
Vol. 45 No. 7 IPSJ Journal July 2004

Regular Paper

Visual Design for Server-Side Programs and Program Generation

Takao Shimomura,
†
Muneo Takahashi,

††
Kenji Ikeda

†

and Yoshio Mogami
†

Client programs’ graphical user interfaces have been developed using graphical components.
The BioPro system this paper presents makes it possible to develop server-side programs by
the combination of drag & drop operations and automatic generation of server-side program
code. The BioPro system has the following features; (1) users can develop Web applica-
tions according to their image of what they want to develop, (2) they can easily verify the
completeness of components that make up the applications and the consistency of those re-
lationships, and (3) they can easily confirm what they have developed, regardless of which
stage of development they are currently at.

1. Introduction

With the development of the information so-
ciety, it has become necessary to release soft-
ware early that satisfies users. Therefore, it has
become important to develop software quickly
so that users can try it, and give the developers
feedback. Recently, instead of the conventional
water-fall-model development, new develop-
ment techniques such as aspect-oriented pro-
gramming have been researched 8),10),14). The
software development techniques that make use
of graphics have also been researched in a va-
riety of fields, which include the visualization
of software requirements 5),6),15), assistance for
object-oriented programming with UML 19),22),
the development of language processors with
the graphical representation of their behav-
iors 11),30), automatic form generation by the
combination of graphical components 18),27), vi-
sual software development environments 3),20),
and as for database accesses, visual retrieval of
structured Web information 17), and the visu-
alization of the contents of a database 9). In
these researches, graphics assists users to design
software requirements and program structures;
visualizing program behaviors assists them to
design program detail specifications; and vi-
sual representation of program components and
data assists them to develop complicated soft-
ware. Client programs’ graphical user inter-
faces have also been developed using graphical
components 21),25).

This paper presents the visual program-

† Department of Information Science, University of
Tokushima

†† Department of Control Engineering, Toin University
of Yokohama

ming method for server-side programs that uses
graphics as a tool of designing software, and
enables users to easily develop software accord-
ing to their image of what they want to de-
velop 26). It also describes the BioPro system
that implements this method for Web applica-
tions. The BioPro system makes it possible to
develop server-side programs by the combina-
tion of drag & drop operations and automatic
generation of server-side program code. This
system has the following features: (1) users can
develop Web applications according to their im-
age, (2) they can easily verify the completeness
of components that make up the applications
and the consistency of those relationships, and
(3) they can easily confirm what they have de-
veloped, regardless of which stage of develop-
ment they are currently at. The remainder of
this paper is organized as follows: Section 2
shows how Web applications are designed ac-
cording to users’ image with the BioPro system.
Section 3 presents visual programming for Web
applications. Section 4 illustrates automatic
generation of Web applications from visual de-
sign and programming. Section 5 describes the
evaluation of the system. Section 6 discusses re-
lated work. Finally, Section 7 summarizes the
paper.

2. Visual Design for Web Applications

2.1 Visual Design and Programming
Using the BioPro system, we first design the

outline of each Web page by choosing Web com-
ponents (hyperlinks, tables, text fields, buttons,
etc.) from menus (or buttons), and pasting
them into the windows that correspond to Web
pages as in home page building tools 13). We
next design the tables of a database (hereafter,

1737



1738 IPSJ Journal July 2004

Fig. 1 Visual design and programming of Web applications.

described as DB tables) and the tables that are
only used during the execution of the program
(hereafter, described as Program tables). Then,
we drag some of the fields of these tables into
Web pages to create their dynamic pages. Fi-
nally, we write business processes in the Web
source windows. The BioPro system automati-
cally generates methods necessary for accessing
the Program table data. In summary, we design
the data access layer of the application using
DB tables and Program tables, design its pre-
sentation layer using Web page windows, and
write its business-logic layer using Web source
windows. Figure 1 illustrates how Web appli-
cations are designed, programmed and gener-
ated with the BioPro system.

