
Vol. 45 No. 5 IPSJ Journal May 2004

Regular Paper

Logic Optimization of Asynchronous Speed-Independent Circuits

Using Transduction Methods

Hiroshi Saito,† Hiroshi Nakamura,† Masahiro Fujita††

and Takashi Nanya†

In this paper, we present an optimization method of asynchronous speed-independent cir-
cuits based on transduction methods. Although transduction methods are well used for the
optimization of multi-level combinational circuits, the direct application to speed-independent
circuits may leads to a malfunction of circuits because the property of hazard-freeness guaran-
teed by circuits is broken. Therefore, we discuss how to optimize speed-independent circuits
by using transduction methods without leading any hazardous behavior. For instance, we
extend the gate substitution algorithm in transduction methods. Finally, we evaluate the
efficiency of the extended gate substitution algorithm by applying it to several benchmark
circuits.

1. Introduction

Signal transition graphs (STGs) 2) are well
used to specify the behavior of asynchronous
circuits. Logic synthesis tool Petrify 3) ac-
cepts an STG and produces a hazard-free asyn-
chronous speed-independent (SI) circuit. The
SI circuit can operate correctly under arbitrary
gate delay and zero wire delay 6).

Although Petrify is well established for the
synthesis of SI circuits, global optimization us-
ing the relationships among the logic functions
of gates is restricted to gate substitution after
logic decomposition 5). Namely, if a function is
decomposed, Petrify exploits whether the gate
corresponding to the decomposed function can
substitute for other gates. However, it implies
that there is no chance of optimization if no
function is decomposed because of the appear-
ances of hazardous behavior. Because the logic
function of each non-input (output or internal)
signal is derived separately from the binary en-
coded state graph of a given STG, the failure of
decomposition remains redundancy in the syn-
thesized circuit such that the identical function
appears on the logic network of different signals.

Thus, in this paper, we present an alterna-
tive approach to optimize SI circuits globally
based on transduction methods 4),8). Transduc-
tion methods are well used for the optimization
of multi-level combinational circuits. By cal-
culating permissible functions which represent

† Research Center for Advanced Science and Technol-
ogy, The University of Tokyo

†† Department of Electrical Engineering, The Univer-
sity of Tokyo

don’t care space in a given circuit, transduction
methods optimize circuits by merging common
gates, substituting gates, or pruning gates so
that the total number of gates and/or connec-
tions are minimized.

In this paper, we extend the gate substitu-
tion algorithm 8) to optimize SI circuits based
on the standard-C architecture 5). Because the
gate substitution algorithm does not concern
the property of hazard-freeness guaranteed in
SI circuits, there is a possibility that the prop-
erty is broken during transformation. There-
fore, to optimize SI circuits correctly, the gate
substitution algorithm is extended in the fol-
lowing two aspects. First, we extend the
traditional calculation method of permissible
functions. The key point is that the assign-
ment of don’t cares is carried out based on
monotonous cover conditions 5) which guaran-
tee hazard-freeness in SI circuits based on the
standard-C architecture. Second, we introduce
valid conditions of substitution to preserve the
property of hazard-freeness. Although these
conditions are also based on monotonous cover
conditions, we modify them so that the evalua-
tion of monotonous cover conditions is carried
out on calculated logic functions and permissi-
ble functions.

Figure 1 shows how our proposed extended
gate substitution algorithm works. At first,
the original STG is synthesized to generate a
SI circuit based on the standard-C architec-
ture and the new STG corresponding to the
synthesized circuit. The new STG is differ-
ent from the original one in that it includes
the behavior of not only input/output signals

1289

1290 IPSJ Journal May 2004

Fig. 2 VME bus controller: (a) Interface, (b) Timing diagram of a read cycle,
(c) STG, (d) SG, (e) Karnaugh map for signal D, (f) Standard-C
architecture for signal D.

Fig. 1 Optimization flow.

but also internal signals inserted by Petrify.
Then, by using draw astg command distributed
in Petrify package, the binary encoded state
graph is translated from the new STG. After
both the SI circuit and the state graph are gen-
erated as inputs of the extended gate substitu-
tion algorithm, permissible functions are calcu-
lated throughout the circuit. Finally, the circuit
is optimized without violating the property of
hazard-freeness.

The rest of this paper is organized as follows.
The basic notions for SI circuits are shown in
Section 2. In Section 3, we describe a tradi-
tional calculation method of permissible func-
tions at first, and then we describe how to cal-
culate permissible functions in SI circuits. In
Section 4, we describe conditions of valid sub-
stitution and the extended gate substitution al-

gorithm. Finally, we show experimental results
in Section 5 and conclude this work in Section 6.

2. Basic Notions of Asynchronous SI
Circuits

2.1 Signal Transition Graph
Figure 2 (a) shows the interface of a VME

bus controller. The controller controls the flow
of data between Bus and Device via a Data
Transceiver. There are two input signals Dr
and Dw for bus side which indicate the begin-
ning of a bus read and write cycle. After the
completion of cycles, these signals are acknowl-
edged by output signal Dack. On the other
hand, there is a pair of handshake signals LD
and LDack for device side. Data Transceiver is
controlled by signal D. The timing diagram of
a read cycle is shown in Fig. 2 (b).

