
Vol. 45 No. 6 IPSJ Journal June 2004

Regular Paper

TCP Optimization for Eliminating Duplicate Segments

in Congested Networks

Yosuke Tamura,† Misako Takayasu†† and Hideki Takayasu†

We propose a new TCP optimization scheme for improving TCP performance over con-
gested networks. The scheme, which we name LEAP, leaps a data segment for retransmission
and transmits a new data segment when ACK segment loss is suspected. LEAP is based on
judgment whether retransmission of a data segment is caused by a data segment loss or an
ACK segment loss. According to our simulation results LEAP eliminates nearly all dupli-
cated segments in heavily congested networks involving multiple connections. Additionally
by avoiding such duplicated segments LEAP drastically decreases the number of total trans-
mitted segments in each connection. Our results show that LEAP improves overall network
utilization more than 120% higher than conventional TCP variants under congested networks.

1. Introduction

TCP is a powerful and scalable transfer pro-
tocol. Most of major network applications such
as web browsing, e-mail, telnet, and ftp use
TCP as a transport protocol. In the Internet
where multiple flows share a single resource, we
cannot escape network congestion. This is be-
cause the TCP protocol is designed to reduce its
transmit rate when congestion is detected, and
it increases the transmission rate until detecting
network congestion. In the near future, non-
TCP-based networked applications like Video
On Demand (VOD), 3D hologram, and Panora-
maStream will be available in the Internet.
These applications should exhibit similar con-
gestion behavior, if they co-exist with TCP-
based applications 7),12). In such environment
where several kinds of multimedia applications
share a single resource, improvement of the
TCP performance in congested networks is the
key for achieving efficient utilization of the net-
work resource.

There are many research works related to re-
liable transport protocols, which can be cat-
egorized into three topics. The first topic is
engineering tuning of TCP 3),10),13),23), which
includes pure modifications and improvements
under certain network conditions like high er-
ror rate, large bandwidth-delay product, heav-
ily congestion, and so on. The second topic is
a proposal of a new protocol 1),4),5),18),20) as an
alternative to TCP. This approach aims to pro-

† Sony Computer Science Laboratories, Inc.
†† Graduate School of Computational Intelligence and

Systems Science, Tokyo Institute of Technology

pose a higher performance protocol than TCP
from some perspectives like error recovery and
congestion control. The third topic is analytic
modeling of TCP behavior 15),17). A mechanism
of TCP congestion control is well acceptable by
the Internet society. It is an orderly solution
for non-TCP flows to apply TCP compatible
mechanism into their flow controls 6). Our work
can be categorized as the first topic. According
to our knowledge, this work is the first work
to focus on a duplicate received data segments
caused by an ACK segment loss.

In this paper, we investigate TCP dynamics
in congested networks where network resource
is shared by a lot of flows. According to our
simulation results, we found that TCP’s ACK
segment losses causing unneeded duplicate seg-
ments at receiver degrade the performance of
network utilization in the Internet. Duplicate
segments not only waste network resource but
also increase overall network loss ratio. To re-
solve this problem, we propose new TCP re-
transmission mechanism called LEAP. The rea-
son why we named the scheme as LEAP is that
our scheme leaps a data segment for retransmis-
sion and transmits a new data segment when an
ACK segment loss is expected. LEAP has the
following features:
• Simple optimization for TCP sender.

Sender side modification of a few source
codes is needed to support LEAP algo-
rithm.

• Smart activation for congested networks.
LEAP is compatible to current TCP im-
plementation including congestion control
and retransmission scheme. It improves the
performance of network utilization under

1672



Vol. 45 No. 6 TCP Optimization for Eliminating Duplicate Segments 1673

congested networks. In non-congested net-
works, LEAP shows the same performance
as compared to current TCP.

Observations of actual TCP behavior with
applying several congestion levels are presented
in Section 2. Section 3 describes the princi-
ple of TCP, leading to a discussion of our pro-
posed scheme and its implementation in Sec-
tions 4 and 5. Section 6 presents an evaluation
of our scheme. Related words and discussions
are presented in Section 7, and we conclude in
Section 8.