2.2 Design of Web pages
In this paper, we consider, as a simple ex-

ample, a program “onlineShop” that realizes
Web-based online shopping and illustrate how
a Web application can be developed with the
BioPro system using this program. In this ap-
plication, (1) we first enter our names, and (2)
choose a fruit from a menu. (3) The purchased
fruit is added to a shopping cart, and then we
can change the number of the fruit or continue
shopping. Finally, (4) when we check out, a
purchase list is displayed. As shown in Fig. 2,
this application consists of six Web pages, “en-
try”, “shop”, “order”, “check”, “toEntry”, “no-
OrdersContinue”, and two DB tables, “fruit”,
“orders”, and a Program table “Cart”. The
“entry” page accepts a customer’s name; the
“shop” page displays a list of fruits; the “or-
der” page shows the contents of a shopping
cart; the “check” page displays a purchase list
and records it in a database; and the “toEn-
try” page, which shows a link to the “entry”
page with a message “Please enter from here!”,
warns customers when they do not enter from
the “entry” page. If the shopping cart has no
entry when the “order” page is displayed, the
“noOrdersContinue” page will be displayed in-

Fig. 2 Pages and tables of application “onlineShop”.

stead to show a link to the “shop” page.
2.3 Linkage with Database Tables
Most of Web applications use a database, and

therefore, to make software development easy,
it is important to facilitate the way of referring
to the contents of a database. Let us explain
how a database is treated in the BioPro sys-
tem. Figure 3 shows an example of design for
the “order” page of the application, and Fig. 4
shows an example of its execution. The “or-
der” page shows the name, image, price, num-
ber, and amount of a fruit stored in a shopping
cart. This page refers to the contents of DB
table “fruit” that stores the names, images and
the prices of various kinds of fruits. When we
click the “Create DB table” button (or choose
the “Create DB table” menu item) and specify
“fruit” as a DB table name, a DB table window
“fruit” is displayed. Although this window is
iconified in Fig. 2, Fig. 5 (a) shows its contents.
If this table exists in the database, the contents
of the table will be displayed in this window. If
this table does not exist in the database, we can
create and store it in the database by specify-
ing the field names, types, and the data values
for each row of the table in this window. More-
over, if we want to add, change, or delete some
values, we can update the table in the database
by adding, changing those values, or deleting
corresponding rows in this DB table window.

In the “order” page, we arrange a table (Web
table) with two rows and five columns. When



Vol. 45 No. 7 Visual Design for Server-Side Programs 1739

Fig. 3 Design of the “order” page.

Fig. 4 Execution of the “order” page.

Fig. 5 DB and Program tables of application
“onlineShop”.

we drag and drop the “name” field of DB ta-
ble “fruit” into a cell of the table to display the
name of a fruit, a “fruit.name” button is au-
tomatically created and inserted into the cell.
If this page is displayed when the application
is executed, the table will be automatically ex-
tended so that it will have the same number of
rows that DB table “fruit” has, and then the
values of DB field “name” will be displayed in
each cell where the “fruit.name” button is in-
serted. When we drag and drop the “image”
field of DB table “fruit” into a cell of the table
to display the image of a fruit, a “fruit.image”
button is automatically created and inserted
into the cell. To display the image of the image
file, we choose an image-display method from

the shortcut menu of the “fruit.image” button.
As a result, a method call “html.img()” for dis-
playing its image is inserted immediately before
the “fruit.image” button. Similarly, we insert a
“fruit.price” button and then insert a method
call “cur.fmt()” to display its value in a cur-
rency form.

2.4 Linkage with Program Tables
The “onlineShop” program needs to store

purchased fruit in a shopping cart. To deal with
the cart, we create a Program table “Cart” as
shown in Fig. 5 (b). From this Program table
“Cart”, the BioPro system generates a class
“Cart” that defines some methods for the re-
trieval, addition, update, and deletion of the
Program table data (described in detail in Sec-
tion 3.2). Next, we arrange a text field in the
“order” page, and drag and drop the “num”
field of Program table “Cart” into the text field
to display the number of a fruit stored in the
cart.

