
Vol. 45 No. 2 IPSJ Journal Feb. 2004

Regular Paper

Lightweight FIPA Compliant Agent Platform

on Java-enabled Mobile Phone for Ubiquitous Services

Satoshi Nishiyama,† Gen Hattori,†† Chihiro Ono††

and Hiroki Horiuchi††

We discuss the design issues for lightweight and FIPA compliant agent platform for Java-
enabled mobile phones and describe the project of developing such agent platform. This
platform changes Java-enabled mobile phones to ubiquitous terminals by providing high-level
communication mechanism. Combined with services specific to mobile phones such as the
location service, it can be used for various ubiquitous applications, such as providing ITS
information to pedestrians. In this paper, we present seven design issues in three categories,
discuss our approaches to these issues and describe the detailed design and implementation
of an experimental platform. We also show the remaining issues through the performance
comparison with LEAP, another lightweight agent platform.

1. Introduction

Until a few decades ago, a governmen-
tal monopoly had provided fixed and uni-
form telecommunication services all over Japan.
Most users used the telephone terminals of
same and single type at home. This termi-
nal is called “kuro-denwa” where “kuro” means
black and “denwa” means telephone as it is
colored black. After the monopoly was pri-
vatized and the competition was introduced
into the Japanese telecommunication market,
the competitors have been trying to gain their
market shares by offering various services and
by rapidly providing advanced terminals, espe-
cially in the mobile phone market. Current mo-
bile phone terminals are feather-weighed, may
have large color LCD displays, cameras, GPS
receivers and additional communication media
such as IrDA and Bluetooth, and offer mail and
Internet access. Also, many are Java-enabled
to provide more sophisticated services. Consid-
ering the rapid lifecycle of terminals, within a
few years, more than half of total subscribers,
or almost a quarter of people in Japan, will
use Java-enabled phone. However the mobile
phone operators are still wondering what are
the killer applications using Java. We believe
that with the Java capability combined with the
GPS location service, such Java-enabled mobile
phone is suitable for providing ubiquitous ser-
vices. For example, this terminal may be used
to provide ITS (Intelligent Transportation Sys-

† YRP Ubiquitous Networking Laboratory
†† KDDI R&D Laboratories

tems) related service such as route navigation
or travel planning to pedestrians. However cur-
rent Java-enabled phones only offer limited and
operator dependent functionalities, especially
for data communication. Thus, middleware
that provides advanced communication mech-
anisms such as P2P and asynchronous commu-
nication and hides the differences of Java func-
tionalities is required to promote Java-enabled
mobile phones as ubiquitous terminals. Agent
platforms based on FIPA (Foundation of Intel-
ligent Physical Agents) standards 1) are ones
of potential candidates for such middleware.
Many research projects already developed FIPA
compliant agent platforms on standard Java en-
vironment 2)∼5) and some are aiming to imple-
ment them on small nomadic devices 6),7).

The final goal of our research is to design a
lightweight FIPA compliant agent platform for
Java-enabled mobile phone suitable for devel-
oping ubiquitous agent applications. In this
paper, we discuss the design issues to imple-
ment FIPA compliant agent platform on Java-
enabled mobile phone and present our solu-
tions to the issues through an implementation,
named KDDIAP (KDDI Agent Platform).

The rest of this paper is organized as follows.
Firstly, we present the related activities as the
background of this work. We identify the design
issues for developing lightweight agent platform
suitable for Java-enabled mobile phone in the
third section. Section 4 discusses our approach
to solve the issues and describe the detailed de-
sign of KDDIAP. An experimental implemen-
tation is evaluated and discussed by comparing
another platform based on similar design con-

575



576 IPSJ Journal Feb. 2004

Fig. 1 FIPA agent platform model.

cept in Section 5.

2. Related Works

2.1 FIPA and FIPA Compliant Plat-
forms

Providing agent platform as a “place” for
agent is the first step to make the agent-based
software popular. In the last decade, many re-
searches concentrated on developing agent plat-
forms 8),9). The next step is to increase the in-
teroperability between agent platforms by stan-
dardization. FIPA 1) is a non-profit organiza-
tion to promote the interoperability of agent
communication among heterogeneous agents.
Currently FIPA produces a set of standards for
agent communications, including the abstract
architecture, agent communication protocols,
agent management functions, agent message
transports and typical applications of FIPA
based platform.

More than 10 agent platforms have been
developed based on FIPA standards. Typi-
cal implementations are JADE 2), FIPA-OS 3),
Comtec Agent Platform 4) and April Agent
Platform 5), all of them are publicly available.
Figure 1 shows the basic model of FIPA agent
platform. ACC (Agent Communication Chan-
nel) acts as the message router in the platform.
All the messages among agents are exchanged
by ACC. AMS (Agent Management System)
is for management of agent lifecycle. DF (Di-
rectory Facilitator) provides yellow page agent
lookup services.

