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Oblivious Comparator and Its Application to Secure Auction Protocol

Hiroaki Kikuchi†

This paper presents a protocol for Secure Function Evaluation (SFE) in which n players
have secret inputs E[a1], E[a2], . . . , E[an], of a known boolean function f , and they collabo-
rate to compute the ciphertext of the output of the boolean function, E[f(a1, . . . , an)]. The
main result is a completeness theorem (Theorem 3.1) which states that an arbitrary function
can be evaluated at the oblivious party without help of private information. The proposed
protocol is based on the Jakobsson and Juels’s Mix-and-Match scheme (Jakobsson and Jules,
2000) in which the truth table of a target function is row-wise randomized (mixing) using
a Mix network, and then players perform “matching” the designated output ciphertext and
the corresponding rows. The biggest difference between the proposed SFE and the Mix-
and-Match is that the proposed protocol does not require any involvement of key holders to
evaluate function, while the Mix-and-Match needs key holders to perform threshold decryp-
tions at every step of evaluation of boolean gates. One disadvantage of the proposed scheme
is the Reed-Muller expansion (Sasao, 1997) involves an exponential blow-up in the number of
input, n, as the same as the conventional schemes, e.g., CyptoComputer proposed by Sander,
Young, and Yung (1999). This paper presents an efficient construction for a primitive called
‘oblivious comparator ’ with n-round complexity between the comparator and n players but
the bandwidth spent by one communication is independent from n (linear to the size of values
to be compared), and hence it does not suffer the blow-up in n. The oblivious comparator
is suitable to implement a secure auction because an auctioneer communicates with bidders
once at time, and performs evaluation without help of trusted key holders. In addition, the
proposed construction allows arbitrary complicated functions including a search for second
highest, a resolution the winner, and a dynamic programming (for combinatorial auction).

1. Introduction

1.1 Secure Auction
Auctions in the electronic commerce are very

complicated. The simplest auction style is the
open-bid English auction, in which bidders in-
crementally raise the prices bid for goods un-
til as many winners are left as the number of
units of goods. As an alternative to this clas-
sical style of auction, an automatic agent sys-
tem called “proxy bidding” 19) is becoming pop-
ular. A Dutch-style auction naturally satisfies
the property that privacy of losing bids is pre-
served after auction closes. The Vickery auc-
tion, in which the winner who has the highest
bid pays the second highest bid.

In the theory of economics, it is known that
a social surplus is maximized when a bidder
whose evaluation is highest wins the auction
game and pay the uniform winning price which
is independent of their evaluation. Wurman et
al. proved that the (M +1)st-price auction sat-
isfies a useful property, incentive compatibility,
i.e., the dominant strategy is for a bidder to bid
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to his/her true valuation 20). Since a winner’s
payment will be determined by the (M + 1)st
highest bid, which is the highest of all losing
bids, every bidder who agrees to bid the maxi-
mum price he/she is willing to pay for a given
item maximizes his/her chance to win without
being worried that he/she might bid too much.

In order to satisfy the complicated require-
ments in secure auction, several attempts have
been done in using cryptographical techniques.
Franklin and Reiter present a sealed-bid auc-
tion protocol in Ref. 21). The protocol uses a
verifiable signature sharing in order to prevent
malicious bidder from canceling their bids. Bids
are kept secret until the opening phase, and
then all bids are opened and compared to de-
termine the highest one.

Kikuchi, Hakavy and Tygar 22) improve the
privacy of bids among distributed auctioneers
even after the opening phase comes using a se-
cure function computation of summation. The
protocol runs in linear time to the number of
possible bidding prices and cannot deal with
tie breaking. In Ref. 24), Sako implements a
Dutch-style auction using a distributed decryp-
tion. In the protocol, a bidder casts his bid
encrypted by the public key corresponding to
his bidding price. The privacy of losers’ bits
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are kept under the assumption of not all auc-
tioneers being faulty. Similarly, Miyazaki and
Sakurai use an undeniable signature 25), and
Kobayashi and Morita use an one-way hash
chain 26).

Auctions in the electronic commerce are more
complicated. Multiple buyers and sellers are in-
volved and multiple unit of goods are auctioned
in several environments. Wurman, Walsh and
Wellman examined a several auction designs
and analyzed in terms of the incentive com-
patibility in Ref. 20). They showed that the
(M + 1)st-price sealed-bid auction is incentive
compatible for single-unit buyers. The secure
second-price (M = 1) auction protocol is pre-
sented by Hakavy, et al. 23). They use the secure
multiparty protocol of multiplication, presented
in Ref. 13) in order to resolve the second highest
bid in O(k) rounds, where bids are represented
as k-bit integers. Other papers on this subject
include Refs. 27)∼32).