Then, we arrange a submit button labeled
“Change” for changing the number of the fruit.
In order to submit the name of a fruit (to the
“order” page itself) as a hidden field when the
“Change” button is pressed, we drag and drop
the “fruit.name” button into the “Change” but-
ton. As a result, when the “Change” button
is clicked during the execution of this applica-
tion, the value of this hidden field (whose de-
fault parameter name is “fruitName”) is sent to
the “order” page. As for the number of a fruit,
we do not need to submit it as a hidden field
because the value of the text field (the name of
which is “num”), where the “Cart.num” button
is displayed, is automatically submitted.

2.5 Procedure of Developing Web Ap-
plications

When we develop such a Web application
that consists of multiple Web pages, it is im-
portant to verify the completeness of the Web
pages and the Web components that constitute
the application. In addition, it is also important
to verify the consistency of those relationships.
The BioPro system shows the relationships be-
tween Web components as colored arrows. If
Web components exist that refer to undefined



1740 IPSJ Journal July 2004

ones, we decided to display them in a warning
color. It is also possible to display only specific
relationships such as page transfers (as shown
in Fig. 2), field references (as shown in Fig. 3),
and frame references, and to display the rela-
tionships concerning some specific components.

3. Visual Programming for Web Ap-
plications

3.1 User-defined Code for Displaying
Web Pages

In the BioPro system, users can design Web
applications according to their image by us-
ing graphics. Therefore, they almost do not
need to write code when they develop such sim-
ple Web applications as display multiple Web
pages among which a customer transfers, sub-
mit some values from one page to another, and
retrieve some data from a database. For exam-
ple, we never wrote any code to develop a simple
program “selectProduct” 26), where it accepts a
customer’s name at the first page, and when the
customer chooses a product at the next page,
it displays the customer’s name and the name
and price of the purchased product at the final
page. On the other hand, we need to write some
code when we calculate values displayed in the
rows of a table, specify retrieval conditions for
database tables, update data values in database
tables, or process Program tables. The BioPro
system assists users to write such code by auto-
matic generation of Java classes and Web source
window facilities. When we develop some other
business processes, we need to write Java code
in the same way as in the current IDE’s 21),25).

We here describe how users specify retrieval
conditions for database tables and execution
code for table calculation. The “order” page
of program “onlineShop” joins DB table “fruit”
and Program table “Cart”, and displays its re-
sult in a table. To do this, we specify a join
condition (“fruit.name = Cart.name” in this
example) in SQL in the “Change join condi-
tion” window, which is displayed by choosing
from the shortcut menu of the “Join” button at-
tached to the table. The “check” page displays
the total amount of the purchased fruit. We
specify one line of code (“total += fruit.price
* Cart.num;” in this example) in Java in the
“Change execution code” window, which is dis-
played by choosing from the shortcut menu
of the “Exec” button attached to the table.
Factors “fruit.price” and “Cart.num” are auto-
matically replaced with appropriate variables,

which are generated by the BioPro system, and
then this code is executed repeatedly when each
row of the table is generated.

The “check” page displays the purchase list
and then records it in DB table “orders” that
stores the customer’s name, and the names
and the numbers of the purchased fruits. To
do this, we also write such execution code
as “stm.executeUpdate(“insert into orders val-
ues(“‘+ name +”’, “‘+ fruit.name +”’, “+
Cart.num +”)”;” for the table calculation.

3.2 User-defined Code for Processing
Program Tables

The “order” page stores the name and num-
ber of a fruit in Program table “Cart”, and then
shows the name, price, number, and amount of
each fruit in it (as shown in Fig. 4). We need to
update the contents of Program table “Cart”
when a customer chooses a fruit at the “shop”
page to add it to the cart or when the customer
changes the number of a fruit stored in the cart
at the “order” page. The BioPro system gen-
erates Java classes “Cart sys” and “Cart” from
Program table “Cart”. Class “Cart sys” de-
fines some methods that perform the retrieval,
addition, update, and deletion of data values in
Program table “Cart”. As shown in Fig. 5 (b),
the field “name” of Program table “Cart” is se-
lected as a primary key. As a result, a method
“getRowByName()” for returning the row that
contains a specified value as the value of field
“name” is also automatically generated. Class
“Cart” is a skeleton subclass of “Cart sys”,
where a user can define necessary methods. The
“onlineShop” application requires such meth-
ods as add a fruit to the cart and change the
number of a fruit in it. Therefore, we define
methods “addOrder()” and “setOrder()”, re-
spectively in class “Cart” using the methods of
class “Cart sys”.