2.2 Java Environment for Nomadic
Devices

JCP (Java Community Process), a SUN ini-
tiated consortia for developing Java standards,
defines several Java specifications for Java 2:
Java 2 Standard Edition (J2SE) is for typical
client personal computers and other comput-
ers, Java 2 Enterprise Edition (J2EE) is for
servers, and Java 2 Micro Edition (J2ME) for
relatively small computers and devices. Fur-
thermore JCP defines 2 configurations within
J2ME: CLDC (Connected Limited Device Con-
figuration) for devices with very limited re-
sources and CDC (Connected Device Config-

urations) for relatively large (but still small)
computers and devices.

The largest difference of J2ME/CLDC to
J2SE is the lack of key mechanisms such as
RMI and serialization, thread and event han-
dling and dynamic loading. The lack of these
mechanisms adds heavy burdens for implement-
ing complicated and distributed programs on
J2ME/CLDC. The Java virtual machine imple-
mentation for J2ME/CLDC provided by SUN
is called as KVM. KVM runs on many PDAs
in both PalmOS and WindowsCE. A profile
for nomadic devices (PDAs and mobile phones)
named MIDP (Mobile Information Device Pro-
file) is defined. Recently mobile phone opera-
tors mostly in Japan, provide Java-enabled mo-
bile phones to increase the flexibility of services
(iAppli 10), au EZPLUS 11), J-Phone Java 12)).
KVM or equivalent virtual machines run on
these phones. However iAppli is not MIDP
compliant. EZPLUS and J-Phone Java add ad-
ditional limitation for capabilities by omitting
some optional parts of MIDP (e.g., datagram
connection) and adding access control mech-
anism for resources within the phone for se-
curity reasons. Also all of them limit the re-
sources available for the Java applications. For
example, the maximum program size (i.e., the
size of jar file) is 30 KB to 50 KB for iAppli
and EZPLUS services. Only J-phone Java re-
cently extended the size limitation to 256 KB.
Though relaxing the limitation of program size
may promote more advanced Java services, it
also increases both the initial cost of the ter-
minals as they require more memories and the
communication cost for dowloading Java pro-
grams. Therefore, we think the operators will
remain limiting the program size to some level,
say 100 KB to 256 KB, until both of these costs
are drastically reduced.

2.3 Agent Platforms for Lightweight
and Nomadic Devices

Nomadic devices such as PDAs and mobile
phones are suitable for providing anywhere ser-
vices. Thus these nomadic devices are poten-
tial candidates as ubiquitous terminals. To pro-
mote agent based ubiquitous services, many re-
searches have been developing agent platforms,
which run agents on these nomadic devices.

Jumon 13) is a commercial agent platform
running both on J2SE and J2ME/CLDC +
MIDP Environment. The J2ME version of Ju-
mon is quite small. It requires only 3.5 KB heap
memory for the platform. However, it does



Vol. 45 No. 2 Lightweight FIPA Compliant Agent Platform 577

not have the global identification mechanism for
agents nor the directory mechanism for search-
ing agent services. Therefore, Jumon is rather
similar to remote object invocation middleware
without directory services and is not suitable
for providing general purpose multi-agent sys-
tems.

picoPlangent 14) is an extension of Plangent
agent platform to the iAppli environment. It
inherits the agent planning capability offered
by Plangent. Most of the platform functionali-
ties exist in the center side servers in the form
of servlet to reduce the program size. Agents
themselves do not exist in the iAppli environ-
ment. Only the components, i.e. classes which
help agents to solve their goals, exist in the en-
vironment.

In addition to the non-FIPA agent platforms,
two research platforms based on FIPA stan-
dards, LEAP 7) and Micro-FIPAOS 6), have
been developed.

LEAP is developed by porting the container
mechanism of JADE to the J2ME/CLDC +
MIDP environment. It runs on the MIDP em-
ulator and on PDAs both with PalmOS and
with WindowsCE. Also there is a J2SE version
of LEAP. Since RMI, used in JADE for intra-
platform communication, is not available in the
J2ME/CLDC environment, LEAP uses a ded-
icated protocol, named JITP, which transfers
commands and responses directly over TCP/IP
socket for communication. LEAP does not im-
plement AMS and DF, the mandatory parts of
the FIPA model, in the mobile side and depends
these functionalities on the JADE platform run-
ning on another machines. So we may view that
LEAP is a part of JADE platform running on
nomadic devices.

Micro-FIPAOS is a lightweight version of FI-
PAOS ported by the University of Helsinki as
a part of CRUMPET project 6). It runs on
J2SE and PersonalJava. As all the manda-
tory components in the FIPA model are imple-
mented, creating a whole platform is possible if
enough resources are available. However due to
the resource limitation, partial platform with-
out AMS and DF is recommended as the typical
configuration for PDAs.

The design goals of LEAP and Micro-
FIPAOS are running them on nomadic devices.
However running these platforms on the actual
Java-enabled mobile phone still needs further
works. The program sizes of these platforms
are over 300 KB, which exceed the size limi-

tation by the current mobile phone operators.
Also, the lack of mechanisms such as datagram
connection has not been considered.