2. TCP Dynamics

In this section, we investigate TCP dynam-
ics with changing the network congestion level.
The results in this paper are based on sim-
ulations using the ns-2 16) network simulator
from Lawrence Berkeley National Laboratory
(LBNL).

2.1 Simulation Setup
Figure 1 shows the simulated network topol-

ogy. Concerning to simulation setup, the simu-
lated network consists of one centralized router
and three nodes. Each node connects to the
router by a full-duplex link with 500 kbps of
bandwidth and 50 ms of propagation delay. The
queue limit is set to 100 packets.

All TCP connections transmit 100 segments.
Each segment has 536 byte of payload and
40 bytes of header. Delayed ACK is enabled,
and the maximum window size is 100 segments.
To perform simulations in several network con-
gestion levels, we changes the average number
of TCP connections generated in 1 secnd. The
average number is varied ranging from 1 con-
nection to 3.5 connections with every 0.25 con-
nections. We do not consider any traffic other
than the TCP connections.

Additionally, we apply no error module in
our simulations. In reality, segment losses oc-
cur caused by bit error on a transmission link.
However, we would like to investigate a pure
congestion control mechanism of TCP. So, we
do not handle the influence of non-congestion
related losses in this paper. In other words, all
segment losses in our simulations are derived by
queue overflow at forwarding nodes.

The source and the destination nodes are se-
lected randomly based on exponential distribu-
tions. We set simulation time to 3,000 second.

In this simulation, we investigate and com-
pare three variants of TCP-Reno, NewReno 8),
and Sack 14). Below, we shortly describe their

Fig. 1 Simulated network topology.

differences. All the current implementations
of TCP are based on TCP-Tahoe that in-
corporated algorithms for slow-start, conges-
tion avoidance, fast retransmit, and so on.
TCP-Reno is basically similar to TCP-Tahoe
but with a fast retransmit modification in-
cluding fast recovery. After fast retransmit,
unlike TCP-Tahoe which performs slow-start,
TCP-Reno inflates its congestion window more
rapidly by setting it to minmum (receiver win-
dow, slow start threshold + number of dupli-
cate ACKs).

TCP-NewReno is a modification of TCP-
Reno’s fast recovery, which stays in fast recov-
ery until all segment losses in window are re-
covered. TCP-NewReno uses information con-
tained in partial ACK which is an ACK that ac-
knowledges some but not all of the unacknowl-
edged segments in the sender’s window. In
TCP-Reno, a partial ACK takes the sender out
of fast recovery. On the other hand, in TCP-
NewReno, a partial ACK received during fast
recovery is taken as an indication that the seg-
ment following the partial ACK was lost and
should be retransmitted. Thus, partial ACKs
ensure that the lost segments are retransmitted
without waiting for timeout.

TCP-SACK adds an additional capability
that allows faster recovery in the presence of
multiple segment losses. TCP-SACK provides
information about out-of-order segments re-
ceived by receiver. It can recover multiple seg-
ment losses per RTT.

2.2 Simulation Results
Figure 2 shows the number of finished con-

nections within 3,000 seconds of simulated time.
The vertical axis indicates the number of fin-
ished connections and the horizontal axis indi-
cates the flow density that is the average num-
ber of connections generated in one second.



1674 IPSJ Journal June 2004

Fig. 2 The number of finished connections within
simulated time.

Comparing the number of finished connec-
tions to the number of total generated connec-
tions, we can see the number of finished connec-
tions becomes decreasing at 2.5 of flow density.
Since segment losses cause retransmission, some
connections were backed off and did not finish
the delivery of all segments within simulated
time. The point, where experimental line sepa-
rates from the logical line, can be referred as a
phase transition point between non-congestion
and congestion phases 22). Phase transition be-
havior can be observed in various types of infor-
mation traffics both in simulations and in real
traffics 9),21). It is known that a numerical simu-
lation based on a simple network topology can
produce phase transition behaviors similar to
those observed in real systems with complicated
network topology. Namely, the phase transi-
tion phenomenon is quite universal as for in-
formation traffics. Actually, from this perspec-
tive, there are not remarkable differences be-
tween three variants of TCP-Reno, NewReno,
and SACK.