1.2 Secure Function Evaluation
The best way to securely implement arbitrary

auction style is a Secure Function Evaluation
(SFE). A SFE is a protocol to allow Alice and
Bob, having inputs a and b, respectively, to
compute a known function f(a, b) while keep-
ing their inputs private.

Goldreich, Micali, and Wigderson 11) pre-
sented a generalized scheme with an assumption
of one-way trapdoor permutation, now com-
monly known as a secure multi-party computa-
tion (MPC). In their scheme, a target function
is decomposed into gates represented as ran-
domly permuted truth tables. Using a 1-2 ob-
livious transfer protocol, the other party picks
the row of the truth table designated by his se-
cret input bit. Although a target function is
generally and systematically implemented using
conventional circuit design technologies, inten-
sive communication takes place to evaluate the
function.TheMPCschemepresentedbyRef. 15),
which is one of the most efficient MPCs, re-
quires O(n|C|) bits for broadcasting and O(d)
rounds for evaluation, where n is the number of
parties, d is a depth of C and |C| is the size of
circuit, i.e., the number of gates in C.

Following the work by Ref. 11), a num-
ber of MPC schemes have been proposed.
Ben-Or, Goldwasser and Wigderson presented
an information-theoretically MPC scheme, in
which an arbitrary function is realized as a com-
position of two arithmetical operations, addi-
tion and multiplication 13).

With the help of a cryptographic primitive
known as verifiable secret sharing (VSS) 5), ro-
bustness against active adversaries is assured.
One advantage of their approach compared
with that of Ref. 11) is efficient arithmetic
field operations rather than bitwise manipula-
tions. A drawback is more assumptions, such as
VSS, necessary to achieve robustness. Recently,
Cramer, Damg̊ard and Maurer showed that any
linear secret sharing scheme allows general con-
struction of an MPC scheme 14).

The Mix-and-Match scheme proposed by
Jakobsson and Juels 3) is a new approach to
SFE. In their scheme, rather than sharing pri-
vate inputs into some players, ciphertext ma-
nipulation is used to evaluate the function. A
brief description is as follows. A player pro-
vides ciphertexts of his private input bit. A
target function f is decomposed into Boolean
gates that are represented by a truth table, in
which entries are publicly provided ciphertexts.

There are two steps, mixing and matching.
In mixing, a row-wise permutation of the truth
table is computed via a conventional mix net-
work (e.g., Ref. 2)), and then players perform
matching, in which some trusted parties look
up the corresponding row in the mixed truth
table and finally, without decrypting, the des-
ignated output ciphertext is obtained.

The interesting feature of the Mix-and-Match
protocol is that only the key generation is dis-
tributed among trusted parties and an input
does not have to be shared. The players do
not even necessarily perform VSS and are not
concerned about the other players. This fea-
ture makes performing the protocol simple and
effective. Moreover, the target function can be
easily constructed by boolean formulas as in the
Ref. 11) approach.

A disadvantage of the Mix-and-Match proto-
col is a cryptographic primitive called a plain-
text equality test (PET ), which allows play-
ers to determine whether two given ciphertexts
represent the same plaintext. To perform the
PET , the all member of trusted authorities,
having piece of distributed decryption key, have
to jointly participate in the threshold decryp-
tion process. Moreover, the PET is required
for each evaluation of bit in a boolean function
to be evaluated and thus it spends bandwidth
so much.

1.3 Our Contribution
In this paper, we propose a new SFE scheme

based on the Mix-and-Match ciphertext manip-
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ulation approach, but more suitable for prac-
tical secure auction. Rather than evaluating
with the help of key holders, our protocol has
an oblivious computer evaluate a target func-
tion without any knowledge of the private in-
formation. Therefore, every step of the com-
putation can be made publicly verifiable; i.e.,
just showing all inputs and outputs, any party
can ensure that the computer performs the cor-
rect manipulation. To prevent a malicious par-
ity from misbehaving, some proof of knowledge
protocols are used.

The main contribution of our paper is to
prove that an arbitrary Boolean function can
be evaluated without decrypting the input ci-
phertext within n rounds of iteration with play-
ers only encrypting once each. The well-known
Boolean function canonical form called the
Reed-Muller Expansion 1) is introduced. The
advantage of this new protocol includes
• Non-interactivity. Players send their in-

puts to a server in a non-interactive fashion,
i.e., they need not participate subsequently
in evaluation of the function. This is sig-
nificant requirement in auction.

• Oblivious Party. A server is an oblivious
party without any secret information and
hence is free from online attack, while some
previous protocols such as Ref. 3) require
intensive communication with parties own-
ing secret information.

However, the protocol has a drawback of
• An exponential blow-up in message com-

plexity. The Reed-Muller expansion re-
quires all combination of inputs and thus
the message size increases exponentially as
the number of players n.