Signal transition graphs (STGs) 2) known as
interpreted Petri Nets 7) are well used to specify
the behavior of asynchronous circuits. The STG
shown in Fig. 2 (c) represents the behavior of
the VME bus controller, which is generated by
Petrify 3) after the logic circuit is synthesized.
The STG has one internal signal csc which is
inserted during the synthesis. Note all signals
in an STG are partitioned into the set of input
signals and the set of non-input (internal and
output) signals.

Rising transitions of signal a are labeled with
“a+” and falling transitions with “a−”. We
also use the notation a∗ if the sign of the tran-

Vol. 45 No. 5 Logic Optimization of Asynchronous Speed-Independent Circuits 1291

sition is not specific. Multiple transitions for
a signal are distinguished by an index i (e.g.,
D1+ and D2+ in Fig. 2 (c)). Places (denoted
by circles) can be marked with tokens (black
dots). The set of all places currently marked is
called a marking. On the other hand, all arcs
in STGs represent the ordering relation between
vertices.

A signal transition is enabled if all its input
places contain a token. After the firing of an
enabled transition, one token is removed from
every input place and added to every output
place of the transition. For example, in the ini-
tial marking {p13, p18} of the STG in Fig. 2 (c),
transitions of input signals, Dw+ and Dr+, are
enabled. In that marking, however, only one
of them can be fired because there is only one
token in place p13 (i.e., the removal of the to-
ken by the firing of one transition will disable
the other). The choice is decided by the en-
vironment. If transition Dw+ is fired, a new
marking, {p12, p18}, where D2+ becomes en-
abled is achieved. In that case, transition Dr+
is not enabled any more (i.e., transition Dr+ is
disabled).

2.2 State Graph
By analyzing all of the reachable markings

in a given STG, one can generate the state
graph (SG) (i.e., each marking in the STG cor-
responds to a state in the SG). In SGs, vertices
labeled with a vector of signal values represent
binary encoded states and arcs between pairs of
vertices labeled with a signal transition repre-
sent the ordering relation between states. Fig-
ure 2 (d) is the SG corresponding to the STG in
Fig. 2 (c). In state 0’0’00000 of the SG where all
of the signals have value 0, transitions Dr+ and
Dw+ are enabled. After the firing of Dw+, the
corresponding circuit achieves to state 01000’00
where D+ is enabled. Note that if a transition
is enabled in a state, the corresponding signal
value of the state is labeled by symbol ’.

2.2.1 Speed-Independence Property
A synthesized asynchronous SI circuit is

hazard-free if the SG satisfies the speed-
independence property 6). The property con-
sists of the following two conditions:
• no non-input signal transition can be dis-

abled by another signal transition
• no input signal transition can be disabled

by a non-input signal transition
The former ensures that there are no glitches,

known as hazards, at the output of gates, while
the latter ensures that there are no hazards at

Fig. 3 Violation of speed-independence.

the inputs of circuits. According to the speed-
independence property, only transitions for in-
put signals can be disabled by transitions for
different input signals (i.e., a choice by envi-
ronment as in Dr+ and Dw+ of Fig. 2 (c)).

Figure 3 shows a violation of the speed-
independence property. Initially, in state 11’0’,
the rising transition of non-input signal c, c+,
and the falling transition of input signal b, b−,
are enabled. If b− happens before c+, the en-
abled transition c+ is disabled in state 100 (i.e.,
c+ cannot be fired any more). This implies a
hazard at the output of the AND gate.

Note an SG must satisfy not only the speed-
independence property but also other proper-
ties to be implementable as a hazard-free SI cir-
cuit. These are described in the literature 6).

2.2.2 Next-State Function
The next-state function on a non-input signal

is defined as follows 5). It maps the binary code
of each SG state s into:
• 1 if the signal has value 0’ or 1 in the binary

code of s
• 0 if the signal has value 1’ or 0 in the binary

code of s
• * (don’t care) for all binary codes that do

not correspond to any reachable SG state
The next-state function of signal D in the SG
of Fig. 2 (d) is represented in Fig. 2 (e) with the
Karnaugh map.

2.2.3 Excitation Region and Quiescent
Region

Given a signal a, we can classify the states of
the SG into the following sets 5):
• Positive and negative excitation regions

(ERs)
• Positive and negative quiescent regions

(QRs)
A maximally connected set of states in which
a signal transition ai∗ is enabled is called an
ER for the transition ai∗ (denoted by ER(ai∗)).
The QR of a signal transition ai∗ (denoted by
QR(ai∗)), with the corresponding ER(ai∗), is a
maximal set of states s reachable from ER(ai∗)
such that a∗ is stable (not enabled) in s and s
is not reachable from any other ER(aj∗) (i �= j)
without going through ER(ai∗). Examples of

1292 IPSJ Journal May 2004

ER and QR for transition D1+ are shown in
Fig. 2 (d).