To investigate the phenomenon of phase tran-
sition, we focus on a detailed behavior of each
connection. Figure 3 shows the average num-
bers of sent and received segments per one con-
nection. Note that the vertical line starts from
100 segments. In ideal cases, the numbers of
sent and received segments should be equal to
100 segments without any segment losses. It
is acceptable that the number of sent segments
increase because of retransmission for lost seg-
ments, as the mean flow density increases.

However, it is surprising that the number of
received segments also increases as the mean
flow density increases. Since each connection

Fig. 3 The average number of sent and received
segments per one connection.

sends just 100 segments, the number of re-
ceived segments should also be equal to 100
if there is no overlap. In other words, TCP
receiver wastefully receives duplicate segments
from TCP sender especially when the network
is highly congested.

In the next section we will clarify the reason
why TCP recevier receives duplicate segments
from the sender.

3. The Principle of TCP

TCP guarantees reliable in-order delivery of
data sent from the source to the destination.
The TCP data unit exchanged between the
source and the destination is called a segment.
There are two kinds of segments, data segment
and ACK segment. Using these two segments,
TCP guarantees reliable data delivery by the
following phases.

(1) A TCP sender transmits a data segment
to a TCP receiver. (2) The TCP receiver replies
an ACK segment to the TCP sender when TCP
receiver receives the data segment. (3) The
TCP sender confirms that the data segment
was reached to the TCP receiver by receiving
the ACK segment. As above, an ACK segment
plays the role of the confirmation of data deliv-
ery. Then absence of an ACK segment causes
a retransmission of a data segment. TCP does
not care whether a data segment was lost in
phase (1) or an ACK segment lost in phase (2).
In both situations of a data segment loss and an
ACK segment loss, TCP retransmits the data
segment.

Generally in the Internet, a router does not
care about whether an IP packet contains a
data segment or an ACK segment. V. Paxson



Vol. 45 No. 6 TCP Optimization for Eliminating Duplicate Segments 1675

Fig. 4 Two types of retransmission timeout: (1) data
segment loss, (2) ack segment loss.

reported 19) that the loss rate of ACK segments
nearly equal to the loss rate of a data segments
in actual network. Namely, ACK segment loss
is not an unusual phenomenon.

TCP uses a cumulative acknowledgement of
the expected next sequence number, and a later
ACK segment contains all the information con-
tained by earlier ACK segments. Under non-
congested networks where TCP sender window
inflates enough to generate multiple ACK seg-
ments by TCP receiver, later ACK segments
can recover earlier ACK segments loss.

However, under congested networks, TCP
sender window deflates due to frequent segment
losses. As a result, the number of ACK seg-
ments generated by TCP receiver is few. Then
it is highly possible that an ACK segment loss
causes a retransmission of a data segment al-
though the data segment successfully delivered
to TCP receiver. In this way, duplicate data
segments appear at TCP receiver.

Figure 4 shows two types of retransmission
timeout. The first type is the situation where a
data segment is lost, then TCP sender retrans-
mits the data segment. The second type is the
situation where an ACK segment is lost, then
the TCP sender retransmits the data segment.
In this situation, two identical data segments
arrive at the TCP receiver. Since the duplicate
data segment is discarded at TCP receiver, it
can be said that the retransmission is wasteful.
This phenomenon occurs when congestion level
exceeds over a phase transition point which was
described in the previous section.

