, the following the-
orem concerning to stability property of the
method is obtained.

Theorem 6 Let λ1, . . ., λd be eigenvalues
of A and �λi<0 for i=1, . . ., d, then GLMM
(1.1) with an absolute stability region RA is
absolutely stable for y′=Ay if and only if it
holds that hλi∈RA for i=1, . . ., d.

Proof Based on linear algebra, for the coef-
ficient matrix A, there exists a d×d nonsingular
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Fig. 1 Absolute stability region of two-step GLMM.

Fig. 2 Absolute stability region of three-step GLMM.

matrix B such that

A = B−1ΛB, Λ =

(
λ1 ∗. . .
0 λd

)
,

where Λ is an appropriate upper-triangular ma-
trix whose diagonal elements are the eigenval-
ues of A. By using this representation for A,
the characteristic polynomial can be rewritten
as

π
(d)
k (ξ; hA) =

d∏
p=1

(
ρ(ξ)

+
(
σ(ξ)+γ(ρ̂(ξ)+σ̂(ξ)(hλp))

)
(hλp)

)
=

d∏
p=1

πk(ξ; hλp, s).

Therefore, if ξ is a root of π
(d)
k (ξ; hA), then

πk(ξ; hλp, s)=0 for some p. This means that
|ξ|<1 since hλp∈RA for every p (1≤p≤d).

5. Numerical Example

The one-step GLMM of order 4 with s =
0.5 and two-step GLMM of order 5 with s=0.85
are applied to following problem(

y′
1

y′
2

)
= −1

2

(
λ + 1 λ − 1
λ − 1 λ + 1

)(
y1

y2

)
,

(
y1,0

y2,0

)
=
(

100
100

)
.

The property of accuracy and stability for nu-
merical solution is verified. This equation is
make-up so that stiffness ratio just becomes λ.
The exact solution is given as
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Table 5 Relative (Absolute) errors evaluated at x = 50.

Stiffness GLMM Stepsize h
Rate λ k-Step / Order 1.00 0.50 0.10 0.05 0.01

1-Step/4-Order 2.656e+00 4.370e-03 6.935e-06 4.337e-07 6.943e-10
50 (3.62e-20)

2-Step/5-Order 2.567e-02 8.119e-04 2.557e-07 7.971e-09 2.183e-12
1-Step/4-Order 2.920e+04 8.144e+03 6.935e-06 4.337e-07 6.952e-10

500 (2.98e-16) (1.11e-16)
2-Step/5-Order 7.397e-01 8.122e-04 2.557e-07 7.970e-09 3.342e-12
1-Step/4-Order 2.291e+05 2.584e+04 4.544e+01 4.336e-07 7.100e-10

5000 (3.12e-15) (3.52e-16) (6.12e-19)
2-Step/5-Order 3.270e-01 8.460e-04 2.558e-07 7.974e-09 3.363e-12
1-Step/4-Order 1.057e+05 1.914e+06 4.544e+01 4.336e-07 7.100e-10

50000 (1.44e-15) (2.61e-14) (4.48e-14) (7.43e-17)
2-Step/5-Order 1.034e+00 1.134e-04 2.558e-07 8.028e-09 3.410e-12

(
y′
1(x)

y′
2(x)

)
=
(

y1,0 exp(−λx)−y2,0 exp(−x)
y1,0 exp(−λx)+y2,0 exp(−x)

)
.

The results of numerical experiment done under
the following conditions are shown in Table 5.
(i) Stepsize of Integration: 1, 0.5, 0.05, 0.01
(ii) Length of Integration: 50
(iii) Stiffness Ratio: 50, 500 5000, 50000
(iv) GLMM is solved by the Gauss elimination

method.
From this result, it seems that our method is
useful for very strong stiffness problems. It
should be noted that the classical Runge-Kutta
method is unstable for λh > 2.8.

6. Concluding Remarks

In this paper, it is proved that there exists a
family of A-stable one-step GLMMs with order
3 and, furthermore, there uniquely exists the
A-stable one-step GLMM of order 4. It is also
shown that there exists a family of stiffly stable
two-step GLMMs with order 5 and a family of
stiffly stable three-step GLMMs with order 7.
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Appendix

A.1 Coefficients of k-Step GLMM
Coefficients of formula (I) for k=1 :



α0 = 1
α1 = −1
β0 = (3s − 1)/(6s)
β1 = (3s − 2)/(6s − 6)
γ = 1/(6s − 6s2)

Coefficients of formula (II) for k=1 :


α̂0 = (s − 1)2(2s + 1)
α̂1 = s2(3 − 2s)

β̂0 = s(s − 1)2

β̂1 = s2(s − 1)
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Coefficients of formula (I) for k=2 :


α0 = (15s − 23)/t

α1 = 16/t

α2 = −1

β0 = (u + s − 1)/(st)
β1 = 4(u + 1)/((s − 1)t)
β2 = (u − s + 1)/((s − 2)t)
γ = −4/(s(s − 1)(s − 2)t)

Here t=15s−7, u=5s2−10s+3.