Nevertheless of the issue of the blowup, we
believe the protocol is quite competitive with
other secure function evaluation protocols be-
cause there is an appropriate application of the
protocol in which the communication complex-
ity is independent from n (linear to the size of
values to be compared), and hence it does not
suffer the blow-up in n. We present an effi-
cient construction for a primitive called ‘obliv-
ious comparator ’ with n-round complexity be-
tween the comparator and n players.

The oblivious comparator is suitable to im-
plement a secure auction because an auctioneer
communicates with bidders once at time, and
performs evaluation without help of trusted key
holders. In addition, the proposed construction
allows arbitrary complicated functions includ-

ing a search for second highest, a resolution the
winner, and a dynamic programming (for com-
binatorial auction).

The outline of this paper is as follows. We
generally describe a model and some building
blocks in Section 2. In Section 3, we give the
detail of our proposed protocol. As a practi-
cal application of our protocol, in Section 4, we
present the oblivious comparator, which given
n ciphertexts representing k-bit numbers gener-
ates the output ciphertexts in which the highest
number and the identity of whose number has
the highest number are encrypted. After com-
putation at oblivious comparator, with the help
of private key holders, the outputs are finally
decrypted. The oblivious comparator cannot
cheat bidders because of the proof of knowledge
that she correctly performs comparison of bids
but learn any knowledge from the result of the
computation, namely, she does not know who is
the winner nor how high the winning price is.

2. Model and Building Blocks

2.1 Model
We consider n players, P1, . . . , Pn, and some

of these may be malicious. Each player ai has
a secret input ai. A computer C takes n input
ciphertexts, E[a1], . . . , E[an], and outputs a ci-
phertext E[y] of an agreed n-variable boolean
function y = f(a1, . . . , an). We assume a secure
channel with confidentiality, sender authentica-
tion and message integrity between all pairs of
the parties. We does not assume an authenti-
cated broadcast channel in this model.

A computer C has a state S, which is a set
of ciphertexts, and a state transition algorithm
T , which takes an input ciphertext sent from a
player and updates the state S according to the
agreed function f . Every time C communicates
with a player, the state Si is updated to Si+1

and then referred by the subsequent player who
uses the state to generate the next input cipher-
text. Players communicate with C once, there-
fore, n rounds are involved to produce the final
state Sn. After exactly n rounds between C and
P1, . . . , Pn, C publishes the output ciphertext Y
defined by a decoding algorithm D.

2.2 ⊕-Homomorphic Encryption
Scheme

Let M be a set of plaintext, {m0, m1}, where
m0 and m1 mean boolean values corresponding
to ‘false’ and ‘true’, respectively.

Let us suppose a homomorphic encryption
scheme E which satisfies the following proper-
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ties:
– E is ⊕-homomorphic over GF (2), i.e., for

elements a and b of {m0, m1},
E[a ⊕ b] = E[a] × E[b] (1)

holds, where a ⊕ b is an Exclusive OR, de-
fined as m0 ⊕ m1 = m1 ⊕ m0 = m1 and
m0 ⊕ m0 = m1 ⊕ m1 = m0.

– E is semantically secure, that is, no one is
able to distinguish ciphertexts of m0 and
m1 with probability significantly greater
than a random guess.

– The key generation can be distributed
among a certain number of players. The
size of the public key should not depend on
the number of shares.

– The decryption process can be distributed
among t-out-of-n players who share the cor-
responding private key. The computatio-
nal and communicational (bandwidth and
rounds) costs should be as small as possi-
ble.

The El Gamal encryption satisfies the all re-
quirements under the Decision Diffie-Hellman
(DDH) assumption, if we let m0 = 1 and
m1 = −1 (mod p). Let p and q be large
primes such that p = 2q + 1 and G be the set
of multiplicative groups of order q in Z∗

p . Let g
be a primitive element of G.

An El Gamal encryption of message m with
public key y = gx is of the form Ea[m] =
(M, G) = (mya, ga), where a is a random num-
ber chosen from Zq. To decrypt the ciphertext
(M, G), we use the corresponding private key
x to compute M/Gx = mgxa−ax = m. By
element-wise multiplication, we define E[a] ×
E[b] = (MaMb, GaGb), which yields a new ci-
phertext E[a ⊕ b], and it can be seen that the
El Gamal encryption is ⊕-homomorphic over
GF (2).

Distributed decryption is also feasible. A
private key is jointly generated by the col-
laboration of t honest parties (key holders)
out of n and distributed among them using
(t−1)-degree random polynomials f(x) as f(1),
f(2), . . . , f(n). To decrypt a ciphertext pro-
vided with the public key y = gf(0), the i-th
party publishes Gf(i) for i = 1, . . . , t, and then
computes Gf(1)γ1 · · ·Gf(t)γt = Gf(0) where γi is
the LaGrange coefficient for i. For verifiability
the players use Verifiable Secret Sharing (VSS)
as proof of possession of f(i) such that Gf(i).
See Ref. 5) for details.