2.3 Standard-C architecture
In this work, we focus on the optimization of

asynchronous SI circuits based on the standard-
C architecture. In the standard-C architecture,
the logic circuit of a non-input signal consists
of three-level logics as shown in Fig. 2 (f). The
first-level AND-OR gates called monotonous
covers (MCs) correspond to a signal transition
in a given STG. An AND-OR gate represents
not only a complex gate but also an AND or OR
gate with multiple input inverters. They are
configured by covering SG states based on the
following MC conditions. The second-level OR
gates gather MCs for all rising or falling transi-
tions of a signal to organize a set or reset func-
tion of the signal. The third-level C-element
corresponds to the output of a non-input sig-
nal. The C-element is equal to the function,
a = a · (b + c) + b · c, and behaves as follows.
The output signal a is equal to 1 if both inputs
b and c are equal to 1 and 0 if both b and c
are equal to 0. Otherwise, it keeps the previous
value of signal a.

The definition of MC conditions are as fol-
lows 5).

Definition 2.1 C(ai∗) denotes one of the
first-level AND-OR gates in the standard-C ar-
chitecture. C(ai∗) is a correct monotonic poly-
term cover for the ER(ai∗) if the following three
conditions are satisfied:
(1) Cover condition: C(ai∗) covers all states

of ER(ai∗), i.e., C(ai∗) is logic 1 in all
states of ER(ai∗)

(2) One-hot condition: C(ai∗) does not
cover any state outside of ER(ai∗) ∪
QR(ai∗), i.e., C(ai∗) is logic 0 in all states
outside of ER(ai∗) ∪ QR(ai∗)

(3) Monotonicity condition: C(ai∗) can
change the value from 1 to 0 at most once
along any state sequence within QR(ai∗)

In the standard-C architecture, the speed-
independence property must be satisfied not
only for the transitions of input and non-input
signals but also for the transitions of all MCs.
The MC conditions satisfy this requirement 5).

Let us explain the reason briefly. Suppose
that the synthesized circuit enters a state in
ER(ai+). The cover condition ensures that
C(ai+) changes the logic value from 0 to 1 in
that state (i.e., the rising transition of C(ai+)
is not disabled). The one-hot condition guar-
antees that no other gates C(aj+)(i �= j) in the

set function of signal a and no gates C(ai−) in
the reset function of signal a can be at 1 in that
moment. Therefore, C(ai+) is the only gate to
change the value of signal a to 1 through the
OR gate and the C-element (i.e., the enabled
transition ai+ is not disabled). When signal a
changes its value from 0 to 1, the circuit enters
a state in QR(ai+). According to the last con-
dition, C(ai+) will be reset the value from 1 to
0 (i.e., the falling transition of C(ai+) is not
disabled) and this change is propagated to sig-
nal a when it will go low (i.e., ai−). As a result,
we can find out that there is no disabled transi-
tion in the circuit (i.e., the speed-independence
property is satisfied).

The generation of MCs is explained by
considering the case of transition D1+ in
Fig. 2 (d). ER(D1+) consists of state 10100’00
and QR(D1+) consists of states 1010’111 and
1’011111. First, cube Dr ·Dw · LDack · Dack ·
D · LD · csc is generated to cover all the states
of ER(D1+). Then, the cube is expanded to
Dr · LDack · csc without violating the one-hot
and monotonicity conditions. This cube corre-
sponds to the MC for transition D1+, respec-
tively (see Fig. 2 (e) and Fig. 2 (f)). Note the
cube also covers unreachable states denoted as
don’t cares.

3. Calculation Methods of Permissible
Functions

3.1 A Traditional Calculation Method
of Permissible Functions

Before to explain a traditional calculation
method of permissible functions, we define per-
missible functions as follows 8):

Definition 3.1 If no non-input signals
change after replacing the function realized at
a gate or net to a function f , the function f
is called a permissible function for the gate or
net.

Here, a net represents the wire for a signal or
a fanout of a gate (a net is denoted as ni(i =
1, 2, . . .) in Fig. 4 (a)).

Permissible functions are calculated for each
net and gate based on the following two steps 8):
(1) The logic function of each gate and net is

calculated from the nets of input signals
by assigning truth values.

(2) The permissible functions of each gate
and net are calculated from the nets
of non-input signals by assigning don’t
cares.

Vol. 45 No. 5 Logic Optimization of Asynchronous Speed-Independent Circuits 1293

Fig. 4 Calculation of permissible functions.

By assigning truth values to the nets of input
signals, the logic function of each gate and net is
calculated from the nets of input signals to the
nets of non-input signals. 2n truth values are
assigned for each net of input signals if there are
n input signals. For example in Fig. 4 (a), be-
cause there are three input signals, eight truth
values are assigned to each net of input signals.
A vector of these values is referred as the logic
function of a gate or net. For example, the logic
function of the net of input signal b in Fig. 4 (a)
is represented as f(n3) = (00110011).

After logic functions are calculated through-
out a given circuit as in Fig. 4 (a), the permis-
sible functions of each gate and net are calcu-
lated from the nets of non-input signals to the
nets of input signals. Initially, the calculated
logic functions of the nets of non-input signals
are assigned as the permissible functions of the
nets of non-input signals together with external
don’t cares (Fig. 4 (c)). Then, the permissible
functions for all internal gates and nets are cal-
culated by assigning don’t cares. In the case of
an OR gate, all of the inputs must be 0 if the
output is equal to 0. However, if the output is
equal to 1, one of its inputs must be 1, while
the others can be either 0 or 1 (i.e., don’t care,
denoted by ∗). Based on the same considera-
tion, we can calculate the permissible functions
of other types of gates. Note if a gate or net
has multiple fanout, the permissible functions
of the gate or net are represented as the com-
mon set of the permissible functions for each
fanout.