4. Introduction of LEAP

According to the results of previous simula-
tions, we found that the TCP receiver receives
unneeded duplicate segments in the congested

phase. Obviously, it is caused by ACK seg-
ment loss described in Section 3. To resolve this
problem, we propose a TCP modification called
LEAP. The reason why we named the scheme
LEAP is that our scheme leaps a data segment
of conventional TCP retransmission and trans-
mits a new data segment when an ACK seg-
ment loss is suspected. LEAP has the following
features:
• Suspecting ACK loss

The key idea underlying LEAP is to sus-
pect ACK segment losses, and then TCP
sender adjusts TCP sender’s behavior not
to send a duplicate data segment to TCP
receiver. When the retransmission timer
for a segment expires, LEAP estimates
whether the retransmission is actuated by a
data segment loss or an ACK segment loss.
Receiving duplicate ACK segments helps
LEAP to expect that the possibility of an
ACK segment loss is low. This is because
duplicate ACK segment is generated by a
data segment loss or a data segment disor-
der.

• Sending LEAP segment
When LEAP suspects that the retransmis-
sion is generated by an ACK segment loss,
LEAP sends a new sequenced data segment
which outranges the current TCP window.
The new segment is called the LEAP seg-
ment. Note that TCP does not inflate own
window in order to send the LEAP seg-
ment. This is done by separating process
from TCP sliding window.

LEAP Algorithm
Figure 5 illustrates the mechanism of (1)

LEAP by comparing with (2) TCP-Reno. In
both figures, TCP sender with 4 segments of
window size transmits 4 data segments without
waiting an ACK segment from TCP receiver.
In this scenario, we assume that No.4 data seg-
ment and all ACK segments are lost due to con-
gestion at an intermediate node.

In TCP-Reno when retransmission timer for
No.1 data segment expires, TCP sender re-
transmits No.1 segment. It results receiving a
duplicate data segment at TCP receiver. On
the other hand, in LEAP, when retransmission
timer for No.1 data segment expires, LEAP
transmits No.5 data segment instead of trans-
mitting No.1 data segment.

Just after receiving ACK segment, in both
cases, TCP sender goes into slow start phase
with increasing congestion window by 1 seg-



1676 IPSJ Journal June 2004

Fig. 5 The mechanism of LEAP by comparing with
TCP-Reno. (1) TCP-Reno, (2) LEAP.

ment size. In this phase, LEAP will skip No.5
data segment because the data segment has
been already transmitted and acknowledged.
Consequently, TCP sender transmits No.4 and
No.6 segments.

The suspect of an ACK segment loss by
LEAP is not accurate. This means LEAP sus-
pects that an ACK segment is lost while a data
segment is lost. Here, we describe what will
happen and how LEAP will behave when the
LEAP suspect is incorrect.

To explain this process, we use Fig. 5 again.
In this situation, actually, the retransmission
of No.5 data segment of LEAP is undesirable.
This is because the ACK segment for No.5 data
segment requires No.4 data segment. In con-
ventional TCP mechanism, an ACK requiring
a segment of lower sequence number than trans-
mitted segment cannot inflate congestion win-
dow. As a result, the TCP sender is forced to
wait for a timeout to retransmit No.4 data seg-
ment.

To avoid this overhead, LEAP applies a few
modifications to the TCP slow start mecha-
nism. Until a sequence number of a received
ACK segment becomes higher than that of a
LEAP segment, a sender inflates window when-
ever it receives an ACK segment. By this revi-
sion LEAP can avoid waiting expiration of re-
transmission timer even though the suspect of
ACK segment loss is undesirable.

5. Implementation of LEAP

In this section, we describe our implemen-
tation of LEAP in detail, using the FreeBSD
TCP-Reno source code as our initial starting
point. The LEAP algorithm is only added to
retransmit timer and slow start parts of the
TCP sender. We add two variables to TCB:
leap seqno, and leap flg.

5.1 Two Variables Added to TCB
TCP maintains TCP specific information into

TCP Control Block (TCB) structure. For im-
plementation of LEAP, we add two variables,
leap seqno and leap flg, to TCB.
• leap seqno variable

The leap seqno variable maintains a se-
quence number of a leap segment that is
transmitted instead of a timed out segment.
The main purpose of setting this variable
is to avoid sending the leap segment twice.
Receiving an acknowledgement of the leap
segment, TCP sender goes into slow start
mode. If TCP window includes a segment
that has the sequence number, which is
kept in leap seqno, TCP will send next se-
quenced segment instead of the segment.