An other instance of homomorphic encryp-
tion scheme is QR encryption as used in

Refs. 8), 9).
2.3 Proof of Knowledge
We will use a proof of knowledge of private

input to the computer, which is based on the
disjunctive and conjunctive proofs of knowledge
in Ref. 6).

Conjunctive Proof of Knowledge
By PK{(α) : y1 = gα

1 ∧ y2 = gα
2 }, we de-

note a proof of knowledge of discrete logarithms
of elements y1 and y2 to the bases g1 and g2.
Selecting random numbers r ∈ Zq, a prover
sends t1 = gr

1 and t2 = gr
2 to a verifier, who

then sends back a random challenge c ∈ {0, 1}k.
The prover shows s = r − cα (mod q), which
should satisfy both gs

1y
c
1 = t1 and gs

2y
c
2 = t2.

Disjunctive Proof of Knowledge
We denote by PK{(α, β) : y1 = gα∨y2 = gβ}

to mean a proof of knowledge of one out of the
two discrete logarithms of y1 and y2 to the base
g. Namely, the prover can prove that he knows
a secret value under which either y = y1 or y =
y2 must hold without revealing which identity
was used. Without loss of generality, we assume
that the prover knows α for which y = gα holds.
The prover uniformly picks r1, s2 ∈ Zq and c2 ∈
{0, 1}k and sends t1 = gr1 and t2 = gs2yc2

2 to
the verifier, who then gives a random challenge
c ∈ {0, 1}k, where k is a security parameter. On
receiving the challenge, the prover sends s1 =
r1−c1α (mod q), s2, c1 and c2, where c = c1⊕
c2. The verifier can see if the prover is likely to
have the knowledge by testing both t1 = gs1yc1

1
and t2 = gs2yc2

2 with provability 1 − 2−k. Note
that the same test can be used when t1 and t2
are prepared for the other knowledge β.

2.4 Reed-Muller Expansion
Let us review an ordinary version of Reed-

Muller expansion defined with boolean values
before we go to the cryptographic expansion.

Lemma 2.1 Let x, y and z be boolean val-
ues. Then, we have

1. x ⊕ y = y ⊕ x,
2. 0 ⊕ x = x, 1 ⊕ x = x,
3. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z),
4. a(x ⊕ y) = ax ⊕ ay,
5. x ∨ y = x ⊕ y ⊕ xy.

Lemma 2.2 (Shannon Expansion) 1) Let
f(x1, . . . , xn) be an n-variable boolean func-
tion. Then, f is expanded by

f = x1F0 ∨ xF1

= x1F0 ⊕ xF1 (2)
= F0 ⊕ x1(F0 ⊕ F1)

where F0 = f(0, x2, . . . , xn) and F1 = f(1,
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x2, . . . , xn).
By recursively applying Eq. (2) for every vari-

able in f , we have the following canonical form
of f .

Lemma 2.3 (Reed-Muller Expression)1)

An arbitrary n-variable function f(x1, . . . , xn)
is represented as

f = a0⊕a1x1⊕a2x2⊕· · ·⊕anxn

⊕a12x1x2⊕a13x1x3⊕· · ·⊕an−1 nxn−1xn

...
⊕a12···nx1x2· · ·xn. (3)

Given a function, the boolean coefficients a1,
a2, . . . , a12···n are uniquely determined. Equa-
tion (3) is called the Reed-Muller expression of
f .

3. The Scheme

3.1 Logical Operations
We show that fundamental logical operations,

conjunction (∧), disjunction (∨) and negation
(x), are possible for input ciphertexts without
decrypting.

Lemma 3.1 (negation) Let E[a] be a ci-
phertext of a homomorphic encryption scheme
and let a be an unknown element of {m0, m1}.
Then, the ciphertext for negation of a is given
by

E[a] = E[a] × E[m1].
Proof. The proof is straightforward using
Lemma 2.1. �

Lemma 3.2 (conjunction and disjunc-
tion) Let E[a] be a ciphertext of a homomor-
phic encryption scheme where a is an unknown
plaintext in {m0, m1}. Let us assume b is a
known (private) plaintext in {m0, m1}. Then,
the ciphertext of conjunction (AND) of a and b
is obtained without learning a as follows:

E[ab] =
{

E[m0] if b = m0,
E[a] if b = m1,

(4)

and the disjunction (OR) is

E[a ∨ b] =
{

E[m1] if b = m1,
E[a] if b = m0.