Figure 4 (d) shows the calculated permissible
functions for the circuit in Fig. 4 (a). As same
as a logic function, the permissible functions for
a gate or net are denoted as a vector of truth
values with don’t cares. For example, G(n3) =
(00*100*1) represents a set of permissible func-
tions of net n3 (i.e., (00110011), (00110001),
(00010001), and (00010011)). The permissible

functions of gate g1 and net n4, G(g1) = G(n4)
= (00010001), are the common set of G(n5) =
(000*000*) and G(n6) = (00010001) because
gate g1 and net n4 has two fanout (i.e., nets
n5 and n6).

During the calculation of permissible func-
tions, a gate or net may have several sets of
permissible functions. For example in Fig. 4 (d),
(****000*) is another set of permissible func-
tions for net n5 (the first three elements are
different from the previous one). The difference
comes from the selection of don’t care assign-
ment to n1 and n5 where the output of gate g2

is equal to 0. However, since to calculate all
of the sets requires a lot of computation time,
we select only one set based on priority. A set
of permissible functions selected by priority is
called Compatible Set of Permissible Functions
(CSPF) 8).

For the selection of don’t care assignment, we
simply follow the same manner described in the
paper 8). According to the paper, priority is as-
signed to each input of gates. After the assign-
ment of priority, don’t cares are assigned to the
inputs which have higher priority, while don’t
care is not assigned to the input which has the
lowest priority. Priority is assigned as follows:
• If an input is a fanout of a gate and the

gate is connected to the net of a non-input
signal, the lowest priority is assigned to the
input because we cannot remove the gate
connected to the non-input signal.

• If an input is a fanout of a gate which has
multiple fanout, lower priority is assigned
to the input because the reduction of the
gate affects many parts of the circuit.

For example, we assign priority to the inputs
of gate g2 (i.e., nets n1 and n5) in Fig. 4 (d).
Because n5 is a fanout of gate g1 which has
multiple fanout (n5 and n6), we assign higher
priority not to n5 but to n1 (i.e., G(n1) has
many don’t cares in the elements).

3.2 A Calculation Method in Asyn-
chronous SI Circuits

To calculate permissible functions (i.e.,
CSPF) in asynchronous SI circuits, we extend
the calculation method described in Section 3.1.
The reasons are as follows:
• The target of the calculation method de-

scribed in Section 3.1 is combinational
circuits. However, SI circuits derived
by Petrify represent sequential machines
which have feedback loops.

• The calculation method described in Sec-

1294 IPSJ Journal May 2004

Fig. 5 Calculation of permissible functions in asynchronous SI circuits.

tion 3.1 does not concern the possibility of
hazards when we assign don’t cares. How-
ever, since SI circuits preserve the property
of hazard-freeness (i.e., it is guaranteed by
Def. 2.1 in the standard-C architecture), we
must carefully assign don’t cares to reduce
the possibility of hazardous behavior.

For the extension, we introduce the following
three requirements:
(1) Removal of all feedback loops
(2) Assignment of truth values from SG

states
(3) Assignment of don’t cares based on

Def. 2.1
Because SI circuits represent sequential ma-

chines, they contain feedback loops. To pre-
vent iterative calculation of logic functions and
permissible functions caused by these loops, we
must cut all of the loops before the calculation
of logic functions (see Fig. 5 (a)). After the cut
of feedback loops, the calculation of logic func-
tions and CSPF in SI circuits is considered as
the cases of multi-level combinational circuits.

Since SI circuits are synthesized from an SG,
truth values for each net of input signals are di-
rectly assigned from the values of SG states. As

a result, we can save memory space and com-
putation time because of the avoidance of cal-
culation in unreachable states. For example in
Fig. 5 (b), since Dr is 1, LDack is 1, Dw is 0,
and csc is 1 in state s1, these values are as-
signed to the nets of input signals such that the
first value of f(n1) is 0, f(n2) is 1, f(n3) is
0, and f(n11) is 1. After all state values are
assigned to the nets of input signals, the logic
functions of gates and nets are calculated as
described in Section 3.1. Note each value in
the logic function of non-input signals repre-
sents the next state value with respect to the
current state.

For the assignment of don’t cares, we refer to
MC conditions described in Def. 2.1. According
to the cover condition and the one-hot condi-
tion in Def. 2.1, an MC C(ai∗) must be logic 1
in all states of ER(ai∗) and logic 0 in all states
outside of ER(ai∗) ∪ QR(ai∗). Therefore, we
should not assign don’t cares to the values of
the logic function in C(ai∗) (i.e., the first-level
AND-OR gate in the standard-C architecture)
if the values are related to those states. In other
words, don’t cares are assigned only to the val-
ues related to the states of QR(ai∗).

Vol. 45 No. 5 Logic Optimization of Asynchronous Speed-Independent Circuits 1295

In the case of the set function of signal a (i.e.,
the second-level OR gate), don’t cares are as-
signed to the values related to the states of all
QR(ai+) (i.e, states in QR(a1+) ∪ QR(a2+) ∪
. . .∪QR(an+)(i = 1 . . . n)). On the other hand,
in the case of the third-level C-element, no don’t
cares are assigned to all the values of the logic
function.

