1Y-1

Generic Constructions of Public-Key Encryption in the Presence of Key Leakage

Manh Ha Nguyen *[†]

Kenji Yasunaga †

Keisuke Tanaka[†]

1 Background

Key-leakage attacks. The introduction of memory attacks (or "cold boot attacks") by Halderman et al. [5], gave rise to the notion of *leakage resiliency*, presented by Akavia, Gold-wasser and Vaikuntanathan [1] and further explored by Naor and Segev [6]. In their definition, security holds even if the attacker gets some information of its choosing (depending on the value of the public-key) on the scheme's secret key, with the only restriction that the total amount of leakage is bounded. Public-key encryption schemes presenting in [1, 6] are resilent to leakage of even 1 - o(1) fraction of secret key (we call this the "leakage rate").

Naor and Segev [6] extended the framework of key leakage to the setting of chosen-ciphertext attacks. On the theoretical side, they proved that the Naor-Yung paradigm is applicable in this setting as well, and obtained as a corollary encryption schemes that are CCA2-secure with the leakage rate of 1 - o(1). On the practical side, they proved that variants of the Cramer-Shoup cryptosystem are CCA1-secure with the leakage rate of 1/4, and CCA2-secure with the leakage rate of 1/6.

Stateful public-key encryption (StPE). In 2006, Bellare et al. [2] proposed the model of a StPE scheme StPE = (Setup, KG, PKCk, NwSt, Enc, Dec). It is specified by six algorithms (all possibly randomized except the last) whose operation is illustrated in [2, Figure 2]. The approach that they adopt to construct StPE schemes is to convert specific public-key encryption schemes such as DHIES and Kurosawa and Desmedts hybrid encryption scheme into StPE schemes.

In 2008, Baek et al. [3] presented generic constructions of StPE, built several new StPE schemes and explained existing ones using their generic constructions.

2 Contributions

In the paper [6], Naor et al. proved that a variant of the Cramer-Shoup cryptosystem [4] is secure against a-posteriori chosen-ciphertext (CCA2) and key-leakage attacks. This CCA2-secure scheme is based on the hardness of the DDH problem. From this idea and the idea of building generic

constructions of StPE presented by Baek et al. [3], we make the following contributions in this paper:

- 1. We present a generic construction of a stateless publickey encryption that is resilient to chosen-ciphertext and key-leakage attacks. In this construction, we use the combination of any 1-universal hash proof system that satisfies the condition of a key-leakage extractor and any 2-universal hash proof system with some condition on the length of proof.
- 2. We also present a generic construction of a StPE that is resilient to chosen-ciphertext and key-leakage attacks. In this construction, we use the combination of 2 hash proof systems as in the case of stateless publickey encryption and any IND-CCA-secure symmetric encryption.

3 Generic Constructions from Hash Proof Systems

Hash proof systems. A hash proof system HPS = (*KGen*, *Pub*, *Priv*) consists of three algorithms that run in polynomial time. The algorithm *Pub* receives as input a public key pk, a valid ciphertext $x \in L$, and a witness w of the fact that $x \in L$, and outputs the encapsulated key $\pi \in \Pi$ (where Π denotes the set of encapsulated symmetric keys). The algorithm *Priv* receives as input a secret key sk and a valid ciphertext $x \in L$, and outputs the encapsulated key π . We say that a hash proof system is 1-universal if for all possible outcomes of $KGen(1^n)$ it holds that

$$\Delta((pk,\pi),(pk,\mathrm{U}(\mathbf{\Pi}))) \le \epsilon$$

where $U(\mathbf{\Pi}) \in \mathbf{\Pi}$ is sampled uniformly at random.

Definition 3.1. We say that a hash proof system HPS = (KGen, Pub, Priv) for a language L is a 1-universal (λ, ϵ) -key-leakage extractor if for any function $f : \{0, 1\}^* \rightarrow \{0, 1\}^{\lambda}$ we have

$$\Delta((pk, x, f(sk), Priv(x, sk)), (pk, x, f(sk), U(\Pi))) \leq \epsilon$$

where $x \in_R X$. If $\epsilon = negl(n)$ we say that HPS is a 1universal λ -key-leakage extractor for L.

3.1 Stateless Public-Key Encryption

Let $\mathbf{HPS}_1 = (KGen_1, Pub_1, Priv_1)$ be a 1-universal HPS for a language L, and $\mathbf{HPS}_2 = (KGen_2, Pub_2, Priv_2)$ be a 2-universal HPS for the same language L. We define an encryption scheme $\Pi = (KGen, Enc, Dec)$ as follows:

^{*} Supported by Ministry of Education, Culture, Sports, Science and Technology.

[†] Department of Mathematical and Computing Sciences, Tokyo Institute of Technology. W8-55, 2-12- 1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. {nguyen9, yasunaga, keisuke}@is.titech.ac.jp. This research was supported in part by NTT Information Sharing Platform Laboratories and JSPS Global COE program Computationism as Foundation for the Sciences.

- Key Generation : On input 1^n for $n \in \mathbb{Z}_{\geq 0}$ Choose $(pk_1, sk_1) \leftarrow KGen_1(1^n), (pk_2, sk_2) \leftarrow KGen_2(1^n).$ Output $pk = (pk_1, pk_2), sk = (sk_1, sk_2).$
- **Encryption:** On input a public key $pk = (pk_1, pk_2)$, along with a message $m \in \mathcal{M}$, compute

E0:
$$(x, w) \stackrel{\$}{\leftarrow} \mathcal{R}_L$$
 (where $x \in_R L$);
E1: $\pi_1 = Pub_1(pk_1, x, w)$;
E2: $e = m + \pi_1$;
E3: $\pi_2 = Pub_2(pk_2, x, w, e)$;
E4: Output $c = (x, e, \pi_2)$.