(5)

Proof. When b = m0, the ciphertext E[ab] =
E[m0] regardless of a. When b = m1, the ci-
phertext E[ab] is of m1 only if a = m1. The
proof of disjunction is shown similarly. �

When the output ciphertext is required to
be indistinguishable to anyone, including the
owner of a, E[a] in Eq. (4) can be re-encrypted
using a random ciphertext E[1] as E[a]′ =
E[a] × E[m0].

Note that the plaintext a is not necessary to
obtain E[ab] and therefore conjunction consist-

ing of multiple literals is feasible in the same
manner. For example, from E[a1a2a3] and
plaintext b, we can have E[a1a2a3b].

Lemma 3.3 Let E[a], E[b] and E[ab] be ci-
phertexts of secret plaintext in M . Then, the
ciphertext of disjunction (OR) of a and b is

E[a ∨ b] = E[a] × E[b] × E[ab].
Proof. The proof is shown immediately from
Lemma 2.1. �

3.2 Basic Protocol
We consider an oblivious party C which has

a set of ciphertexts of internal state and up-
dates the state in a publicly verifiable manner.
Before we consider a specific function that re-
quires less communication cost, we more gener-
ally show functional completeness of ciphertext
computation at an oblivious party C.

Let Si be a set of ciphertext which contains
internal private state in C. The i-th state
set Si is of the form {m1, s1, s2, . . . , sLi

}, de-
fined by s1 = E[a1], s2 = E[a2], . . . , sLi

=
E[a1a2 · · · ai], and Li = |Si| = 2i, where a
plaintext ai is either m0 or m1. In particular,
let S0 be {m1}.

Basic Protocol (SFE)
1. Computer C sends to player Pi a current

status Si−1 = {m1, s1, s2, . . . , sLi−1}.
2. For every element in Si−1, player Pi use

Eq. (4) in the conjunction protocol to com-
pute the conjunctions of his private in-
put ai, and sends back to C the result
Ai = {E[ai], E[a1ai], E[a2ai], . . . , E[a1a2 · · ·
ai−1ai]. (Note that the constant m1 in S0

yields E[m1ai] = E[ai] in Ai for every i.)
3. Computer C updates its state by

Si = T (Si−1, Ai).
4. Repeat 1 through 3 n times.
5. Computer C outputs Y = D(Sn).
The transition algorithm T and the decod-

ing algorithm D depend on the given boolean
function f .

Theorem 3.1 (Functional Complete-
ness) For an arbitrary n-variable boolean
function f(x1, . . . , xn), there exists a transition
algorithm T and a decoding algorithm D such
that

Y = D(Sn) = E[f(a1, . . . , an)],
Sn = T (Sn−1, An) = T (T (Sn−2, An−1), An)

= · · · = T (· · ·T ({m1}, A1) · · ·).
Proof. By letting T (Si−1, Ai) = Si−1 ∪ Ai, we
have the final state in which every element
of power set of {a1, a2, . . . , an} is encrypted.
Namely,
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Sn = {m1, E[a1], E[a2], . . . , E[a1a2 · · · an]}.
From Lemma 2.3 and the homomorphism of en-
cryption scheme, now we see that C has an arbi-
trary decoding algorithm D that produces the
ciphertext of any given boolean function f . �

As an example of the decoding algorithm,
let us consider a three-party majority function,
which takes private boolean values a, b and c,
and outputs whether more than two of them are
‘true’, or not. The basic protocol begins with
C sending empty set to the first player who has
a and sends back A1 = {E[m1a]} = {E[a]},
which forms

S1 = S0 ∪ A1 = {m1, E[a]}.
The second player computes the conjunction of
E[a] and her private b and sends to C

A2 = {E[b], E[ab]},
which leads to S2 = S1 ∪ A2. Similarly, the
interaction with the third player provides the
final state

S3 =
{

E[a], E[b], E[c],
E[ab], E[ac], E[bc], E[abc]

}
.

Finally, the computer C invokes the Reed-
Muller representation for the objective majority
function as follows

D(S3) = E[ab] × E[ac] × E[bc] × E[abc]
= E[ab ∨ ac ∨ bc].

Note that C learns nothing from the outcome
of his decoding algorithm under the assumption
of an indistinguishable encryption scheme, e.g.,
DDH.

In the above description, the basic protocol is
the simplest in the sense that players have just
one bit secret, which can be easily extended to
k-bit secret in a natural way. In some target
boolean function, the transition algorithm can
also be replaced by one requiring less storage.
In a later section, we will show a variation of
the basic protocol in which a player has a k-bit
secret and a more lightweight transition algo-
rithm is used.

3.3 Performance
Table 1 shows the message and rounds com-

plexities of the proposed protocol in comparison
with some previously proposed protocols for se-
cure function evaluation. A message complexity
is the number of bits sent or broadcasted in the
evaluation. The notation of |C| is the size of
circuit C, i.e., the number of gates, and d is the
depth of C.