3. Design Issues of lightweight Agent
Platform for Java-Enabled Mobile
Phones

Currently, we think FIPA standards have
two advantages to other agent designes: rich
and well-defined functionalities, and good in-
teroperability. The communication model of
FIPA standards is based on well-defined theory.
Its communication language, or abbribated as
ACL, provides complex but rich capabilities for
expressing the intention of agents. It is also
akin to KQML 15), another popular agent com-
munication language. For the interoperability,
nearly ten experimental platforms are already
developed and connected to each other world-
wide for interoperability testing.

Therefore we decided to design the light-
weight agent platform for Java-enabled phone
based on FIPA standards, as in the cases of
LEAP and Micro-FIPAOS. However, The prob-
lem is that FIPA compliant agent platforms
tend to be large programs. Therefore, reduc-
ing the program size is one of the design is-
sues and is already mentioned in LEAP and
Micro-FIPAOS. In addition, when the platform
runs on Java-enabled phones, it should also sat-
isfy requirements specific to mobile phone, such
as their unreliable wireless communication and
about the start up speed.

Therefore, we classify the design issues for
lightweight agent platform for Java-enabled
phone as follows:
(1) Issues from requirements specific to mobile

phone communication.
(1-1) Unreliable wireless communication:

Mobile phone communication tends to
be unstable by fading or other reasons.

(1-2) Local management capabilities:
Users may wish to interact with agent
software even when they are out of cov-
erage areas such as in the underground.

(1-3) Start up speed:
Platforms should start quickly so that
the users can use agent services easily
anywhere and anytime.

(2) Issues on Java functionalities and on limi-
tation of program size:

(2-1) Java capabilities:
As discussed in the previous section,



578 IPSJ Journal Feb. 2004

Table 1 Design issues on lightweight agent platform for java-enabled
mobile phones and proposed solution.

Issues Issues in Detail Proposed Solutions (Section 4)
(1) Issues from require-
ments specific to mobile
phone communication

(1-1) Instability of wireless
communication

Implement buffer-based reliable communication
mechanism

(1-2) Needs for anytime
agent management

Implement minimum local management func-
tionalities and synchronization mechanism

(1-3) Quick start up Implement warm start up mechanism
(2) Issues on Java func-
tionalities and on limita-
tion of program size

(2-1) J2ME/CLDC+ MIDP
functionalities

Design platform newly and dedicated for J2ME
/CLDC+MIDP

(2-2) Program size limita-
tion

Leave minimum functionalities on mobile phone

(3) Management issues (3-1) Scalability Design to run center multiple sub-platforms par-
allelly using shared database

(3-2) SPAM protection Implement message filtering mechanism based on
blacklist

J2ME/CLDC+MIDP lacks some im-
portant functionalities for implement-
ing complicated communication pro-
grams. Additional restrictions by the
mobile phone operators, especially the
lack of datagram connection, may also
have strong impact on the design.
For example, Java programs on mo-
bile phones can access to servers us-
ing HTTP protocol. However there is
no way of establishing TCP/IP connec-
tion from servers to the mobile phones,
which makes it difficult to sending in-
formation from server to mobile phones
effeciently (we call this as “downlink
problem”).

(2-2) Program size:
For the size limitation, the current max-
imum program size is 30KB to 50KB
(and 256KB for J-phone Java), which
is smaller than that of the existing plat-
forms. Therefore based on the discus-
sion in the previous section, the pro-
gram size should be under 256KB.

(3) Issues from management aspects:
(3-1) Scalability:

Mobile phone operators have order of
million subscribers. Therefore scalabil-
ity is one of key issues.

(3-2) Access control:
Sending SPAM mails to the mobile
phones is one of hot social problems in
Japan. Therefore, access control mech-
anism is needed.

We summarize the design issues in the left
two columns of Table 1.

Fig. 2 Overview of architecture of KDDIAP.

4. Design of KDDIAP and Its Imple-
mentation

This section describes the detailed design
of KDDIAP, a lightweight agent platform for
Java-enabled mobile phone.

4.1 Overall Architecture
We choose a center-oriented type of platform

as the overall design from the viewpoint of man-
agement (i.e., reliability, security and account-
ing). Each mobile phone or center server main-
tains a fragment of platform (we call it sub-
platform) and the collection of sub-platforms
are viewed logically as a single FIPA compliant
platform (see Fig. 2).

4.2 Our Approaches to Design Issues
The followings show our approaches to the

design issues discussed in the previous section,
which are also summarized in the right column
of Table 1.
(1) Solution to requirements specific to mobile

phone communication



Vol. 45 No. 2 Lightweight FIPA Compliant Agent Platform 579

(1-1) Unreliable wireless communication:
To handle the instability of communica-
tion and to avoid the loss of messages,
we place the message buffers both in
the mobile phone sub-platforms and the
center side sub-platforms. The buffered
messages will be retransmitted when
the communication becomes available
later.

(1-2) Local management capabilities:
We design that the mobile sub-platform
implements all the mandatory compo-
nents (e.g., ACC, AMS and DF) de-
fined in FIPA standards with minimum
functionalities enough for communica-
tion and for local management. There-
fore, even if a mobile phone is unreach-
able to a center sub-platform, the mo-
bile sub-platform allows local manage-
ment operations on the locally existing
agents in the mobile phone to its user
by using the local AMS. After the con-
nection is reestablished, the new status
will be propagated to the ones stored in
the center sub-platform.

