# X線画像を用いた金属部品内部の欠陥検出

川井 将人† 服部 公央亮† 田口 亮† 梅崎 太造†
本野 明大‡ 兼松 佳弘‡
名古屋工業大学大学院<sup>†</sup> 明和 e テック<sup>‡</sup>

## 1. まえがき

工業製品の生産において品質検査の主流は目 視検査であるが、現在では画像処理技術を応用 した自動検査が普及しつつある.工業製品にお ける鋳物製品は、物体内部に欠陥が発生しやす い、しかし、従来の画像処理による品質検査で は、物体の表面部分の傷や凹みに関しては検査 することができるが、物体内部の欠陥に関して は、検査することができない。物体の内部欠陥 検査における従来手法として、X線検査がある. X線検査<sup>[1]</sup>は、高速で高感度なデジタル撮影が 可能であるが、従来は目視検査が主流である. そこで今回は、画像処理技術を用いることで、 自動X線検査の実現を目指す.本研究では、良 品のX線画像をマスタ画像として用い、検査対 象となるテスト画像を局所的に差分することで, 微細な欠陥を検出するという手法を検討する.

#### 2. 実験環境

2.1 撮影システム ラインセンサカメラによる 光学系を用いた撮影システムを図1に示す.



Defective detection inside the metal parts using x-ray image † Masato Kawai • Nagoya Institute of Technology

- \* Koosuke Hattori Nagoya Institute of Technology
- † Ryo Taguchi Nagoya Institute of Technology
- † Taizo Umezaki Nagoya Institute of Technology
- ‡ Akihiro Motono Meiwa e-tec
- ‡ Yoshihiro Kanematsu Meiwa e-tec

撮影方法は、センサカメラ方向への X 線照射を用 いて、ラインセンサでスキャンニングすることで、検査 対象に対して垂直に撮影を行う正透過である。 2.2 データ 本実験では、図 2(a)に示すテスト ピースを用いる.本研究でこのテストピースを 用いた理由は、形状がシンプルであり、テスト ピースの輪郭部分などから特徴が得られやすい ためである.このテストピースを X 線検査装置 で撮影して得られた画像をマスタ画像として用 いる(図 2(b)).また、テスト画像撮影時には、 テストピース上にテスト片を設置し、それを欠 陥とみなした.本研究では、60 枚のテスト画像 を用いて実験を行う.



(a) テストピース (b) マスタ画像 (c) テスト画像 (d)欠陥部分拡大図 図 2 テストピースおよび X 線画像

## 3. X線画像による欠陥検出

3.1 提案法 マスタ画像とテスト画像を差分す ることで、テスト画像の欠陥領域を検出するこ とを試みる.しかし、X線検査装置で撮影する 際、得られた画像毎に、テストピースの角度や 位置などが異なるため、単純に得られた画像同 士を差分することはできない.そこで、前処理 として画像補正を行うことでその問題を解決す る.さらに、画像補正をする際、角度や位置の ずれや歪みが十分に補正できない場合に対応す るため、局所差分処理を適用する.これにより、 微小の局所的なずれや歪みを吸収することがで きる.最終的に二値化処理を行い得られた領域 を欠陥とみなす.

3.2 画像補正 図3に示すマスタ画像とテスト 画像からSURF特徴量<sup>[2]</sup>により128次元の特徴ベ クトルを持つ特徴点を抽出する.それぞれの特 徴点間のユークリッド距離が最小となるものを 求め, 閾値処理により特徴点同士を対応付ける. ユークリッド距離を求める式を式(1)に示す.

全特徴点から得 られた対応点を用 いて,マスタ画像 とテスト画像間の 射影変換行列を求 める.ここで,射 影変換行列を求め る際, 全対応点の ペアを用いると,



図3 画像補正

外れ値が存在する場合に正しい射影変換行列が 得られない. その問題を解決するために LMedS 推定<sup>[3]</sup>を用いて、対応点のペアのランダムな部 分集合(4ペア)を繰り返し生成し、この部分集 合から,最小二乗法を用いて射影変換行列を推 定する. 得られた射影変換行列を用いて画像 補正する.

3.3 局所差分 画像補正する際のずれを吸収す るため、局所差分を用いる. 単純に差分した画 像と局所差分を適用した画像をそれぞれ示す (図 4). 図 4(c)の単純差分の画像を見ると、テ ストピースの輪郭部分が消えていないことが分 かる.一方,図 4(d)の局所差分を用いることで, 画像補正する際のずれや歪みを吸収できている.



図4単純差分および局所差分

3.4 二値化処理による欠陥検出 局所差分後, 二値化処理を行うことで欠陥検出率を調べた

は 100 [%] 成功し た. しかし、欠 陥サイズが小さく なるに従い検出率 が減少し、1.0 [mm]の欠陥におい ては 27 [%] しか検 出できない.



4. 考察 (1)

画像補正を行い、その後、局所差分処理を適 用することで、全てのサンプルで画像補正の際 のずれを吸収できた.しかし, 1.5 [mm]以下の 欠陥が検出できないサンプルがある.検出成功 例(図 6)と失敗例(図 7)をそれぞれ示す.この 結果から、検出成功例では、物体の薄い部分に 欠陥が置かれている.そのため、輝度値の変化

が大きくなるの で、欠陥検出に 成功した.一方, 検出失敗例では, 物体の厚い部分 に欠陥が置かれ ている. そのた め,輝度値の変 化が小さくなる ので, 欠陥検出 に失敗した.こ の結果から、物体 の厚さに対して輝 度補正をかける必 要があると考えら れる.



図6 検出成功例



図7 検出失敗例

### 5. むすび

本研究では、X 線検査装置により撮影された X 線画像を用いて欠陥検出を自動で行うシステ ムに関する手法を検討した. 結果, 1.5 [mm]以 下の欠陥が検出できないサンプルが存在した. その原因として物体の厚さが検出結果に大きく 影響している. そのため, 物体の薄い部分に置 かれた欠陥に比べて厚い部分に置かれた欠陥の 検出が難しい. 今後物体の厚さに応じた輝度補 正をかけることで、検出率の向上を目指す.ま た、本研究では検査対象として、シンプルな形 状をした実験用のテストピースを用いたが、今 後様々な工業製品に汎用的に使用可能な手法の 構築を目指す.

参考文献

- [1]鈴木隆之,"デジタルX線画像の技術紹介",軽 金属溶接, Vol46, No.11, pp.506-510, 2008.
- [2]HERBERT B, "Speeded-Up Robust Features (SURF)", Computer Vision and Image Understanding 110, pp.346-359, 2008.
- [3] 彦坂直孝, "相対視差画像を用いた LMedS 推定 による平面領域検出"、ロボティクス・メカトロニクス 講演会講演概要集 2007, 1P1-K01(1)-(4), 2007.