In the perspective of message complexity,
CDN01 15) is the most efficient. However, it
is not adequate to implement a certain appli-

Table 1 Complexities of the proposed protocol.

protocol message rounds circuit

BGW87 13) Ω(n2|C|) O(d) arithmetic

CDN01 15) O(n|C|) O(d) arithmetic

Mix and Match 3) O(n|C|) O(n + d) boolean
Proposed O(2n) O(n) boolean

cation such as a sealed-bid auction because in
the CDN01 all bidders are forced to partici-
pate in the processes to determine the winning
price. This is not realistic as many bidders join
the auction. On the other hand, the Mix-and-
Match protocol achieves the same message com-
plexity with allowing bidders to be off-line after
submitting their bids, i.e., the non-interactivity
is satisfied. It requires O(n) rounds for submit-
ting bids in a broadcast plus O(d) rounds for
computing C.

The proposed protocol also satisfies the non-
interactivity as the Mix-and-Match protocol in
the exponential expense of message complexity.
The round complexity of O(n) is not efficient
but okay because we have seen that an ordi-
nary single web server is able to handle many
browsers one by one. In addition, the timeliness
is not paramount requirement in many applica-
tions such as the sealed-bid auction. While, the
exponential behavior of message complexity is
critical. However, in the proceeding section, we
show the application of the proposed protocol
in which the message complexity is not expo-
nential to n.

3.4 Verification Protocols
A malicious player may send an invalid in-

put ciphertext to cheat other players or dis-
rupt computation. To prevent players from
violating the protocol without being detected,
we require players to provide a proof of knowl-
edge along with their ciphertexts. Although we
have discussed a general homomorphic encryp-
tion scheme, we assume El Gamal encryption
in this section.

Let E[m] = (myr, gr) = (M, G) be a cipher-
text encrypted with public key y = gx. To
prove E[m] is valid ciphertext and m is either
m0 or m1, a player who encrypts m shows a
proof of knowledge of the form

PK

{
(α) :

(
M = m0y

α

∧G = gα

)
∨

(
M = m1y

α

∧G = gα

)}
,

that is constructed based on the conjunctive
and disjunctive proofs of knowledge in Ref. 6).

The proof of knowledge is not sufficient be-
cause a malicious player can send a valid ci-
phertext as E[ab] which is inconsistent with
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Table 2 Complexities of proof of knowledge.

ciphertext message computation iteration
to be verified proving verifying

E[ai] 4|p| + 2|q| 6 8 1
E[aisj ] 8|p| + 4|q| 12 16 Li

total |p|(4 + 8Li) + |q|(2 + 4Li) 6 + 12Li 8 + 16Li

E[a] and E[b], e.g., claiming a forged ci-
phertext E[m0] to be E[ab] but a = m1

and b = m1. To prevent players from
casting E[ab] = (Mab, Gab) inconsistent with
E[a] = (Ma, Ga), E[b] = (Mb, Gb) and E[m0] =
(M0, G0), we can force them to send a proof of
knowledge PK =



(α, β) :




Ma = m0y
α∧

Ga = gα∧
Mab = M0y

β∧
Gab = gβ




∨




Ma = m1y
α∧

Ga = gα∧
Mab = Mby

β∧
Gab = gβ







.

Theorem 3.2 Under an assumption of
computational Zero-knowledge proof, any dis-
honest player (C, P1, . . . , Pn) can not manipu-
late the result of computation in the basic pro-
tocol.

Let us estimate the overhead in terms of com-
munication and computation given from the
PK. Since the modular exponentiation is the
dominant factor in proof of knowledge, omit-
ting the other arithmetic such as multiplication
we define a computation complexities as a num-
ber of modular exponentiations. For two types
of proofs mentioned above, we show the result
of estimation of message and computation com-
plexities in Table 2, where |p| is a size of p in
bits and Li is a number of element in i-th state
set Si defined in the basic protocol.

4. Application to Auction Protocol

4.1 Oblivious Comparator
In this section, we first consider a standard

(non-cryptographical) version of a k-bit inte-
ger comparator and then extend it to an obliv-
ious comparator that compares input cipher-
texts without decrypting.

Given k-bit integers a and b such that a =
ak−12k−1+· · ·+a121+a020 and b = bk−12k−1+
· · · + b121 + b020, an oblivious comparator C
wishes to have c such that c = a if a > b; oth-
erwise c = b. Obviously, c is a k-bit integer
represented as c = ck−12k−1 + · · ·+ c121 + c020.