(1-3) Start up speed:
Generally, starting platform needs cre-
ating the above mandatory compo-
nents, which may be time consuming
processing. We design our platform to
support the full lifecycle of an agent,
defined by FIPA standards, which al-
lows agents be “suspended” for mobil-
ity and other reasons such as reducing
memory usage. To shorten the start
up time, when the mobile sub-platform
is going down, instead of destroying
these components in the sub-platform,
it just makes them suspend. When the
sub-platform starts again, it just wakes
these components up. Thus the start
up time will be much shorter.

(2) Solution to limitation on Java functionali-
ties and program size:

(2-1) Java capabilities:
Event Handling mechanism: typically,
each agent is implemented as a thread
of Java. J2ME/CLDC + MIDP does
not provide the event handling mecha-
nism between threads. So we choose the
classical polling mechanism for intra-
sub-platform communication in the mo-
bile sub-platform.

RMI and Serialization: as J2ME/
CLDC + MIDP does not support RMI,
we introduce dedicated mechanisms for
data serialization and for agent mobil-
ity. We will discuss the detail in Sub-
section 4.4.
Down link problem due to the lack
of datagram connection: to avoid the
downlink problem, we designed that
KDDIAP can use asynmetric MTPs
where messages from and to the mobile
and center sub-platforms are sent sepa-
rately in the uplink MTP and the down-
link MTP. The detailed solution will be
discussed in Subsection 4.5.

(2-2) Program size:
To accommodate the program size into
100KB to 256KB, as we discussed in
(1-2), we designed that all the compo-
nents in the mobile side have minimum
functionalities enough for communica-
tion and for local management on the
mobile phone. The difference of our ap-
proach to LEAP is that LEAP has only
ACC in the mobile side and fully de-
pends on the center, while KDDIAP is
somehow independent to the center side
so that it can handle off-line manage-
ment operations. The detailed mapping
of functionalities is described in the fol-
lowing subsection.
We also give up providing kinds of li-
braries, which may be useful for agent
programmers, to aviod that all the li-
braries are included in the platform.
For example,libraries for interaction
protocols, generic ontology mechanisms
and behaviours are not implemented.
Furthermore, to cope with the complex
ACL syntax, KDDIAP does not sup-
port the XML representation for ACL
and the envelope. We also limit the syn-
tax of the semantic language to SL0.

(3) Issues from management aspects:
(3-1) Scalability:

To realize the scalability, our platform
can invoke multiple instances of cen-
ter side sub-platforms. The manda-
tory components in these sub-platforms
share the management information us-
ing a relational database. So logically,
these sub-platforms are viewed as a sin-
gle sub-platform from mobile side sub-



580 IPSJ Journal Feb. 2004

platforms and other external platforms.
Each mobile sub-platform is connected
to one of center sub-platforms. When
a mobile sub-platform starts, it firstly
asks a special agent, named “configura-
tion agent”, for a center sub-platform
to be connected by using the default
sub-platform. The configuration agent
selects one based on the current loads
of the center sub-platforms and returns
the name of the assigned sub-platform
to the requester. Then the mobile
sub-platform reconnects to the assigned
sub-platform to start the normal mes-
sage communication.

(3-2) Access control:
To protect user from SPAM messages,
each user can register his/her blacklist
to KDDIAP. Messages from the agents
who are named in the list or whose own-
ers are specified in it are filtered out by
the center side ACC.

4.3 Mapping of Functionalities be-
tween Mobile Phone Side and Cen-
ter Side

We divided the mandatory functionalities
into the mobile phone sub-platform and the
center sub-platform as follows:
• ACC: We omit the generic routing mech-

anism from the mobile ACC (mACC).
mACC delivers messages only to the agents
in the local sub-platform. Other messages
are sent to the center ACC (cACC) to
which it is currently connected. cACC has
full routing mechanism, including routings
between cACCs and to other external plat-
forms.

• AMS: Normally, all the agent manage-
ment information is controlled by the cen-
ter AMSs (cAMSs) and the mobile phone
AMS (mAMS) acts as a proxy for accepting
local operations and for cashing the cur-
rent status of local agents. If the mAMS
can not communicate with the peer cAMS,
it locally executes the operations. The re-
sults will be propagated to the cAMS when
the communication is reestablished.

• DF: The mobile DF (mDF) is also just a
cash proxy to the center DF (cDF) in or-
der to reduce the amount of communica-
tion. Full yellow page functionalities are
implemented in cDFs.

4.4 Mobility and Serialization
As for mobility, the Java environments

for mobile sub-platform and for center sub-
platform differ. Therefore, we use “weak mo-
bility”, where the agent program of the mov-
ing agent for the environment of the destina-
tion already exists at the destination and only
the internal state of the agent is transferred and
restored there. Sending internal states needs se-
rialization mechanism as RMI is not available.
Therefore, we provide dedicated serialize func-
tions for basic data types (e.g., integer, floating
numbers and string). It is the agent program-
mer’s responsibility to provide serialize(), de-
serialize() interfaces for the agent running on
KDDIAP. Suspend(), which stores the inter-
nal state of the agent into the memory, tells to
the local AMS and stops the execution of the
agent, and restart(), which restores the writ-
ten internal state and restarts the execution of
the agent, are also required for the agent. We
also provides a template for creating agent pro-
grams which comply with the above interfaces.
Finally, the serialized internal state of an agent
is base64 encoded and sent as the content of
ACL between the AMSs.