3.3 User-defined Code for Processing
Page Transfers

When a customer transfers from the “shop”
page to the “order” page, we need to add a
fruit to the cart, and when the customer trans-
fers from the “order” page to itself, we need to
change the number of a fruit in the cart. That
is, the “order” page needs to update the data
values of the Program table “Cart” depending
on the page which the customer transfers from.
To assist users to write such processes that oc-
cur with page transfers, the BioPro system pro-
vides a Web source window for each page, where
users can easily write these processes in Java.



Vol. 45 No. 7 Visual Design for Server-Side Programs 1741

Fig. 6 Web source window for the “order” page and automatic code generation.

This makes it possible to design these processes
separately from the contents of Web pages.

A Web source window corresponds to one
Web page. As shown in Fig. 6, a “Web page
source code” window (Web source window for
short) displays the status of a session, a list
of pages from which a customer transfers to
this page, and a list of some automatically gen-
erated variables (“cart”, “fruit”, “fruitName”,
and “num” in this example) that can be referred
to in the page. Below these, it also displays the
name of a page from which a customer trans-
fers to this page and a text area for that page,
where users can write Java code for a process
executed when this page comes from the corre-
sponding page. For example, in a Web source
window for the “order” page, such processes are
written as follows: (1) when this page is directly
accessed, it guides a customer to the “toEntry”
page; (2) when this page comes from the “or-
der” page, it changes the number of a fruit us-
ing automatically generated variables (variables
“num” and “fruitName” in this example) in the
“Predefined vars” list of the window; (3) when
this page comes from the “shop” page, it adds
a fruit to the cart using a predefined variable
(“fruitName” in this example). Users can use
the BioEditor invoked from the BioPro system.
As shown in Fig. 6, it displays Web page source
files (*.web) automatically generated from Web
source windows and Java source files for pro-
cessing Program tables (*.java). The users can
edit these files and see their API specifications.

4. Automatic Generation of Web Ap-
plications

4.1 Automatic Code Generation
The BioPro system generates program code

from designed Web pages, Program tables, DB
tables, and Web page source files. The gen-
erated code includes code for displaying Web
pages, receiving parameter values sent by other
Web pages, retrieving data from a database,
processing Program tables, and managing a ses-
sion. The system incorporates these pieces of
code with user-defined Web page source code
to create a Web application, which consists of
some JSP pages and Java class files. Figure 6
illustrates a part of generated JSP code for the
“order” page. The code surrounded by broken
lines is incorporated from the Web source win-
dow for that page.

4.2 Code Generation for Preview
In the visual design, it is important to be able

to check the behaviors of the components of a
program at any stage of development. The Bio-
Pro system makes it possible to check how Web
pages will be displayed even if the whole pro-
gram is not completed. When we choose a Web
page and click the “Web preview” button, we
can see the preview of that page. In the pre-
view of the “check” page, for example, only the
name of parameter “name” is displayed because
its value has not yet been stored in a session.
The table of this page shows the name, price,
number, and amount of a fruit stored in a cart.
In the preview, however, no fruit has yet been



1742 IPSJ Journal July 2004

stored in the cart. To display the contents of the
cart even in the preview, a Program table pro-
vides a “Sample” row (See Fig. 5 (b)). If a user
chooses one of data types for each field of a Pro-
gram table, a suitable sample value will be au-
tomatically displayed in this row. The user may
change those values. As shown in Fig. 5 (b),
Program table “Cart” contains a “Sample” row,
where the name of a fruit is “Orange” and the
number of oranges is “200”. The BioPro sys-
tem initializes the Program table so that it will
have these sample values.