For example in Fig. 5 (c), we have never as-
signed don’t cares for all the values of the logic
function of signal D (i.e., f(g4)). For the set
function of signal D (i.e., f(g3)), don’t cares
are assigned to the values related to states s2,
s3, s7, s8, and s9 because these states are in
QR(D1+)∪QR(D2+). Finally, for MCs of D1+
and D2+ (i.e., f(g1) and f(g2)), we assign don’t
cares to the values related to QR(D1+) (for
f(g1)) and QR(D2+) (for f(g2)).

By introducing these requirements, we can
calculate CSPF in SI circuits. Figure 5 (c) shows
the calculated CSPFs with respect to the circuit
in Fig. 5 (a).

4. Transduction Methods in Asyn-
chronous SI Circuits

In transduction methods described in the lit-
erature 8), we concentrate on the gate substitu-
tion algorithm. In the literature, the algorithm
was applied to the optimization of multi-level
combinational circuits. However, because the
gate substitution algorithm does not concern
the property of hazard-freeness guaranteed in
SI circuits, there is a possibility that the prop-
erty is broken after substitution if we apply it to
SI circuits directly. Therefore, to apply it to SI
circuits, we must extend the algorithm so that
any substitution does not lead to hazardous be-
havior.

4.1 Conditions of Valid Gate Substitu-
tion

To preserve hazard-freeness after substitu-
tion, we propose the conditions described in
Proposition 4.1. In the proposition, gate g2 can
substitute for gate g1 only when gate g2 sat-
isfies the MC conditions (Def. 2.1) satisfied by
gate g1. This is because in SI circuits based
on the standard-C architecture, the hazard-
freeness of gates is guaranteed by the MC con-
ditions. Therefore, if g2 satisfies the MC condi-
tions satisfied by g1, the substitution does not
lead to any hazardous behavior.

Different from the conditions in Def. 2.1
which are evaluated on SG, the conditions de-
scribed in Prop. 4.1 are evaluated on calculated

logic functions and CSPFs. Before describing
the proposition, we introduce several terminolo-
gies for calculated logic functions and CSPFs:
• f(g) - the logic function of gate g
• fs(g) - the value of f(g) in state s
• G(g) - the CSPF of gate g
• Gs(g) - the value of G(g) in state s
• preds - the set of all direct predecessor

states of state s
The substitution of gate g2 for gate g1 is val-

idated by the following proposition. g1 and g2

correspond to the MCs (i.e., first-level AND-OR
gates) for the i-th transition of a∗ and the j-th
transition of b∗ (i.e., ai∗ and bj∗).

Proposition 4.1 The substitution of gate
g2 for gate g1 is hazard-free if the following con-
ditions are satisfied.
(1) ∀ state s : Gs(g1) = 1 ⇒ fs(g2) = 1
(2) ∀ state s : Gs(g1) = 0 ⇒ fs(g2) = 0
(3) ∀ state s : s ∈ QR(ai∗) ∧ fs(g2) = 1 ⇒

fs′(g2) = 1 in all states s′ of preds

As the proof of Prop. 4.1, we show that g2

satisfies MC conditions not only for transition
bj∗ but also for transition ai∗.
Proof: The first condition in Prop. 4.1 claims
that g2 satisfies the cover condition in Def. 2.1
for both transitions ai∗ and bj∗. According
to the calculation of CSPFs described in Sec-
tion 3.2, no don’t care is assigned to fs(g1) if s
is a state in ER(ai∗). Therefore, Gs(g1) is equal
to 1 in state s. If fs(g2) is equal to 1 in all states
s where Gs(g1) is equal to 1, it means that g2

covers all states in not only ER(bj∗) but also
ER(ai∗). In these states, the rising transition
of g2 is fired (i.e., not disabled).

The second condition claims that g2 satisfies
the one-hot condition in Def. 2.1 for both tran-
sitions ai∗ and bj∗. As same as the first condi-
tion, no don’t care is assigned to fs(g1) if s is a
state outside of ER(ai∗) ∪ QR(ai∗). Therefore,
Gs(g1) is equal to 0 in state s. If fs(g2) is equal
to 0 in all states s where Gs(g1) is equal to 0,
it means that g2 does not cover not only the
states outside of ER(bj∗)∪QR(bj∗) but also the
states outside of ER(ai∗) ∪ QR(ai∗). g2 is the
only gate to change the value of signals a and b
when ai∗ and bj∗ are enabled.

The third condition claims that g2 satisfies
the monotonicity condition in Def. 2.1 for both
transitions ai∗ and bj∗. s ∈ QR(ai∗)∧ fs(g2) =
1 means that state s is in QR(ai∗) and fs(g2)
is equal to 1. Under this situation, if all direct
predecessor states s′ (i.e., s′ is a state in preds)
are covered by g2, there is no additional rising

1296 IPSJ Journal May 2004

transition between s′ and s. It preserves that
only a falling transition of g2 is fired in both
QR(ai∗) and QR(bj∗). �

Before substitution, Prop. 4.1 must be evalu-
ated to validate hazard-freeness. If one of them
is not satisfied, the substitution is prevented
because it leads to hazardous behavior.