Coefficients of formula (II) for k=2 :


α̂0 = (s − 1)2(s − 2)2(3s + 1)/4
α̂1 = s2(s − 2)2

α̂2 = s2(s − 1)2(7 − 3s)/4

β̂0 = s(s − 1)2(s − 2)2/4

β̂1 = s2(s − 1)(s − 2)2

β̂2 = s2(s − 1)2(s − 2)/4

Coefficients of formula (I) for k=3 :


α0=(77s2−312s+291)/t

α1=27(7s−18)s/t

α2=−27(s−3)(7s−3)/t

α3= − 1

β0=3(7s3−30s2+33s−6)/(st)

β1=27(7s3−31s2+38s−12)/((s−1)t)

β2=27(7s3−32s2+41s−12)/((s−2)t)

β3=3(7s3−33s2+42s−12)/((s−3)t)

γ = −108/(s(s−1)(s−2)(s−3)t)

Here t=77s2−150s+48.

Coefficients of formula (II) for k=3 :


α̂0=(11s+3)(s−1)2(s−2)2(s−3)2/108

α̂1=s3(s−2)2(s−3)2/4

α̂2=−s2(s−1)2(s−3)3/4

α̂3=s2(s−1)2(s−2)2(36−11s)/108

β̂0=s(s−1)2(s−2)2(s−3)2/36

β̂1=s2(s−1)(s−2)2(s−3)2/4

β̂2=s2(s−1)2(s−2)(s−3)2/4

β̂3=s2(s−1)2(s−2)2(s−3)/36

A.2 Characteristic Polynomial for k-
Step GLMM

Let
πk(ξ; z, s) =

k∑
i=0

ciξ
i,

where ci=αi+(βi+γα̂i)z+γβ̂iz
2.

For k=2:


c2 = −{(15s − 7) − (s + 1)(3s − 2)z
− s(s − 1)z2}/t

c1 = 4{4 + 4(s − 1)z − s(s − 2)z2}/t

c0 = {(15s − 23) − (s − 3)(3s − 4)z
− (s − 1)(s − 2)z2}/t

Here t=15s−7.

For k=3:


c3={(3s3−9s2+6s)z2

+(−11s3+15s2+14s−12)z
+(77s2−150s+48)}/t

c2={(27s3−108s2+81s)z2

+(−27s2−54s2+351s−162)z
+(189s2−648s+243)}/t

c1={(27s3−135s2+162s)z2

+(27s3−297s2+702s−324)z
+(−189s2+486s)}/t

c0={(3s3−18s2+33s−18)z2

+(11s3−84s2+193s−132)z
+(−77s2+312s−291)}/t

Here t=−77s2+150s−48.
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For k=4:


c4={−318+1199s−998s2+225s3

+(72−114s−59s2+102s3−25s4)z
−6(6s−11s2+6s3−s4)z2}/t

c3=32{−96+344s−254s2+45s3

+(48−128s+56s2+11s3−5s4)z
−3(8s−14s2+7s3−s4)z2}/t

c2=216{−12+32s−8s2

+(24−76s+48s2−8s3)z
−(12s−19s2+8s3−s4)z2}/t

c1=32{96−472s+286s2−45s3

+(144−432s+292s2−69s3+5s4)z
−(72s−78s2+27s3−3s4)z2}/t

c0={2910−4015s+1702s2−225s3

+(1200−2090s+1235s2−298s3+25s4)z
+(144−300s+210s2−60s3+6s4)z2}/t

Here t=318−1199s+998s2−225s3.

For k=5:


c5={6864−29200 +31040s2−11945s3+1507s4

−(1440−2712s−550s2+2395s3−1070s4

+137s5)z+30(24s−50s2+35s3

−10s4+s5)z2}/t

c4=125{870−3613s+3655s2−1295s3+143s4

−(360−1074s+683s2+5s3−83s4+13s5)z
+6(30s−61s2+41s3−11s4+s5)z2}/t

c3=1000{240−936s+830s2−240s3+22s4

−2(120−428s+363s2−95s3+3s4+s5)z
+3(40s−78s2+49s3−12s4+s5)z2}/t

c2=1000{−60+364s−530s2+200s3−22s4

−2(180−702s+638s2−215s3+28s4−s5)z
+3(60s−107s2+59s3−13s4+s5)z2}/t

c1=125{−1680+7312s−5680s2+1565s3−143s4

−(1440−5256s+4558s2−1595s3+242s4

−13s5)z+6(120s−154s2+71s3−14s4

+s5)z2}/t

c0 = {−85614+138825s−77915s2+18195s3

−1507s4−(32880−64538s+46125s2

−15245s3+2355s4−137s5)z
−(3600−8220s+6750s2−2550s3

+450s4−30s5)z2}/t

Here t=−6864+29200s−31040s2+11945s3−1507s4.
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