5. Evaluation

To evaluate the efficiency and ease of software
development in the visual programming, we had
experiments that compared the BioPro system
with a current integrated development environ-
ment 21) and Struts 12). Each of four program-
mers developed several sample programs with
IDE, BioPro, and Struts in this order. Those
sample programs include applications (1) “se-
lectFruit” (selection of fruits), (2) “onlineShop”
(online shopping using a Program table), (3)
“reserveRoom” (reservation for meeting rooms
using a DB table), (4) “favoriteCake” (a ques-
tionnaire program about favorite cakes), and
(5) “webChat” (Web-based chatting using a
frame set). Figure 7 shows the lines of code
and the time required to develop these applica-
tions on average. The lines of code indicate the
total lines of JSP and Java code required to de-
velop each application. The time indicates how
many hours it took to make an application, test
it, and make sure of its execution result. With
Struts, we needed to write 50 to 60 more lines of
code than the code shown in Fig. 7 for each ap-
plication to set some configuration files such as
web.xml and struts-config.xml. In this prelim-
inary experiment, the BioPro system reduced
the time required to develop these Web appli-
cations to 1/2 to 1/3 compared with the other
systems.

This is considered to be because users need to
write much less amount of code with the visual
programming, and this programming method
keeps the users from making mistakes during
program development. Even if there is a fault
in an application, they can easily detect it at
an early stage of development by checking rela-
tionships between components (colored arrows
are drawn between related components) and the
preview of Web pages being designed. In this
experiment, we considered several simple pro-

Fig. 7 Evaluation of time and code.

grams. Their main function is to create the con-
tents of Web pages. In large-scale business ap-
plications that contain business processes other
than those the BioPro system assists in, the
effectiveness of the visual programming might
not be this remarkable. However, even when
users develop those Web applications, we be-
lieve that it is effective to provide facilities such
as generating JSP code of Web pages, automat-
ically sending and receiving parameter values
between Web pages, automatically retrieving
data values from a database, generating Java
code for Program tables, incorporating user-
defined code into processes for page transfers,
and managing sessions.

6. Related Work

There are several systems that assist in
the development of Web applications such as
IDE’s 21),25), Struts 12), and Zope 16). An IDE
is an integrated development environment that
includes editors, compilers, debuggers, project
management, various source code templates,
and application servers. Struts provides a
framework for building Web applications that
consists of such components as views, con-
trollers, and actions. Separately from busi-
ness processes, users can easily write code for
verifying form data and can specify target ac-
tions to which requests are forwarded. Zope
is an application server with which users can
easily develop Web applications using a Web
browser that is connected to a Zope server.
JavaServer Faces 28) simplifies building user in-
terfaces for Web applications. It wires client-
generated events to servere-side event handlers.
Tapestry 1) is a framework for creating Web ap-
plications in Java, where a Web application is
composed of a combination of a specification
file in XML, an XHTML template and a Java



Vol. 45 No. 7 Visual Design for Server-Side Programs 1743

class. The template defines the XHTML docu-
ment that includes dynamic contents, and the
page components written in Java define the rep-
resentation of the dynamic contents. FAR 4)

is an end-user visual language to assist in the
development of the Web applications that use
spreadsheets. JWIG 7) provides a session model
and a flexible mechanism for dynamic construc-
tion of XHTML documents. With JWIG, a web
application can be written as a single thread us-
ing an extension of Java. TestWeb 23) contains
a test case generation engine that determines
the path expression from the model of a Web
application, and generates test cases. The gen-
erated test cases are sequences of URLs which
grant the coverage of the selected criterion.

