
An evaluation of Fat-Btree based and HDFS based Storage Systems for
Small File I/O Applications

Min LUO
† Haruo YOKOTA

†
,
‡

†
Department of Computer Science, Graduate School of Information Science and Engineering

Tokyo Institute of Technology

Email:
†

luomin@de.cs.titech.ac.jp,
‡
yokota@cs.titech.ac.jp

1. Introduction

Parallel database systems [1] exploit multiprocessor

computer architectures in order to build high-

performance database servers at a much lower price

than equivalent mainframe computers. The hardware

limitation in the mainframe database is overcome in

parallel databases by scaling systems with more

processors and storage disks that work in parallel.

Therefore, scalability is one of the core features in

parallel database systems.

Among the three most prominent parallel database

architectures, shared-nothing architecture provides the

best scalability out of the shared-memory and shared-

disk architectures [1]. Value-range partition strategy in

shared-nothing may efficiently support both point and

range queries, which are inefficiently supported by the

other two partition strategies, hash and round-robin.

However, the lack of efficient parallel B-tree index for

the range-partitioning data greatly limits the scalability

of range-partitioned shared-nothing database systems.

In this paper, we address the data access efficiency

and scalability by introducing a first trial of combining

parallel B-tree structures with open-source database

management systems. Different from previous parallel

B-tree index, the Fat-Btree index we adopt has high

cash hit rates and low update synchronization cost;

therefore, the proposed parallel database has a good

scalability and data accessing efficiency. To evaluate

the scalability in our proposed system, we compare it

with HBase, a distribute DBMS built on top of

Hadoop, which is famous for the efficient and scalable

data accessing performance. Experimental results on a

100-nodes cluster system verify that our parallel

database greatly outperform HBase in both system

scalability and throughput.

2. A Parallel DBMS based on Fat-Btree

2.1 Fat-Btree Index

B-tree based parallel indexing with value-range based

data partitioning schema, is proposed for high

throughput and efficient range query. However, it

suffers high index structure synchronization costs. To

reduce these costs, an update-conscious parallel B-tree

structure, a Fat-Btree, has been proposed [2]. An

Fig.1 Fat-Btree

example of a four-PE Fat-Btree is given in Fig. 1,

where multiple copies of index nodes close to the root

node with relatively low update frequency are

replicated on several PEs, while leaf nodes with

relatively high update frequency are distributed across

the PEs. Thus, the maintenance cost of the Fat-Btree is

much lower than that of other parallel Btree structures.

In addition, Fat-Btree has a higher cache hit rate [2]

and more efficient concurrency control protocols than

other methods [3].

2.2 System Implementation

Because PostgreSQL [4] is a most famous and widely

adopted open source DBMS in academic society, we

choose it as the database layer on each PE in our

implementation. In this system, data are stored as table

tuples indexed by the local sub-Fat-Btree indexes on

each independent PostgreSQL instances. As described

in Sec. 2.1, because the replicated intermediate index-

nodes have pointers to their child index-nodes in the

neighbor PE, the intermediate paths are formed from

the root index-node to every leafnodes located any

PEs. A tuple retrieval request may transfer between

PEs by following these intermediate paths.

In our implementation, we build the Fat-Btree index

as an independent process outside PostgreSQL. Fig. 2

shows the query process by using the Fat-Btree index

in our system. Details of the additional components in

our system are described below.

1. Backends: “Postmaster” creates “backend(BEs)”

to serve client requests. The remote BE retrieve data

that may be stored at remote PE by using tuples’ PID

and TID returned by “FBT Mgr.|”.

Copyright 2011 Information Processing Society of Japan.
All Rights Reserved.1-531

6B-2

情報処理学会第73回全国大会

Fig.2 System Architecture of our Parallel Database

2. Fat-Btree Manager: “FBT Mgr.” traverses local

Fat-Btrees by using the functions in “Index Access

Method Library”. It also provides remote connection

interface between Fat-Btree on different PEs

3. Index Access Method Library: This library

provides functions to traverse or update Fat-Btree

structure. Tuples’ID (TID) and their host PEs’ ID

(PID) that stored with their partitioning attribute in

Fat-Btree are used to fetch tuples at different PEs.