The design of the comparator is simple. For
each two input bits ai and bi, the comparison is
performed using three boolean variables, αi, βi

and γi, such that αi is true only if ai > bi, βi is
true only if ai < bi, and γi is true only if ai �= bi.
For example, we show the logic formulas of the
comparator when k = 3 as follows:

c2 = a2 ∨ b2,

α2 = a2b2,
β2 = a2b2,
γ2 = α2 ∨ β2,
c1 = γ2(α2a1 ∨ β2b1) ∨ γ1(a1 ∨ b1),
α1 = α2 ∨ a1b1,
β1 = β2 ∨ a1b1,
γ1 = γ2 ∨ α1 ∨ β1,
c0 = γ1(α1a0 ∨ β1b0) ∨ γ1(a0 ∨ b0),
α0 = α1 ∨ a0b0,
β0 = β1 ∨ a0b0,
γ0 = γ1 ∨ α0 ∨ β0.

After the evaluation of the above logic formu-
las, the greater integer in a and b is given by
(c2, c1, c0) and the boolean variables α0, β0 and
γ0 indicate whether a > b, a < b, and a �= b,
respectively. Note that γ0 is false if and only if
a = b.

As we have seen in the basic protocol, an ar-
bitrary boolean formula can be represented in
the Reed-Muller expression. For example, the
boolean variable γ2 = α2∨β2 = a2b2∨a2b2 has
the Reed-Muller expression a2 ⊕ b2. One more
complicated example of c1 is provided by using
identities in Lemma 2.1 as follows:

c1 = γ2(α2a1 ∨ β2b1) ∨ γ2(a1 ∨ b1)
= γ2(α2a1 ∨ β2b1) ⊕ γ2(a1 ∨ b1)
= (a2 ⊕ b2)(α2a1 ∨ β2b1)

⊕(1 ⊕ a2 ⊕ b2)(a1 ∨ b1)
= a1 ⊕ b1 ⊕ a1a2 ⊕ a1b1 ⊕ a2b1

⊕a1a2b2 ⊕ a1b1b2 ⊕ a1a2b1 ⊕ a2b1b2

⊕a1a2b1b2.

Now, let us suppose that a player with a2, a1

and a0 performs the three rounds of the basic
protocol at once, i.e., sends to C

E[a0], E[a1], E[a2], E[a0a1], E[a0a2], E[a1a2],
E[a0a1a2].

The other player having b0, b1, b2 also partic-
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ipates in the protocol and provides a batch
of ciphertexts

E[b0], E[b1], E[b2], E[b0a0], E[b0a1],
. . . , E[b0b1b2a0a1a2].

As the result, C has many ciphertexts, sufficient
to compose c2, c1, c0 without decrypting.

The result of the comparison is still cipher-
text, which can be used as an input ciphertext
for subsequent comparison. Hence, the state
transition algorithm for a k-bit comparator re-
quires a constant size of internal state, which
is independent of the number of integers to be
examined. Indeed, we have

Sn = Sn−1 = · · · = S1

= {E[m1], E[c0], . . . , E[c0 · · · ck]}.
The formal description of oblivious compara-

tor is as follows.
Oblivious Comparator

1. A comparator C has an initial state S0 =
{s0, . . . , s2k} such that s0 = s1 = · · · =
s2k = E[m1] and boolean variables αk+1 =
βk+1 = γk+1 = E[m0].

2. Given state Si−1, the i-th player with pri-
vate value represented in a0, a1, . . . , ak sub-
mits Ai = {

E[m1], E[a0], . . . , E[a0 . . . ak],
E[s1], E[a0s1], . . . , E[a0 . . . aks1],

...
E[s2k ], E[a0s2k ], . . . , E[a0 . . . aks2k ]

} in conjunction with the PK.
3. Comparator C updates the state by

Si = T (Si, Ai) = (s′0, s′1, . . . , s′2k) =
(m1, c

′
1, c

′
2, . . . , c

′
k, c′1c

′
2, . . . , c

′
1c

′
2 · · · c′k) such

that
c′j = γj+1(αj+1aj ∨ βj+1cj)

∨γj+1(aj ∨ cj),
αj = αj+1 ∨ ajcj ,

βj = βj+1 ∨ ajcj ,

γj = γj+1 ∨ αj ∨ βj

for j = k, k−1, . . . , 0 in the way of the basic
protocol.

4. Comparator C repeats until C communi-
cates with every player and outputs Y =
D(Sn) = (s1, . . . , sk), which the trusted
authorities decrypt and declare the highest
value. Note that the decoding algorithm
takes the first k element of Sn.

4.2 Sealed-Bid Auction Protocol
A suitable application of the oblivious com-

parator is a sealed-bid auction, where n bidders
having k-bit private bids try to determine the
highest bid and the winner in a secure manner.