The substitution for a second-level OR gate
is also carried out by using Prop. 4.1. For ex-
ample, if the first-level MC (denoted as g2) of
transition a1+ substitutes for the second-level
OR gate (denoted as g1) of transitions bj+
(j = 1, 2 . . .), g2 must satisfy Prop. 4.1 for all
MCs of bj+. On the other hand, a gate g
which substitutes for a C-element must have the
same logic function as the C-element because no
don’t cares are assigned to the C-element (see
Section 3.2).

4.2 Extended Gate Substitution Algo-
rithm

To apply the gate substitution algorithm to
asynchronous SI circuits based on the standard-
C architecture, we extend it so that substitution
is realized only when Prop. 4.1 is satisfied. Fig-
ure 6 shows a pseudo code of our extended gate
substitution algorithm. It evaluates the pos-
sibilities of substitution for all pairs of gates.
Currently, there is no particular way to decide
the order of substitution. However, since the or-
der may affect the quality of optimization, we
are going to consider it in our future work.

In our extended gate substitution algorithm,
the evaluation of Prop. 4.1 is classified into
three cases by the statements of calculated logic
functions and CSPFs.

Case 1. f(g1) = f(g2). If the logic functions
of two gates g1 and g2 are equivalent, g2 substi-
tutes for g1 without checking Prop. 4.1 because
it implies that all conditions of Prop. 4.1 are
satisfied. The substitution of g1 for g2 is also
possible.

Case 2. f(g2) ⊂ G(g1) (or f(g1) ⊂ G(g2)).
Suppose f(g2) ⊂ G(g1). In this case, our al-
gorithm evaluates whether g2 substitutes for g1

or not. f(g2) ⊂ G(g1) means that in all states
s where Gs(g1) is 0 or 1 fs(g2) has the same
value. Since it means that the first two con-
ditions of Prop. 4.1 are satisfied, only the last
condition of Prop. 4.1 must be checked before
the substitution. We call the check of Prop. 4.1
in Case 2 as Case2 check.

Similarly, in the case of f(g1) ⊂ G(g2), our
algorithm evaluates whether g1 substitutes for
g2 or not.

Input: An initial SI circuit and the corresponding SG
Output: An optimized SI circuit

begin
calculate CSPF G(gi) for all i using SG
while network is changed do

foreach pair of gates, gi and gj (i �= j) do
/* Case1 */
if f(gi) = f(gj)

disconnect all connections to gj

connect gi to all fanout gates of gj

recalculate CSPF G(gi) for all i
break

/* Case2 */
if G(gi) ⊃ f(gj) and Case2 check of gj wrt gi

disconnect all connections to gi

connect gj to all fanout gates of gi

recalculate CSPF G(gi) for all i
break

if G(gj) ⊃ f(gi) and Case2 check of gi wrt gj

disconnect all connections to gj

connect gi to all fanout gates of gj

recalculate CSPF G(gi) for all i
break

/* Case 3 */
NewG = G(gi) ∩ G(gj)
if NewG �= ∅

explore a set of new gates g such that NewG ⊃ f(g)
if g ∈ New exists and Case3 check of g wrt gi and gj

disconnect all connections to gi, gj

connect g to all fanout gates of gi, gj

recalculate CSPF G(gi) for all i
break

endforeach
endwhile
end

Fig. 6 Extended gate substitution algorithm.

Case 3. Other Cases. In all other cases,
we calculate the conjunction of G(g1) and G(g2)
denoted by NewG which represents the com-
mon set of both G(g1) and G(g2). If NewG
is not empty, a set of new gates g whose f(g)
is included in NewG (i.e., NewG ⊃ f(g)) is
explored. Such a set is denoted as New. If a
gate g in New satisfies all of the conditions of
Prop. 4.1 with respect to g1 and g2, the newly
cleated gate g substitutes for both g1 and g2.
Different from Case2 check, we call the check
of Prop. 4.1 in Case3 as Case3 check.

The exploration of a new gate g is explained
by using an example in Fig. 7. In this example,
G(g1) = (**10), G(g2) = (*1*0), and NewG =
(*110) (G(g1)∩G(g2)). Since the inputs of the
new gate g is configured by the inputs of both
g1 and g2 (i.e., n1 and n2), we explore the new
gate g by the combination of n1 and n2 such
that f(g) is equal to either (1110) or (0110). In
this case, because f(n1) = (0101) and f(n2) =
(0011), we can identify that f(g) will be (1110)
when we take NAND of x1 and x2. Therefore,
a NAND gate g is created in New.

4.2.1 Example
To demonstrate how our extended gate sub-

stitution algorithm works, we apply it to an ex-
ample circuit.

Vol. 45 No. 5 Logic Optimization of Asynchronous Speed-Independent Circuits 1297

Fig. 7 Creation of a new gate g.

Fig. 8 Example of gate substitution.

Figure 8 (a) shows the SG of this ex-
ample and Fig. 8 (b) shows a part of the
corresponding SI circuit. In this exam-
ple, we focus on the substitution of gate g2

for gate g3 at first. Because of G(g3) ⊃
f(g2) (i.e., G(g3) = (11***0000000000000) ⊃
f(g2) = (111100000000000000)), the substitu-
tion of gate g2 for g3 is evaluated based on
Case2 check.