• leap flg variable
The leap flg variable is used to determine
whether the leap segment is transmitting
or not. When TCP sender transmits a leap
segment, the leap flg variable is set to 1.
When TCP sender receives an ACK seg-
ment, the leap flg variable is set to 0. If
a retransmission timer expires when the
leap flg variable is 1, TCP sender retrans-
mits the leap segment.
There is no way to decide whether a re-
ceived ACK is the one against last trans-
mitted segment or not. Hence, setting
leap flg may mistake by a delayed ACK seg-
ment against previously transmitted seg-
ments. However, it can be said that is
rare case because a value of retransmission
timer is dynamically set based on round
trip time and is big enough compared to
round trip time.

5.2 Consideration on Retransmission
Timer

A current TCP implementation aborts a con-
nection when a sender retransmits an identi-
cal segment twelve times without receiving its
acknowledgements. An exponential backoff is
applied to the retransmission timeout (RTO).
This is done by multiplying the RTO by a value



Vol. 45 No. 6 TCP Optimization for Eliminating Duplicate Segments 1677

from the array defined in TCP source code.
In LEAP a first transmission of a leap seg-

ment is regarded as a second transmission of a
timed out segment. To keep compatibility to a
current TCP implementation, the RTO of the
leap segment is calculated as a second transmis-
sion. When the retransmission timer for a leap
segment expires, the leap segment is retrans-
mitted since TCP sender knows that the leap
segment does not reach to the TCP receiver.
If the number of leap segment’s retransmission
equals to twelve, TCP aborts the connection.

5.3 Consideration on Receiver’s Buffer
Size

TCP window is set to min(awnd, cwnd),
where awnd is the receiver’s advertised win-
dow, and cwnd is the sender’s congestion win-
dow. In heavily congested networks, TCP seg-
ments might be lost due to congestion, lead-
ing to frequent retransmissions. In this situa-
tion the value of cwnd is usually smaller than
the value of awnd. ACK segment losses, how-
ever, arises not only in congested networks but
also in non-congested networks. Even though
TCP sender sends a segment with exceeding
the value of cwnd, it can be successful in deliv-
ering the segment. However, when TCP sender
sends a segment with exceeding the value of
awnd, TCP does not succeed in delivering the
segment. This is because TCP receiver has no
buffer capacity to keep the received segment.
In LEAP, if the sequence number of leap seg-
ment exceeds the value of awnd, LEAP does
not transmit the leap segment. Instead of this,
LEAP retransmits timed out segment, which is
a normal TCP behavior.

5.4 Consideration on Segments with
Special Control Flag

All the TCP segments are not valid when
they are delivered at out-of-order. Some TCP
segments with SYN, FIN, PUSH, or RST flags
in their headers are used to control a TCP con-
nection. To send a leap segment by leaping
these segments is meaningless for the TCP con-
nection. For example, if TCP sender transmits
a leap segment with retransmission timeout for
SYN segment, the leap segment would not be
acceptable in TCP receiver. In LEAP, when re-
transmission timer for those segments expires,
LEAP would not transmit a leap segment. In-
stead of this, the TCP sender transmits a timed
out segment. It is easy to perform this process
by checking flag bit in TCP header.

Fig. 6 Comparison of the numbers of sent segments
and received segments per one connection.

6. Performance Evaluation

In this section we evaluate the LEAP per-
formance by simulation. All simulations were
performed by using the ns-2 16) simulator. To
evaluate the performance of the LEAP, we com-
pared LEAP with TCP-Reno, TCP-NewReno,
and TCP-SACK. A simulated network topol-
ogy and detailed configuration are the same
with the simulations described in Section 2.