4.5 Downlink Problem
As for the MTP between the mobile side

and the center side, LEAP assumes that data-
gram connection is available in the mobile side,
but that the server socket is not supported
(MIDP limitation). Therefore LEAP places a
proxy program named Mediator in a center side
server to accept message requests from the cen-
ter side 16). Messages are exchanged between
the mobile side and Mediator bidirectionally
through the datagram connection. Current im-
plementation of KDDIAP, which we discuss in
the following subsection, runs only on PDAs
and MIDP emulator. Howevwe, when we are
going to implement KDDIAP on actual Java-
enabled mobile phones as the fure work, as all
of iAppli, EZPLUS and J-phone Java do not
provide datagram connection, this approach is
not appricable.

For the uplink, sending message by HTTP
protocol, which is a standard MTP for FIPA
platforms, is possible as they offer HTTP client
interface at the mobile phone. But for the
downlink, as they offer neither HTTP server in-
terface nor the datagram connection at the mo-
bile phone, HTTP protocol is not appricable.
Therefore we designed that KDDIAP can han-
dle unidirectional message transports between



Vol. 45 No. 2 Lightweight FIPA Compliant Agent Platform 581

Fig. 3 Screenshots of KDDIAP on MIDP emulator
and iPAQ PDA.

the center and mobile sub-platforms to separate
the uplink messages and the downlink messages
in addition to the normal bidirectional message
transports. According to the current Java ser-
vices on mobile phone, we think that the short
messaging service is suitable for the future im-
plementation on Java-enabled phones, where
the expected communication delay is about a
second. Polling to the center side using HTTP
is not desirable due to the polling delay and
communication cost.

4.6 Prototype Implementation
We implemented a prototype of KDDIAP.

The center sub-platforms run under J2SE en-
vironment on Linux or Windows operating sys-
tems. The mobile phone sub-platform was im-
plemented under J2ME/CLDC + MIDP envi-
ronment, running on PalmOS and MIDP em-
ulator over Windows PCs. Figure 3 shows
screenshots of KDDIAP running on MIDP em-
ulator and iPAQ PDA (see Section 5). As for
the DBMS which stores agent management in-
formation for ACCs and AMSs, KDDIAP ac-
cesses it through JDBC for portability. Cur-
rently Oracle and Postgress are already tested
for the database server.

For the asymmetric message transport be-
tween mobile sub-platforms and the center
sub-platforms, we currently run the KHTTP
server 17), a small HTTP server running on
J2ME environment, on both of the mobile sub-
platform and the center sub-platform and use
the HTTP protocol for both of uplink and
downlink. Another version of message trans-
port, which uses short messaging service as the
downlink, is currently under development for
actual mobile phones. We also use the HTTP
based message transport package 18) for exter-
nal communication to the other FIPA compli-
ant platforms.

Fig. 4 Evaluation environment.

Table 2 Detailed hardware and software
specifications for evaluation.

Center PDA1/PDA2
CPU Pen-III 750MHz ARM 206MHz
RAM 256 MB 64 MB
OS Linux SavaJe
Java Env. J2SE SavaJe (J2SE)

5. Performance Evaluation and Dis-
cussions

We evaluated the performance of the proto-
type and compared with LEAP to show the dif-
ference caused by the available Java function-
alities. We also discuss about the scalability of
KDDIAP in this section.

5.1 Evaluation Environment
In this evaluation, to run KDDIAP and

LEAP on the same mobile device environment,
we ported the mobile sub-platform of KDDIAP
into SavaJe 19), J2SE compliant Java OS run-
ning on iPAQ PDAs and compared to the J2SE
version of LEAP on iPAQ (plus JADE in the
center side) for performance evaluation. Note
that the ported version of KDDIAP is not opti-
mized for J2SE environment. It just uses APIs
available for J2ME. Figure 4 shows the config-
uration of the evaluation. Two iPAQ PDAs and
a desktop PC are connected by LAN (10base-
T). For KDDIAP, a Postgress server runs on
the center PC. Table 2 shows the detailed
hardware and the software for these machines.
Table 3 shows the functionalities of KDDIAP
compared to those of LEAP.

5.2 Evaluation Results
5.2.1 Program Size
Firstly, we measured the program size (the

size of Jar file) of the mobile sub-platform of
KDDIAP and that of LEAP. Table 4 and
Table 5 show the sizes of Jar files for J2SE
and J2ME environments, respectively. As the
J2SE version of LEAP contains functionalities
that are not included in KDDIAP, i.e., IIOP
support, interaction protocol handler, ontology
support and wrapper support, we removed the
codes for these functionalities from the Jar file



582 IPSJ Journal Feb. 2004

Table 3 Comparison of functionalities of KDDIAP with LEAP.