IDE’s assist users to write program code by
providing an easy-to-use editor and source code
templates that are used together with a wiz-
ard, and by incorporating and customizing var-
ious program components. In most of the sys-
tems described above, Web applications are
developed using text-based languages such as
XHTML, JSP, JSP tag libraries and Java. On
the other hand, the BioPro system assists users
by automatically generating program code from
Web pages that are designed using visual Web
components, Program tables, DB tables, and
Web page source files. OPM/Web 2) introduces
hierarchical state expressing and suppressing to
model both structure and dynamics of Web ap-
plications. OOHDM 24) models a web applica-
tion so that the navigation model can be sep-
arated from the conceptual model. WAST 29)

specifies a navigational structure of Web ap-
plications and detects the inconsistency of pa-
rameter names between JSP pages and actions
during the test execution. When users need
to write code, the BioPro system shows them
these parameter names as automatically gener-
ated variables in Web source windows. Even
if they use a wrong parameter name, this error
can be detected during the compilation time be-
caue that wrong variable is not declared.

7. Conclusion

This paper has presented the BioPro system
that implemented a method to treat Web pages,
DB tables, and Program tables as visual image,
and by incorporating these components, enable
users to easily develop Web applications. With
the visual programming, what is being designed
is intelligible, and errors are hardly involved in
the design. This makes it easy to develop ap-

plications. We intend to further develop more
Web components such as a variety of table gen-
erators and incorporating facility of Macrome-
dia Flash movies.

References

1) Apache Software Foundation: Tapestry, http:
//jakarta.apache.org/tapestry/ (2003).

2) Berger, I.R., Dori, D. and Katz, S.: OPM/Web
— Object-Process Methodology for Develop-
ing Web Applications, Annals of Software En-
gineering, Vol.13, pp.141–161 (2002).

3) Blackwell, A.F.: See What You Need: Help-
ing End-users to Build Abstractions, Journal of
Visual Languages & Computing, Vol.12, No.5,
pp.475–499 (2001).

4) Burnett, M., Chekka, S.K. and Pandey, R.:
FAR: An End-User Language to Support Cot-
tage E-Services, IEEE Symposium on Human-
Centric Languages, pp.195–202 (2001).

5) Castelló, R., Mili, R. and Tollis, I.G.: ViSta: A
tool suite for the visualization of behavioral re-
quirements, Journal of Systems and Software,
Vol.62, No.3, pp.141–159 (2002).

6) Chen, D.J., Chen, W.C. and Kavi, K.M.:
Visual requirement representation, Journal of
Systems and Software, Vol.61, No.2, pp.129–
143 (2002).

7) Christensen, A.S., Moller, A. and
Schwartzbach, M.I.: Extending Java for High-
Level Web Service Construction, ACM
TOPLAS, Vol.25, No.6, pp.814–875 (2003).

8) Cockburn, A.: Agile Software Development,
Addison Wesley Longman (2001).

9) Cruz, I.F. and Leveille, P.S.: As You Like It:
Personalized Database Visualization Using a
Visual Language, Journal of Visual Languages
& Computing, Vol.12, No.5, pp.525–549 (2001).

10) Elrad, T., Filman, R.E. and Bader, A.:
Aspect-Oriented Programming, CACM, Vol.44,
No.10, pp.28–32 (2001).

11) Glass, S., Ince, D. and Fergus, E.: Llun —
a high-level debugger for generated parsers,
Software — Practice and Experience, Vol.31,
No.10, pp.983–1001 (2001).

12) Goodwill, J.: Mastering Jakarta Struts, John
Wiley & Sons, Inc. (2002).

13) IBM Software: WebSphere Studio Homepage
Bldr Program Package 6.0, IBM Software
(2002).

14) Kiczales, G., Hilsdale, E., et al.: Getting
Started with AspectJ, CACM, Vol.44, No.10,
pp.59–65 (2001).

15) Kung, D.C.: An Executable Visual Formal-
ism for Object-Oriented Conceptual Modeling,
Journal of Systems and Software, Vol.31, No.1,
pp.33–43 (1995).



1744 IPSJ Journal July 2004

16) Latteier, A. and Pelletier, M.: The Zope Book,
Macmillan Computer Pub. (2001).