6.1 Comparison of the Number of Sent
and Received Segments

We examined how many sent and received
segments are generated by LEAP. Figure 6
shows the average numbers of sent and received
segments in one connection. In addition we
represent Fig. 7 by focusing on the number
of duplicate received segment par one connec-
tion. We clearly found that LEAP reduces
the number of unneeded duplicate received seg-
ments. Since the total number of segments in
one connection is 100, most of unneeded du-
plicate received segments were eliminated by
LEAP. There are two reasons why the number
of this does not equal to 100. An ACK segment
for special segments like SYN, FIN, PUSH, and
RST can be lost, or an ACK segment for a leap
segment can be lost. Then, the duplicate spe-
cial segment or leap segment was received at
TCP receiver. Additionally, we can find that
LEAP reduces not only the number of received
segments but also the number of sent segments.
This is because the reduction of the number of
unneeded duplicate received segments reduces
the loss ratio in overall networks.



1678 IPSJ Journal June 2004

Fig. 7 Comparison of the numbers of duplicate
received segments per one connection.

Fig. 8 Comparison of the number of finished
connections within simulated time.

6.2 Comparison of the Efficiency in
Network Utilization

Figure 8 shows the number of finished TCP
connections within simulated time. Table 1
shows the ratio of finished connections to gen-
erated connections. We find that the number
of finished TCP connections tends to decrease
from 2.75 flow density in Reno, NewReno,
SACK. This is because phase transition oc-
curs at approximately 2.75 flow density in Reno,
NewReno, SACK based simulations. On the
other hand, in LEAP, the number of finished
TCP connections tends to decrease from 3.25
flow density. In the congested phase at 3.5 flow
density, LEAP obviously shows higher perfor-
mance than other TCP variants. It can be
said that LEAP drastically improves the per-
formance of network utilization by reducing
wasted segments.

Table 1 Ratio of finished connections to generated
connections (FD: Flow Density (conn/sec)).

FD Reno NewReno SACK LEAP
2.50 99.3% 97.9% 99.4% 98.5%
2.75 96.1% 95.3% 94.8% 97.8%
3.00 74.5% 78.3% 80.4% 92.7%
3.25 62.4% 62.1% 59.0% 85.8%
3.50 42.9% 42.2% 39.2% 74.0%

Fig. 9 The average throughput with changing a ra-
tio of LEAP connections. The total number of
connections is fixed to 100.

6.3 LEAP Influence on Coexisting
TCP Flows

One of the important questions about propos-
ing a new TCP modification is, does our pro-
posed model disturb the traditional TCP model
when both coexist in a network. In this section
we investigate the LEAP influence on coexist-
ing TCP flows. With simulations we use simple
network topology where a single 10Mbps link
with 2 ms latency is shared by 100 TCP flows.
We perform simulations with changing the ratio
of the Reno and LEAP flows in 100 TCP flows.
All flows are generated at one node at random
time based on exponential distributions.

We calculated bandwidth utilization of each
flow within simulation time (3,000 seconds).
Each source sends data segments infinitely.
Figure 9 shows the simulation results. Each
data point was plotted by averaging 100 re-
alizations. This figure implies two important
points. One is the average throughput of Reno
is not degraded with increasing the ratio of
LEAP connections. Shortly, it can be said that
LEAP does not disturb Reno. Second is that
the average throughput of the total connection
improves as the ratio of LEAP connections be-
comes larger. We performed the same simula-



Vol. 45 No. 6 TCP Optimization for Eliminating Duplicate Segments 1679

tions by comparing LEAP with NewReno and
SACK. The same characteristics has been con-
firmed in the simulation results.

7. Related Works and Discussion

This section describes previous works on TCP
performance improvements by focusing ACK
behaviors. Some issues for LEAP performance
are also discussed.

7.1 TCP Optimization with Focusing
ACK Behaviors

For TCP an ACK segment is not only a con-
firmation of data delivery but also an impor-
tant signal for detecting network congestion.
TCP flow control is called self-clocking that
allows automatic adjustment of the transmis-
sion speed to the bandwidth and propagation
delay of the path by using ACK information.
Since a mechanism for generating ACK seg-
ment effects to the performance of TCP, some
researches 11) have been focusing on ACK be-
haviors. M. Allman pointed out the delayed
acknowledgement mechanism hurts TCP per-
formance, especially during slow start. He pro-
posed and simulated three modifications 2) for
TCP acknowledgement mechanism. However,
this research is different from ours in the sense
that they aim to avoid negative segment trans-
fer in TCP startup phase. In LEAP we are
seeking to eliminate duplicated data segments
caused by an ACK segment loss.