- **Decryption:** On input a secret key $sk = (sk_1, sk_2)$, and a ciphertext c, do the following.
 - **D0:** Parse c as a 3-tuple (x, e, π_2) ; output \perp if c is not of this form.
 - **D1:** Compute $\pi'_2 = Priv_2(sk_2, x, e)$.
 - **D2:** Test if $\pi'_2 = \pi_2$; output \perp and halt if this is not the case.
 - **D3:** Compute $\pi_1 = Priv_1(sk_1, x)$.
 - **D4:** Output $m = e \pi_1$.

Theorem 3.2. Assume that *L* is a membership indistinguishable language, \mathbf{HPS}_1 is a 1-universal λ -key-leakage extractor for *L*, and \mathbf{HPS}_2 is a 2-universal HPS for *L*, with proofs π_2 of size $|\pi_2| = p \ge \lambda + \omega(\log(n))$. Then the encryption scheme constructed from \mathbf{HPS}_1 , \mathbf{HPS}_2 is semantically secure against λ -key-leakage CCA2 attacks, where *n* denotes the security parameter.

3.2 Stateful Public-Key Encryption

Let \mathbf{HPS}_1 and \mathbf{HPS}_2 as in the case of stateless publickey encryption, **SYM** be a IND-CCA symmetric encryption. We assume that the HPS scheme \mathbf{HPS}_1 and the symmetric encryption scheme **SYM** are "compatible" meaning that the key space \mathcal{K}_K of \mathbf{HPS}_1 is the same as the key space \mathcal{K}_D of **SYM**.

We define a StPE scheme **StPE** as follows:

StPE.KGen: On input sp, do the following.

Choose
$$(pk_1, sk_1) \leftarrow KGen_1(1^n), (pk_2, sk_2) \leftarrow KGen_2(1^n).$$

Output $PK = (pk_1, pk_2)$, $SK = (sk_1, sk_2)$.

StPE.Enc: On input a public key $PK = (pk_1, pk_2)$, a state *st*, along with a message $m \in \mathcal{M}$, do the following.

If st is of the form (x, w) of of the form (x, w, PK', Π'_1) such that $PK' \neq PK$ then compute $\pi_1 = Pub_1(pk_1, x, w)$;

Else, Parse st as (x, w, PK, π_1) ,

E1:
$$\pi_1 = Pub_1(pk_1, x, w);$$

E2:
$$e =$$
SYM.**Enc** (π_1, m) ;

- **E3:** $\pi_2 = Pub_2(pk_2, x, w, e);$
- **E4:** Output $c = (x, e, \pi_2)$, and the new state $st = (x, w, PK, \pi_1)$.
- **StPE.Dec:** On input a system parameter sp, a secret key $SK = (sk_1, sk_2)$, a ciphertext c, do the following.
 - **D0:** Parse c as a 3-tuple (x, e, π_2) ; output \perp if c is not of this form.
 - **D1:** Compute $\pi'_2 = Priv_2(sk_2, x, e)$.
 - **D2:** Test if $\pi'_2 = \pi_2$; output \perp and halt if this is not the case.
 - **D3:** Compute $\pi_1 = Priv_1(sk_1, x)$.
 - **D4:** Output $m = \mathbf{SYM}.\mathbf{Dec}(\pi_1, e).$

Theorem 3.3. Assume that *L* is a membership indistinguishable language, HPS_1 is a 1-universal λ -key-leakage extractor for *L*, HPS_2 is a 2-universal HPS for *L*, with proofs π_2 of size $|\pi_2| = p \ge \lambda + \omega(\log(n))$, and the underlying symmetric encryption SYM is IND-CCA secure. Then in the KSK model, the proposed generic stateful public-key encryption scheme StPE is semantically secure against λ -key-leakage CCA2 attacks. More precisely, we have

$$\mathbf{Adv}_{\Pi,A}^{\mathrm{KL},\mathrm{CCA2}}(n) \leq \mathbf{Adv}_{B,\mathbf{SYM}}^{\mathrm{IND-CCA}}(n),$$

where n denotes the security parameter.

References

- A. Akavia, S. Goldwasser, and V. Vaikuntanathan, "Simultaneous hardcore bits and cryptography against memory attacks," In *Proc. of the 6th Theory of Cryptography Conference, TCC '09, LNCS 5444*, Pages 474-495, Springer-Verlag, 2009.
- [2] M. Bellare, T. Kohno and V. Shoup, "Stateful Public-Key Cryptosystems: How to Encryption with One 160bit Exponentiaton," In ACM-CCS '06, Pages 380-389, ACM Press, 2006.
- [3] J. Baek, J. Zhou and F. Bao, "Generic Construction of Stateful Key Encryption and Their Applications," In Proc. of the 6th International Conference on Applied Cryptography and Network Security, LNCS 5037, Pages 75-93, Springer-Verlag, 2008.
- [4] R. Cramer and V. Shoup, "Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack," In *SIAM Journal on Computing*, Pages 167-226, 2003.
- [5] A. Halderman, D.Schoen, N. Heninger, W. Clarkson, W. Paul, A. Calandrino, J. Feldman, J. Appelbaum, and W. Felten, "Lest we remember: Cold boot attack on encryption keys," In*Paul C. Van Oorschot editor, USENIX Security Symposium*, Pages 45-60, USENIX, 2008.
- [6] M. Naor and G. Segev, "Public-key cryptosystems resilient to key leakage," In *CRYPTO '09, LNCS 5677*, Pages 1835, Springer-Verlag, 2009.