KDDIAP LEAP (on J2ME)
components

Center side AMS One or more per platform one per platform
Mobile side AMS Yes, act as proxy (allows local manage-

ment operation)
None

Center side DF One or more per platform one more more per platform
Mobile side DF Yes, act as proxy (reduce communica-

tion traffic)
None

Center side ACC One or more per platform one per platform
Mobile side ACC Yes (limited routing capability) Yes (limited routing capability)

Agent communication
Content language syn-
tax

Semantic Language (SL) 0 SL0 ∼ SL2

Support of Interac-
tion Protocol

None Yes

ACL representation String String, XML
Envelope representa-
tion

String String, XML

Supported MTPs for
Mobile Communica-
tion

Both of bidirectional and unidirectional
MTPs. Current version uses HTTP for
both uplink and downlink MTPs. Fu-
ture version will use short messaging
services for downlink MTP.

Bidirectional MTP only. JITP is cur-
rently supported.

Other features
Mobility Support Yes None
Secuirty Access Control by blacklist and whitelist None

Table 4 Program size of mobile side in J2SE
environment (in kilobytes).

KDDIAP KDDIAP LEAP LEAP
(full) (without GUI) (full) (without GUI

and above)
209 185 1290 501

Table 5 Program size of mobile side in J2ME
environment (in kilobytes).

KDDIAP (full) LEAP (full)
220 374

before the measurement.
Also, as the GUI of J2SE LEAP is richer than

that of KDDIAP, we removed the GUI codes
from both platforms for comparison. The pro-
gram sizes shown in Table 5 represent the sizes
of Jar files of KDDIAP and LEAP for the J2ME
environment. The program size of KDDIAP is
about 200 KB on J2SE, or 220 KB on J2ME,
almost one third or half of that of LEAP, re-
spectively, and meets the requirement (2-2) in
Subsection 4.2. The size difference between the
J2ME version and the J2SE version of LEAP
may due to the supported functionalities. The
size difference between the LEAP and KDDIAP

in J2ME version mainly comes from the follow-
ing factors: (note: (+) represents factors which
make KDDIAP larger. (−) represents factors
which make KDDIAP smaller.)
(+)KDDIAP has mAMS and mDF, while

LEAP does not,
(−) JITP is relatively large to the HTTP based

MTP of KDDIAP, as it contains the inter-
face mechanism to IIOP and the data com-
pression mechanism,

(−)Handlers of interaction protocols and on-
tologies of LEAP are large, and

(−)while LEAP provides typical behaviour li-
braries, KDDIAP does not.

The last two factors mean that agent program-
mers need more codes to develope agents in KD-
DIAP than in LEAP. To reduce the above pro-
gramming overhead, KDDIAP provides a pro-
gram template for typical agents.

We also tested Retroguard 20), a compaction
tool of Jar file. But we only obtain limited com-
pression gain of about 5 percentages. Therefore
in order to reduce the program size further, we
needs additional design refinements. Currently
parsers for ACL and envelope in each manda-
tory component (i.e., ACC, AMS and DF) are



Vol. 45 No. 2 Lightweight FIPA Compliant Agent Platform 583

Table 6 Start up time (in milliseconds).

KDDIAP LEAP
Second time and later First time with JADE

2,898 17,792 1,615

relatively large compared to the code for imple-
menting actual functionalities for the compo-
nent, especially in DF. Therefore, limiting com-
plex syntax and functionalities for these compo-
nents, especially for DF, may be the next refine-
ment area.

5.2.2 Start Up Time of Mobile Sub-
platform

Secondly, we measured the start up time dis-
cussed in the requirement (1-3) of Subsection
4.2. Table 6 shows the comparison of KD-
DIAP and LEAP with JADE in the center
(we just refer this combination as LEAP in
the later section for simplicity). At the first
time, the mobile sub-platform of KDDIAP cre-
ates mACC, mAMS and mDF and registers
them (cold start). At the second time or the
later, it only wakes the “suspended” agents up
from the local storage, which will takes much
shorter time (hot start). Therefore, KDDIAP
usually starts within 3 seconds. Considering
that LEAP does not create AMS and DF in
the mobile side, we believe that the hot start
mechanism of KDDIAP is effective.

5.2.3 Performance of Message Com-
munication

We think that in the actual mobile phone en-
vironment, as the communication delay of short
messaging service is around a second, the per-
formance bottlneck may exist in the communi-
cation but not in the processing delay by the
limited computing power of the mobile phones.
To clarify this point, we evaluate the perfor-
mance of message communication. A test agent
sends an Inform message that only contains the
header part (about 320 bytes) to the peer and
the latter returns the same message to the orig-
inator. Table 7 shows the measured round trip
delay in the J2SE environment for the message
exchange in the following 5 cases:
a) Center local: Both the test agent and the

peer in the center
b) PDA local: Both the test agent and the

peer in PDA1
c) PDA → Center: The test agent in PDA1

and the peer in the center
d) Center → PDA: The test agent in the cen-

ter and the peer in PDA1
e) PDA1 → PDA2: The test agent in PDA1

Table 7 Round trip delay for message exchange (in
milliseconds).