7.2 Does LEAP Violate the Concept
of the TCP Window ?

A leap segment is transmitted independently
with the TCP window. To keep compatibil-
ity with conventional TCP, LEAP should not
violate the concept of the TCP window. The
TCP window has two key features; the first
is for congestion control and the other is for
synchronization between sender and receiver.
Concerning congestion control, TCP transmits
a leap segment instead of retransmission for a
timed out segment. Therefore, the number of
total transmitting segments is the same in both
LEAP and Reno. On the other hand concerning
synchronization between sender and receiver, a
leap segment is transmitted only when sequence
number of the leap segment is within receiver’s
advertised window. These careful implemen-
tations can keep compatibility between LEAP
and the conventional TCP.

8. Summary

In this paper, we firstly investigated numeri-

cally the performance of TCP dynamics in con-
gested networks where network resources are
shared by many flows. We found that the
losses of ACK segments at receivers degrade
the performance of network resource utiliza-
tion due to resulting production of duplicated
data segments. This phenomenon can be seen
when network congestion level exceeds a cer-
tain critical point. We referred to this point as
the phase transition point, as it is the border
point between the non-congestion and conges-
tion phases. Such phase transition phenomenon
can be observed quite universally in information
traffics.

Unneeded duplicate segments not only waste
network resource but also increase the overall
network loss rate. Based on these simulation
results we proposed a new scheme LEAP, for
improving TCP performance of congested net-
works. LEAP performs based on the smart
judgment, which estimates whether a retrans-
mission of a data segment is invoked by a data
segment loss or an ACK segment loss. In heav-
ily congested networks having multiple connec-
tions, we showed that LEAP eliminates nearly
all of duplicated segments without disturbing
coexisting TCP flows. Additionally, LEAP can
be applied with minor revision of TCP and it
eases overall network congestion level consider-
ably by the effect of elimination of unneeded du-
plicated data segments. Our simulation results
showed that LEAP improves overall network
utilization more than 120% higher than conven-
tional TCP variants under congested networks.

References

1) Ahn, J.S., Danzig, P.B., Liu, Z. and Yan,
L.: Evaluation of TCP Vegas: Emulation and
Experiment, Proc. ACM SIGCOMM’95 (Oct.
1995)

2) Allman, M.: On the Generation and Use of
TCP Acknowledgments, ACM Computer Com-
munications Review, Vol.28, No.5, (Oct. 1998)

3) Balakrishnan, H., et al.: TCP Behavior of
a Busy Internet Server: Analysis and Im-
provements, Proc.IEEE INFOCOM’98 (March
1998)

4) Brakmo, L.S., O’Malley, S.W. and Peterson,
L.L.: TCP Vegas: New Techniques for Con-
gestion Detection and Avoidance, Proc. ACM
SIGCOMM’94 (May 1994)

5) Casetti, C., Gerla, M., Mascolo, S., Sanadidi,
M.Y. and Wang, R.: TCP Westwood: Band-
width Estimation for Enhanced Transport over
Wireless Links, Proc. ACM/IEEE MOBICOM



1680 IPSJ Journal June 2004

2001 (July 2001)
6) Floyd, S. and Fall, K.: Promoting the Use of

End-to-End Congestion Control in the Inter-
net, IEEE/ACM Transactions on Networking,
Vol.7, No.4 (Aug. 1999)

7) Floyd, S., Handley, M., Padhye, J. and
Widmer, J.: Equation-Based Congestion Con-
trol for Unicast Applications, Proc. ACM
SIGCOMM 2000 (Aug. 2000)

8) Floyd, S. and Henderson, T.: The NewReno
Modification to TCP’s Fast Recovery, Request
For Comments: 2582 (Apr. 1999)

9) Fukuda, K., Takayasu, H. and Takayasu, M.:
Observation of Phase Transition Behaviors in
the Internet Traffic, Advances in Performance
Analysis, No.2, pp.45–66 (1999)