The oblivious comparator allows us to provide
a trustworthy auctioneer who has interaction
with every bidder once and blindly compare
bids. The auctioneer has no chance to manipu-
late the winning price because all the processing
steps, including a transition algorithm T and a
decoding algorithm D, are publicly verifiable in
the sense that anyone can make sure of the va-
lidity of the internal state without any secret in-
formation. The secrecy of the winning price and
the winner are assured until more than a thresh-
old number of trusted authorities who share the
corresponding secret key agree to decrypt the
resulting ciphertexts. With the non-interactive
proof of sub-computations, the distributed de-
cryption step is publicly verifiable in a secure
manner, e.g., Ref. 18), and hence any dishonest
behavior of authority can be detected.

In addition to functions for oblivious com-
parison, we need one more computer to deter-
mine the winner. This is not difficult. We sup-
pose that every player has an assigned iden-
tity, say ID, that is a k2-bit integer such that
k2 > log n. The identities are encrypted as well
and then sent to C in conjunction with input
ciphertext. Using the boolean variables α0 and
β0 in the oblivious comparator protocol, the
comparator, C, updates an additional internal
state W = (w1, w2, . . . , wk2) as

wi = α0IDAi ∨ β0IDBi,
for i = 1, . . . , k2, where IDAi and IDBi are
the i-th digits of identities for player A (bidder)
and player B (internal state). When multiple
bidders are tied at the same highest price, W
is never set and therefore the default value will
appear in the decrypted result as the sign that
a tie occurred.

Using the above mentioned sub-protocols, we
show a secure auction protocol as follows.

Secure Sealed-bid Auction (First-
Price rule)

1. Auctioneer sets up a k-bit oblivious counter
with initial state S0 in which messages m1

are encrypted by the a single or group of
trusted authorities.

2. For each bidder i = 1, . . . , n, the auctioneer
performs the comparison protocol in Sec-
tion 4.1 and updates the internal state Si.

3. Bidders prove that their submitted bids
A1, . . . , An are correctly computed in the
verification protocol in Section 3.4 and ver-
ify that the auctioneer updates the states
correctly.

4. The auctioneer publishes the final state
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Table 3 Complexities of the proposed secure sealed-bid auction protocols.

protocols bidders N.I. servers
message round

bids PK # message round

KHT98 22) O(2k) – 1 Y m O(2k) 1

S00 24) O(1) O(1) 1 Y m O(n) O(mk)

MS99 25) O(1) – O(k) N 1 O(nk) O(k)

JJ00 3) O(k) O(k) 1 Y m O(knm) O(d + n)

Proposed O(2k) O(2k) 1 Y 1 O(2kn + km) O(n)

N.I. stands for Non-interactivity.

Y = D(Sn) which contains the winning
price and the ciphertext of the winner.

5. The trusted authorities jointly decrypt the
ciphertexts to declare the winning price
and the winner.

In the case of a second-highest-price auction,
we construct the protocol by replacing the state
transition algorithm T with that of keeping the
second highest value. With the extension, the
size of state is doubled.

4.3 Performance
In the proposed protocol, the amount of bit

that a bidder has to send is the sum of 2k ci-
phertexts for encoding bid and 2k2 (> log n)
ciphertexts for encoding identity, resulting the
total of (2k + 2k2)l where l is a size of cipher-
text. By letting l = 1024 · 2, k = 10 (that is,
2k = 1024 values are possible to assign as bid-
ing prices), we have the number of ciphertext
for one bidder is 2048 and the expected time for
sending is 0.2 second (in bandwidth of 1 Mbps).

If we take account of the cost for proof of
knowledge, the expense increases. According
to the performance analysis in Table 2, we es-
timate the message complexities of PK by as-
signing uniformly L1 = L2 = · · · = 2k in k-bit
comparison, as

|p|(4k + 8 · 2k) + |q|(2k + 4 · 2k) = O(2k).

For instance of k = 10, |p| = 1024, a message
size sent by a bidder is 1024 · (40 + 8 · 1024) ≈
106 byte.

In Table 3, we summarize the performance
of the proposed auction protocol in compari-
son with previously proposed auction protocols.
The proposed protocol has an oblivious server
and m trusted authorities who have distributed
private key. The use of the proposed protocol
is limited within small k.

5. Conclusion

We have proposed a protocol for Secure Func-
tion Evaluation (SFE) with ciphertext, in which

n players with input ciphertexts collaborate
to compute an output ciphertext of a known
boolean function. The main result is that an
arbitrary function evaluation is feasible with-
out decrypting the input ciphertext in n rounds
of communication with an oblivious computer.
We have shown the oblivious comparator is
suitable to construct a secure sealed-bid auc-
tion that satisfies privacy of bids, verifiability
of bidders, accountability of auctioneers and ef-
ficient computation.
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