KDDIAP J2SE LEAP
with JADE

a) Center local 54 2
b) PDA local 416 18
c) PDA → Center 947 85
d) Center → PDA 948 104
e) PDA1 → PDA2 2,032 69

and the peer in PDA2
The difference of round trip delay between

KDDIAP and LEAP mainly comes from the
methods of communication. KDDIAP uses
RMI within the center sub-platforms, the
polling based mechanism within the mobile sub-
platform due to the capability of J2ME/CLDC,
and HTTP protocol by KHTTP server between
the mobile and the center sub-platforms. On
the other hand, LEAP directly uses socket for
all the message communication. Therefore, the
difference in case a) mainly comes from the per-
formance of RMI and that of the socket. In case
b), KDDIAP needs 4 times of polling. Cur-
rently the polling interval is set to 100 millisec-
onds, which means the average delay is 50 mil-
liseconds. Therefore about 200 milliseconds are
consumed by the polling. For case c) and case
d), additional overhead by the KHTTP servers
in both sub-platforms (2 times of polling in the
mobile side and a thread creation for each sub-
platform) exists. Case e) takes almost twice
time of case c) or d), since all the messages are
relayed by the cACC.

The performance of KDDIAP will be im-
proved if we use shorter polling interval. How-
ever, as explained, when we use KDDIAP in
the actual mobile phone, short messaging ser-
vices will be used for downlink of the message
transport, where the delay will be around a sec-
ond. So we think that the trade-off of perfor-
mance and the processing overhead should be
customized for each environment, considering
the delay of its short message service.

5.2.4 Performance of Agent Mobility
As KDDIAP supports agent mobility, we

evaluated the performance by comparing to
the J2SE version of LEAP. A test agent on a
sub-platform requests to move to another sub-
platform and then the same agent requests to
return to the originating sub-platform. Table 8
shows the measured round trip delay for the fol-
lowing 3 cases:
a) PDA → Center : Starts from PDA1, moves

to the center and returns



584 IPSJ Journal Feb. 2004

Table 8 Round trip delay of agent mobility (in
milliseconds).

KDDIAP J2SE LEAP
with JADE

a) PDA → Center 4,308 2,891
b) Center → PDA 3,879 2,933
c) PDA1 → PDA2 9,459 9,079

b) Center → PDA : Starts from the center,
moves to PDA1 and returns

c) PDA1 → PDA2 : Starts from PDA1, moves
to PDA2 and returns

The number of messages needed for mobil-
ity in KDDIAP is larger than that in LEAP as
an agent in LEAP can directly access its AMS,
while that in KDDIAP accesses the center AMS
via its mobile AMS. Therefore, currently KD-
DIAP is slower than LEAP due to the differ-
ence of number of messages needed for mobility
and the polling mechanism used in the mobile
sub-platform of KDDIAP. The performance of
agent mobility can also be improved by shorten-
ing the polling interval. However, as discussed
in Subsection 4.5, the downlink delay would still
remain as the dominant factor for the perfor-
mance in the actual mobile phone environment.

5.3 Scalability of KDDIAP
Current version of KDDIAP is written in

Java, which is known as the heavy CPU com-
suming language. KDDI is designed to be able
to run more than one AMS, DF and ACC over
multiple servers in a single FIPA platform to
improve its scalability. However, all the agent
management information is stored in a single
relational database system and shared by these
components. Therefore, the performance of the
RDBMS may become the bottleneck.

According to the result by the Transaction
Processing Performance Council 21), the best
performance by a single non-cluster DB server
is over 800 K TPmC for on-line transaction pro-
cessing benchmark test(TPC-C). The process-
ing overhead to the database for message rout-
ing in KDDIAP seems lighter than those de-
fined in TPC-C. However, if we assume that
the overhead of the former is equvalent to the
latter, a high-performance RDBMS server can
offer processing power needed for routing 800 K
messages per minutes, or 16 K messages per sec-
ond. Even if one tenth of the mobile phone sub-
scribers actively uses agent applications in their
Java-enabled phone at the same time and each
agent application sends one message per sec-
ond, the performance means that a single KD-

DIAP platform can accomodate 1.6 million sub-
scribers. By using clustered RDBMS servers,
we can further increase the muximum number
of subscribers. Therefore, we think the scala-
bility of KDDIAP is practically achieved.

6. Conclusion

In this paper, we discussed the design issues
for FIPA compliant agent platforms for mobile
phones and presented our solutions through the
prototype development of KDDIAP. KDDIAP
has features suitable for running on mobile
phones, e.g. small implementation dedicated
to J2ME/CLDC+ MIDP environment, scala-
bility, reliable communication mechanism, off-
line management functions and warm startup
mechanism. We evaluated the prototype by
comparing to LEAP, a similar lightweight agent
platform.

We are currently developing another message
transport that uses the short messaging service
as the downlink to run KDDIAP on the real
mobile phone. Our future plan also includes
further compaction of KDDIAP and an exten-
sion of mACC to support ad-hoc agent commu-
nication through Bluetooth and IrDA equipped
in mobile phones.

Acknowledgments The authors wish to
thank to Dr. Tohru Asami, President & CEO
of KDDI R&D Laboratories, Inc. for his conti-
nous support for this study.