10) Hoe, J.C.: Improving the Start-up Behavior of
a Congestion Control Scheme for TCP, Proc.
ACM SIGCOMM’96 (Aug. 1996)

11) Lakshman, T.V., Madhow, U. and Suter, B.:
Window-based Error Recovery and Flow Con-
trol with a Slow Acknowledgement Channel: A
Study of TCP/IP Performance, Proc.IEEE IN-
FOCOM’97 (Apr. 1997)

12) Mahdavi, J. and Floyd, S.: Tcp-friendly uni-
cast rate-based flow control, Technical note
sent to the end2end-interest mailing list (Jan.
1997)

13) Mathis, M. and Mahdavi, J.: Forward Ac-
knowledgment: Refinding TCP Congestion
Control, Proc.ACM SIGCOMM’96 (Aug.1996)

14) Mathis, M., Mahdavi, J., Floyd, S. and
Romanow, A.: TCP Selective Acknowledgment
Options, Request For Comments: 2018 (Oct.
1996)

15) Mathis, M., Semske, K., Mahdavi, J. and Ott,
T.: The Macroscopic Behavior of the TCP Con-
gestion Avoidance Algorithm, Computer Com-
munication Review, Vol.27, No.3 (July 1997)

16) UCB/LBNL/VINT Network Simulator ns
(version 2). http://www.isi.edu/nsnam/ns/

17) Padhye, J., Firoiu, V., Towsley, D. and
Kurose, J.: Modeling TCP Reno Performance:
A Simple Model and its Empirical Valida-
tion, IEEE/ACM Transactions on Networking,
Vol.8, No.2 (Apr. 2000)

18) Parsa, C. and Garcia-Luna-Aceves, J.J.: Im-
proving TCP Congestion Control over Inter-
nets with Heterogeneous Transmission Media,
Proc. IEEE ICNP’99 (Nov. 1999)

19) Paxson, V.: End-to-End Internet Packet Dy-
namics, Proc.ACM SIGCOMM’97 (Sept.1997)

20) Sinha, P., Venkitaraman, N., Sivakumar, R.

and Bharghavan, V.: WTCP: A Reliable Trans-
port Protocol for Wireless Wide-Area Net-
works, Proc.ACM/IEEE MOBICOM’99 (Aug.
1999)

21) Takayasu, M., Takayasu, H. and Fukuda,
K.: Dynamic Phase Transition Observed in
the Internet Traffic Flow, Physica, A, No.277,
pp.824–834 (Sept. 2000)

22) Takayasu, M., Takayasu, H. and Sato, T.:
Critical Behavior and 1/f Noise in Information
Traffic, Physica, A, No.233 (1996)

23) Tamura, Y., Tobe, Y. and Tokuda, H.: EFR: A
Retransmit Scheme for TCP in Wireless LANs,
Proc. IEEE LCN’98 (Oct. 1998)

(Received August 25, 2003)
(Accepted March 5, 2004)

Yosuke Tamura received the
B.S. degree in environmental in-
formation, and the M.S. and
Ph.D. degrees in Media and
Governance from Keio Univer-
sity in 1997, 1999, and 2001, re-
spectively. In 2002, he joined

Sony Computer Science Laboratories, Inc. His
research focuses on network architectures for
mobile and sensor networks. He is a member
of ACM, IEEE, and the IPSJ.

Misako Takayasu received
the Ph.D. degree in Physics from
Nagoya University in 1987. She
has been an Associate Professor
at Graduate School of Computa-
tional Intelligence and Systems
Science, Tokyo Institute of Tech-

nology since 2004. Her research focuses on Sta-
tistical Physics and Information Physics. She
is a member of Physical Society of Japan.

Hideki Takayasu received
the Ph.D. degree in Physics from
Nagoya University in 1980. He
joined Sony Computer Science
Laboratories, Inc. as a senior re-
searcher in 1997. His research
focuses on Fractal theory and

Econophysics. He is a member of Physical So-
ciety of Japan.