4. Buffer Manager: “Buf. Mgr.” buffers recently

accessed data by Fat-Btree retrieval, and search target

data in the local buffer before traversing Fat-Btree. It

also maintains buffered data consistency.

3. Experimental Study

To evaluate our system, we compare it with HBase [5],

a key-value store on top of Hadoop Distributed File

System (HDFS), under developed by an open source

project, named Hadoop [6]. It is famous for the more

efficient and scalable data accessing than that of

Hadoop’s HDFS based Map-Reduce system.

Although HBase is designed for superior unstructured

data retrieval in key-value pairs, it is still meaningful

to compare its scalability with our row-based

relational parallel DBMS, because both systems

should efficiently support point queries.

In this experiment, we deploy HBase-0.20.2 and our

Fat-Btree based parallel database systems on our

cluster system in Table 1. We adopt the default

settings of HBase and HDFS [5, 6], and use a dataset

that contains 10K tuples, each row with 4 KB of data

in a two columns schema, to evaluate the throughput

of both systems for random data access.

We focus on the small-file application, because both

Table 1 Experimental Environment

Blade server: Sun Fire B200x Blade Server
CPU: AMD Athlon XP-M 1800+ (1.53 GHz)
Memory: PC2100 DDR SDRAM 1 GB
Network: 1000BASE-T
Ethernet Switch: Catalyst 6505 (720GB/s backbone)
Hard Drives: TOSHIBA (30 GB, 5400 rpm, 2.5 inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.6.0 18 Server VM

Fig.3 Scalability in HBase and Fat-Btree DBMS

systems are not designed for storing huge-files. And

row sizes in previous HBase evaluation work, both in

simulation and real application datasets [7, 8], are in a

scale of several kilo-bytes of data

Fig. 3 shows that the key-value store HBase system

has better performance for a small number of nodes;

however, our Fat-Btree based parallel database

outperforms it when the number of PEs increases.

This result illustrates that our proposed Fat-Btree

index based parallel database owns even better

scalability than the hash-base key-value store HBase,

which is famous for its scalability in cloud systems.

4. Conclusion

In this paper, we presented the implementation of a

parallel database based on Fat-Btree index. We

evaluate its efficiency for small file I/O applications

by comparing with a famous scalable key-value store

HBase. Experimental results shows our Fat-Btree

based database provide high scalability for the range-

partitioned data and outperforms the key-value store

HBase due to this scalability.

5. Acknowledgements

Part of this research was sponsored by MEXT via

Grants-in-Aid #19024028 and #22240005.

References
[1]. David DeWitt and Jim Gray. Parallel database systems:

the future of high performance database systems.
Commun. ACM 35, 6 (June 1992), 85-98

[2]. H. Yokota, Y. Kanemasa, and J. Miyazaki, “Fat-Btree: An
update conscious parallel directory structure,” in
ICDE ’99. pp. 448-457, Mar 1999.

[3]. T. Yoshihara, D. Kobayashi, and H. Yokota, “Mark-opt: A
concurrency control protocol for parallel B-tree structures
to reduce the cost of SMOs,” IEICE Trans. Inf. Syst.,
vol.90, no.8, pp.1213-1224, 2007.

[4]. PostgreSQL. http://www.postgresql.org/, 2010.
[5]. HBase, http://hbase.apache.org/, 2010
[6]. Hadoop, http://hadoop.apache.org/, 2010.
[7]. Carstoiu, D.; Cernian, A.; Olteanu, A.; , "Hadoop Hbase-

0.20.2 performance evaluation," New Trends in
Information Science and Service Science (NISS), 2010 ,
4th International Conference on, pp.84-87, 2010

[8]. http://research.yahoo.com/files/HBaseAtRapleaf.pdf

Copyright 2011 Information Processing Society of Japan.
All Rights Reserved.1-532

情報処理学会第73回全国大会