References

1) FIPA Home Page. http://www.fipa.org
2) Bellifemine, F., Poggi, A. and Rimassa, G.:

JADE — A FIPA-compliant agent framework,
Proc.PAAM’99, London, pp.97–108, The Prac-
tical Application Company Ltd. (April 1999).

3) Poslad, S., Buckle, P. and Hadingham, R.G.:
The FIPA-OS agent platform: Open Source for
Open Standards, Proc. PAAM 2000, Manch-
ester UK, pp.355–368, The Practical Applica-
tion Company Ltd. (April 2000).

4) COMTEC Agent Platform.
http://ias.comtec.co.jp/ap/

5) April Agent Platform.
http://www.nar.fujitsulabs.com/aap/

6) Poslad, S., Laamanen, H., Malaka, R., Nick,
A., Buckle, P. and Zipf, A.: CRUMPET: Cre-
ation of User-friendly Mobile Services Person-
alised for Tourism, Proc. 3G 2001, London
(March 2001).
http://conferences.iee.org.uk/3G2001/

7) Bergenti, F. and Poggi, A.: LEAP: a FIPA
Platform for Handheld and Mobile Devices,



Vol. 45 No. 2 Lightweight FIPA Compliant Agent Platform 585

Proc. ATAL (2001).
8) Aglet Agent Platform. http://www.aglets.org
9) Ohsuga, A., Nagai, Y., Irie, Y., Hattori, M.

and Honiden, S.: Plangent: An Approach To
Making Mobile Agents Intelligent, IEEE Inter-
net Computing, Vol.1, No.4, pp.50–57 (1997).

10) I-mode Java Service.
http://www.nttdocomo.com/top.html

11) au EZPLUS (in Japanese).
http://www.au.kddi.com

12) J-Phone Java Service (in Japanese).
http://www.j-phone.com/

13) http://www.e-jumon.com/
14) http://www2.toshiba.co.jp/plangent/
15) UMBC KQML Web.

http://www.cs.umbc.edu/kqml/
16) Berger, M., Rusitschka, S., Toropov, D.,

Watzke, M. and Schlichte, M.: Porting Dis-
tributed Agent-Middleware to Small Mobile
Devices, Proc. Workshop on Ubiquitous Agents
on Embedded, Wearable and Mobile devices
(2002).

17) KHTTP Server.
http://khttp.enhydra.org/index.html

18) Java Agent Message Router.
http://liawww.epfl.ch/JAMR/

19) SavaJe Operating System.
http://www.savaje.com/

20) Retroguard. http://www.retrologic.com/
21) Transaction Processing Performance Council.

http://www.tpc.org/

(Received May 9, 2003)
(Accepted December 2, 2003)

Satoshi Nishiyama received
his B.E degree from the De-
partment of Electrical Engineer-
ing, the University of Tokyo in
1984 and joined Kokusai Den-
shin Denwa Co. Ltd. (now
KDDI). He received his M.A. de-

gree from the Department of Computer Sci-
ence, the University of Texas at Austin in 1991.
Currently, he is the section head of Ubiquitous
Networking Protocol Section, YRP Ubiquitous
Networking Laboratory. His research interest
includes database, network management, in-
telligent transportation systems, agent systems
and ubiquitous network. He received the IE-
ICE Research Promotion Award in 1993 and
the Best Paper Award of the National Conven-
tion of IPSJ in 2001, respectively.

Gen Hattori received the
B.E. and M.E. degrees of Elec-
trical and Electronics Engi-
neering from Kobe University,
Japan, in 1996 and 1998 respec-
tively. Since joining KDD R&D
Laboratories Inc. in 1998, he

has been working on network management sys-
tems, intelligent transportation systems and
software mobile agent systems. He is currently
a research engineer of Text Information Pro-
cessing Lab. in KDDI R&D Laboratories Inc.

Chihiro Ono received the
B.E. degree of Electrical Engi-
neering, the M.S. degree of Com-
puter Science from Keio Univer-
sity, Japan, in 1992 and 1994 re-
spectively. Since joining KDD
R&D Laboratories Inc. in 1994,

he has been working on network management
systems, database systems, and agent systems
for electronic commerce. From 1999 to 2000, he
was a visiting researcher at Stanford University.
He is currently a research engineer of Text In-
formation Processing Lab. in KDDI R&D Lab-
oratories Inc. He received Best Paper Award
for Young Researchers of the National Conven-
tion of IPSJ in 1996.

Hiroki Horiuchi received
the B.E., M.E. and Dr. of En-
gineering from Nagoya Univer-
sity, Japan, in 1983, 1985 and
2000 respectively. Since joining
KDD R&D Laboratories Inc. in
1985, he has been working on

network architecture, formal description tech-
niques for communication protocol, network
management systems, distributed processing
technologies and intelligent transportation sys-
tems. He is currently a senior manager of Ubiq-
uitous Network Lab. in KDDI R&D Laborato-
ries Inc. He received Young Engnieers Award
of IEICE in 1992 and the Excellence Award in
52nd and 58th National Convention of IPSJ in
1996 and 2000, respectively.