17) Li, W.S., Shim, J. and Candan, K.S.: WebDB:
A System for Querying Semi-structured Data
on the Web, Journal of Visual Languages &
Computing, Vol.13, No.1, pp.3–33 (2002).

18) Mamrak, S.A. and Pole, S.: Automatic form
generation, Software: Practice and Experience,
Vol.32, No.11, pp.1051–1063 (2002).

19) Mellor, S., Balcer, M. and Balcer, M.J.: Exe-
cutable UML: A Foundation for Model-Driven
Architecture, Addison-Wesley (2002).

20) Mills, K.L. and Gomaa, H.: A Knowledge-
Based Method for Inferring Semantic Con-
cepts from Visual Models of System Behav-
ior, ACM Transactions on Software Engineer-
ing and Methodology, Vol.9, No.3, pp.306–337
(2000).

21) Mogha, R. and Bhargava, R.: Sun One Studio
Programming, John Wiley & Sons (2002).

22) Nentwich, C., Emmerich, W., Finkelstein, A.
and Zisman, A.: BOX: Browsing objects in
XML, Software — Practice and Experience,
Vol.30, No.15, pp.1661–1676 (2000).

23) Ricca, F. and Tonella, P.: Testing Processes
of Web Applications, Annals of Software Engi-
neering, Vol.14, pp.93–114 (2002).

24) Rossi, G. and Schwabe, D.: Object-Oriented
Design Structures in Web Application Models,
Annals of Software Engineering, Vol.13, pp.97–
110 (2002).

25) Shavor, S., Anjou, J.D., et al.: The Java De-
veloper’s Guide to Eclipse, Addison Wesley
(2003).

26) Shimomura, T., Takahashi, M., Ikeda, K. and
Mogami, Y.: Web application generator by
image-oriented design, ACM SIGSOFT Soft-
ware Engineering Notes, Vol.28, No.2, pp.14–
19 (2003).

27) Stoecklin, S. and Allen, C.: Creating a
reusable GUI component, Software: Prac-
tice and Experience, Vol.32, No.5, pp.403–416
(2002).

28) Sun Microsystems, Inc.: JavaServer Faces,
http://java.sun.com/j2ee/javaserverfaces/
(2003).

29) Tai, H., Nerome, T., Abe, M. and Hori, M.: A
Model-driven Development Support Environ-
ment for Web Applications, IPSJ, Vol.44, No.6,
pp.1498–1508 (2003).

30) Zhang, K., Zhang, D.Q. and Cao, J.: Design,
Construction, and Application of a Generic Vi-

sual Language Generation Environment, IEEE
Trans. Softw. Eng., Vol.27, No.4, pp.289–307
(2001).

(Received November 4, 2003)
(Accepted April 5, 2004)

Takao Shimomura is a pro-
fessor of the Dept. of Info Sci.
& Intel. Syst. at the University
of Tokushima. He was a se-
nior research engineer at NTT
Software Laboratories from 1975
to 1995 and a guest associate

professor at the Graduate School of Infor-
mation Systems of the University of Electro-
Communications from 1992 to 1994. His re-
search interests include software design au-
tomation, program visualization, and auto-
mated debugging. He received a BS in mathe-
matics from Kyoto University in 1973, an MS
from Tohoku University in 1975, and a Ph.D. in
computer science from Tokyo Institute of Tech-
nology in 1994. He is a member of IPS Japan,
IEICE Japan and ACM.

Muneo Takahashi is a pro-
fessor at the Toin Univ. of Yoko-
hama. His research interests in-
clude software metrics and qual-
ity assurance. He has a BE from
Chiba University and a Ph.D.
from Kyushu University.

Kenji Ikeda is an asso-
ciate professor at the Univ. of
Tokushima. His research inter-
ests include adaptive control and
system identification. He has
a BE, ME and Ph.D. from the
University of Tokyo.

Yoshio Mogami is an asso-
ciate professor at the Univ. of
Tokushima. His research inter-
ests include learning automata
and reinforcement learning. He
has a BE, ME from Kyoto Insti-
tute of Technology and a Ph.D.

from Kyoto University.