In Case2 check, only the last condition of
Prop. 4.1 is evaluated. For the last condition of
Prop. 4.1, states s in QR(csc−) and fs(g2) = 1
are enumerated. States s3 and s4 correspond to
such states. In these states, we check whether
all of the direct predecessor states of s3 and s4
are covered by g2 or not. In states s1, s2, and
s4 which are the states of preds3 and preds4

(preds3 = {s1, s4} and preds4 = {s2}), since
g2 covers these states (i.e., fs1(g2), fs2(g2), and
fs4(g2) = 1), the last condition of Prop. 4.1 is
satisfied (see Fig. 8 (d)) As a result, the sub-
stitution of gate g2 for gate g3 is carried out
without leading any hazardous behavior as in
Fig. 8 (e).

As another case, to demonstrate how our al-
gorithm blocks an invalid substitution, we con-
sider the substitution of gate g3 for gate g2.
In this case, we can see a violation of the sec-

ond condition of Prop. 4.1 in state s5. In state
s5 which is outside of ER(aout+)∪QR(aout+),
both fs5(g2) and Gs5(g2) are equal to 0. How-
ever, because fs5(g3) is equal to 1 in state s5,
there exists an additional rising transition of
aout+ in that state. Since this transition is not
specified in the given SG (i.e., aout+ is not en-
abled in state s5), we find out that this is a
hazard. Because of the violation of Prop. 4.1,
our algorithm prevents the substitution.

5. Experimental Results

To evaluate our extended gate substitution
algorithm, we applied it to several benchmark
circuits derived from asynchronous logic syn-
thesis tool Petrify. For this purpose, we im-
plemented our algorithm in JAVA. The ex-
periment was carried out on an Windows 2000
machine which has a Pentium III processor
(800 MHz) and a 320 Mbyte memory.

Table 1 shows the results of optimization af-
ter our algorithm was applied. The first column
shows the name of circuits. The second col-
umn shows the number of signals in the orig-
inal STGs. The third column represents the
number of newly inserted signals (i.e., internal
signals) by Petrify because of logic decomposi-
tion. The fourth column represents the number
of states in SGs after the new signals are in-
serted. The fifth and sixth ones show the num-
ber of gates and literals in the original SI cir-
cuits obtained by Petrify. Note gate substitu-
tion by using newly inserted signals was carried
out on circuits nak-pa, slave, and sfir. The
seventh and eighth ones show the results after
our algorithm was applied to the original SI cir-
cuits. The final column shows the calculation
time taken by our algorithm.

The experimental results show that the area
reduction ratio by our algorithm is about 14%
for both the number of literals and gates. In
these optimized circuits, there exist circuits
which were not optimized by Petrify (exp and
pcc in this experiment) and circuits which were
already optimized by Petrify (nak-pa, slave,
and sfir). Therefore, by using our algorithm as
a post-optimizer of Petrify, we may get more
optimum circuits.

In the following, we describe the current lim-
itations of our algorithm. In addition to them,
we briefly show the future direction of this
work.
• Our algorithm can handle circuits which

have 20,000 states. However, explicitly as-

1298 IPSJ Journal May 2004

Table 1 Optimization result.

name signals inserted states Original SI Optimized SI time
(STG) signals gates lits. gates lits. (sec.)

nak-pa 10 1 60 7 19 6 17 0.19
slave 14 3 311 11 45 9 36 1.45
sfir 13 2 238 11 41 10 38 0.94
exp 5 0 16 5 19 4 14 0.11
pcc 16 0 2240 9 27 8 25 3.37

signing these states to input signals to cal-
culate CSPFs faces to computational diffi-
culties if the number of states is increased.
Therefore, to solve this problem, an im-
plicit method by using binary decision di-
agram (BDD) 1) will be considered in our
future work.

• Our algorithm based on Prop. 4.1 is appli-
cable only for the standard-C architecture.
To apply our algorithm to other implemen-
tations of SI circuits, we need to modify
the assignment method of don’t cares and
the conditions of valid substitution based
on the implementability conditions of such
implementations.

6. Conclusions

Because in Petrify global optimization is
restricted to gate substitution after logic de-
composition, redundancy may be remained in
the synthesized asynchronous SI circuits. To
solve this problem, we proposed an alterna-
tive optimization method for SI circuits based
on transduction methods. Because the prop-
erty of hazard-freeness must be satisfied in opti-
mized circuits, the gate substitution algorithm
in transduction methods was extended by in-
troducing a calculation method of permissible
functions and valid conditions of substitution.
The extended gate substitution algorithm was
implemented in JAVA.

The experimental results showed that the
area reduction ratio by our algorithm was about
14% for both the number of literals and gates.
In addition, the results showed the usefulness
of our algorithm in that it could optimize the
circuits which were not optimized by Petrify
and the circuits which were already optimized
by Petrify. From this reason, by using our
algorithm as a post-optimizer of Petrify, we
may get more optimum circuits.

As future work, to optimize large circuits ef-
ficiently, we are going to extend our algorithm
by using BDD. Another work is to extend our
algorithm so that other implementation styles
of SI circuits can be optimized.

Acknowledgments We would like to thank
Dr. Alex Kondratyev (Cadence Barkley Lab.)
and Prof. Jordi Cortadella (Universitat Po-
litecnica de Catalunya) for their useful com-
ments. This work was partially supported by
the Ministry of Education, Science, Sports and
Culture, Grant-in-Aid for Scientific Research
(B)13480076 and Special Coordination Fund for
Science and Technology.

References

1) Bryant, R.E.: Graph-based algorithms for
boolean function manipulation, IEEE Trans.
Comput., Vol.C-35, No.8, pp.677–691 (Aug.
1986).

2) Chu, T.A.: Synthesis of Self-Timed VLSI
Circuits from Graph-Theoretic Specifications,
Ph.D. thesis, MIT, Boston (1987).

3) Cortadella, J., Kishinevsky, M., Kondratyev,
A., Lavagnumber, L. and Yakovlev, A.: Pet-
rify: a tool for manipulating concurrent spec-
ifications and synthesis of asynchronumberus
controllers. IEICE Trans. Inf. Syst., Vol.E80-
D, No.3, pp.314–325 (March 1997).

4) Futita, M.: A logic synthesis system with
multi-level logic circuit minimization mecha-
nism based on transduction methods, IPSJ
Trans., Vol.30, No.5, pp.613–623 (May 1989).

5) Kondratyev, A., Cortadella, J., Kishinevsky,
M., Lavagnumber, L. and Yakovlev, A.: Logic
decomposition of speed-independent circuits,
Proc. IEEE, Vol.87, No.2, pp.347–362 (Feb.
1999).

6) Muller, D.E. and Bartky, W.S.: A theory of
asynchronous circuits, Proc.International Sym-
posium on the Theory of Switching, pp.204–
243, Harvard University Press (Apr. 1959).

7) Murata, T.: Petri nets: Properties, analysis
and applications, IEEE Press, Vol.77, pp.541–
580 (Apr. 1989).

8) Muroga, S., Kambayashi, Y., Lai, H.C. and
Culliney, J.N.: The transduction method—
design of logic networks based on permissible
functions, IEEE Trans.Comput., Vol.38, No.10,
pp.1404–1424 (Oct. 1989).

(Received October 15, 2003)
(Accepted March 5, 2004)

Vol. 45 No. 5 Logic Optimization of Asynchronous Speed-Independent Circuits 1299

Hiroshi Saito received the
B.S and M.S degrees in com-
puter science from the Univer-
sity of Aizu in 1998 and 2000. In
2003, he received the Ph.D. de-
gree in engineering from the Uni-
versity of Tokyo. He is currently

a research associate of Research Center for Ad-
vanced Science and Technology at the Univer-
sity of Tokyo. His research interests include
the computer aided design of asynchronous sys-
tems. He is a member of the IEEE and IEICE.

Hiroshi Nakamura received
the B.E., M.E., and Ph.D. de-
gree in Electrical Engineering
from the University of Tokyo
in 1985, 1987, and 1990 respec-
tively. From 1990 to 1996, he
was a faculty of Institute of In-

formation Sciences and Engineering at Univer-
sity of Tsukuba, where he was a member of
CP-PACS project. He is currently an Asso-
ciate Professor of Research Center for Advanced
Science and Technology at the University of
Tokyo. His research interests include computer
architecture, high-performance and dependable
computing, VLSI design, and bioinformatics.
He received the Best Paper Award from IPSJ in
1994 and Sakai Special Researcher Award from
IPSJ in 2002. He is a member of the IEEE, the
ACM, and the IPSJ.

Masahiro Fujita received
the B.S. degree in electrical en-
gineering in 1980, and the M.S.
and Ph.D. degrees in informa-
tion engineering from the Uni-
versity of Tokyo, Tokyo, Japan,
in 1982 and 1985, respectively.

From 1985 to 1993, he was a Research Sci-
entist with Fujitsu Laboratories, Kawasaki,
Japan. From 1994 to 1999, he was the Direc-
tor of the Advanced Computer-Aided Design
Research Group, Fujitsu Laboratories of Amer-
ica, Sunny-vale, CA. He is currently a Profes-
sor in the Department of Electrical Engineering,
the University of Tokyo, Tokyo, Japan. He has
been on program committees for many confer-
ences dealing with digital design and is an As-
sociate Editor of Formal Methods on Systems
Design. His primary research interest is in the
computer-aided design of digital systems. Dr.
Fujita received the Sakai Award from IPSJ in
1984.

Takashi Nanya received the
B.E. and M.E. degrees in math-
ematical engineering and infor-
mation physics from the Univer-
sity of Tokyo, Japan, in 1969
and 1971, respectively, and the
Ph.D. degree in electrical engi-

neering from the Tokyo Institute of Technol-
ogy, Tokyo, Japan, in 1978. He was with the
NEC Central Research Laboratories from 1971
to 1981, and on the faculty of Tokyo Institute
of Technology from 1981 to 1996. In 1996, he
joined the University of Tokyo where he is a
professor. From 2001 to 2004, he served as the
director of the Research Center for Advanced
Science and Technology. His research interests
include dependable computing, VLSI design
and asynchronous computing. He received the
IEICE Best Paper Award in 1987, the Okawa
Publication Award in 1994, and ASP-DAC Best
Paper Award in 1998. He has been serving as
a vice-chair of IFIP-TC10 “Computer Systems
Technology”, and IFIP WG10.4 “Dependable
Computing and Fault Tolerance”. He is a fel-
low of IEEE and IEICE.

