
Vol. 45 No. 8 IPSJ Journal Aug. 2004

Regular Paper

Timing Attacks against a Parallelized RSA Implementation

Yasuyuki Sakai† and Kouichi Sakurai††

We discuss timing attacks against RSA using the parallel modular exponentiation. We de-
scribe a parallel algorithm for the modular exponentiation y ≡ xd mod n. Then timing attacks
against the parallel implementation are demonstrated. When we have two processors, which
perform the modular exponentiation, an exponent d is scattered into two partial exponents
d(0) and d(1), where d(0) and d(1) are derived by bitwise AND operation from d such that
d(0) = d ∧ (0101 · · · 01)2 and d(1) = d ∧ (1010 · · · 10)2. Two partial modular exponentiations

y0 ≡ xd(0)
mod n and y1 ≡ xd(1)

mod n are performed in parallel using two processors. Then
we can obtain y by computing y ≡ y0y1 mod n. In general, the hamming weights of d(0)

and d(1) are smaller than that of d. Thus a fast computation of the modular exponentiation
y ≡ xd mod n can be achieved. We describe a timing attack against RSA with and without
the Chinese Remainder Theorem (CRT) using the parallel modular exponentiation. Both the
secret exponents dp = d mod p − 1 and dq = d mod q − 1, where n = pq, are scattered into
two partial exponents, respectively. We show that timing attacks are still applicable to that
case.

1. Introduction

Embedded systems are one of the major
application fields of cryptographic algorithms,
and may contain sensitive data, such as RSA
private key. Some implementations of cryp-
tographic algorithms often leak “side channel
information.” Side channel information in-
cludes power consumption, electromagnetic ra-
diation and timing to process. Side chan-
nel attacks, which use side channel informa-
tion leaked from real implementation of cryp-
tographic algorithms, were first introduced by
Kocher 6),7). Side channel attacks can be often
much more powerful than mathematical crypt-
analysis. Thus, many literatures on side chan-
nel cryptanalysis have been published 5),9)∼12).

In this paper, we focus on timing attacks
against RSA without Chinese Remainder Theo-
rem (CRT) using the parallel algorithm for the
modular exponentiation which will be described
in later sections. We also discuss timing at-
tacks against RSA with CRT. The running time
of a cryptographic device can constitute an in-
formation channel, providing the attacker with
valuable information on the secret parameters
involved. The timing attack is the attack to
determine a secret parameter from differences
between running times needed for various input
values. The timing attack was first introduced

† Information Technology R&D Center, Mitsubishi
Electric Corporation

†† Kyushu University

by Kocher at Crypto 96 7). He showed that a
careful statistical analysis could lead to the to-
tal recovery of secret parameters.

Dhem, et al. showed a successful timing at-
tack against the modular exponentiation with-
out CRT 2). Schindler, et al. proposed further
improved timing attacks 10). These attacks as-
sume that implementations do not use CRT
for the modular exponentiation. Schindler pre-
sented a powerful timing attack against an im-
plementation using CRT 9). The exponent of
the modular exponentiation can be a secret pa-
rameter in RSA-based cryptosystems. Thus
we must implement the modular exponentiation
very carefully.

As we mentioned before, our target of im-
plementation is the parallel modular exponen-
tiation algorithm. Garcia, et al. gave parallel
algorithms for elliptic scalar multiplication 4).
When we have plural processors, which can per-
form elliptic scalar multiplications, we scatter
a given scalar into several sub-scalars. Partial
scalar multiplication are carried out with sub-
scalar in parallel on plural processors. Then
scalar multiplication can be computed with the
outputs from the processors. Non-zero bits in
a scalar representation can be distributed into
plural processors. Thus this parallel algorithm
provides an efficient implementation. This al-
gorithm for the elliptic scalar multiplication can
be easily extended to the modular exponentia-

☆ This work was partially presented at Applied Cryp-
tography and Network Security (ACNS 2003).

1813

1814 IPSJ Journal Aug. 2004

tion.
In this paper, we consider vulnerability of

RSA implementation with and without CRT
using the parallel exponentiation. We describe
timing attacks against those implementations.
Our attack is an extension of Dhem’s method 2)

or Schindler’s method 9). When RSA-based
cryptosystems are implemented with CRT us-
ing the parallel exponentiation, the both se-
cret exponents dp = d mod p − 1 and dq =
d mod q − 1, where n = pq, are scattered into
two partial exponents, respectively. We show
that the timing attack is still applicable to that
case.

If plural processors for the modular exponen-
tiation can be mounted, the parallel exponenti-
ation discussed in this paper can achieve signif-
icant speed-up of RSA cryptosystems. Typical
environment for the parallel exponentiation can
be embedded systems such as network devices
and cryptographic boards.

2. Parallel Exponentiation

In this section we describe the parallel al-
gorithm for the modular exponentiation y ≡
xd mod n. Garcia, et al. 4) gave a parallel algo-
rithm for elliptic scalar multiplication, which is
the basis of the parallel exponentiation.

2.1 The Algorithm of Parallel Expo-
nentiation

Assume that a t-bit non negative inte-
ger d has a binary representation d =
(dt−1 · · · d1d0), di ∈ {0, 1}. We divide the bi-
nary representation of d in �t/b� blocks of
b bits each one and then we scatter d into
d(0), d(1), · · · , d(b−1). The binary representation
of the block d(i) is formed by �t/b� blocks of b
bits set to 0, except for the i-th bit, which has
the same value that the i-th bit of the corre-
sponding block of the binary representation of
d. Thus we can define d(i), for i = 0, · · · , b− 1,
as follows.

d(0) = d0 + db2b + d2b22b

+ · · ·+ d(� t
b �−1)b2

(� t
b �−1)b

d(1) = d12 + db+12b+1 + d2b+122b+1

+ · · ·+ d(� t
b �−1)b+12

(� t
b �−1)b+1

...
d(b−1) = db−12b−1+d2b−122b−1

+ d3b−123b−1+· · ·+db� t
b �−12

b� t
b �−1

That is

d(i) =
� t

b �−1∑
j=0

djb+i2jb+i

for i = 0, 1, · · · , b − 1, where we consider some
padding bits bl = 0 for t− 1 < l < b�t/b� − 1.

Clearly we have

d = d(0) + d(1) + · · ·+ d(b−1).

Thus we can compute the modular exponentia-
tion y ≡ xd mod n by the following equation.

xd mod n =
(
(xd(0)

mod n)(xd(1)
mod n)

· · · (xd(b−1)
mod n)

)
mod n

The exponent set {d(0), d(1), · · · , d(b−1)} can be
easily obtained from d by bitwise AND opera-
tion with the appropriate mask.

We show the algorithm for the parallel mod-
ular exponentiation in Algorithm 1.

Algorithm 1 Parallel modular exponentia-
tion

Input x, n, d
Output y ≡ xd mod n

1. Bits scattering:

Compute the set
{
d(0),d(1),· · ·,d(b−1)

}

2. Parallel computation:
Using b processors, compute in parallel

the exponentiations

y ≡
(
t(xd(0)

mod n)(xd(1)
mod n)

· · · (xd(b−1)
mod n)

)
mod n

3. Return y

Notice that in the case that block-length b
equals to one, Algorithm 1 is equivalent to the
simple modular exponentiation.

2.2 Computational Complexity
Let us discuss the computational complex-

ity of the parallel modular exponentiation al-
gorithm 1. We use the words “computational
complexity” in the sense of the running time
of the total (not partial) modular exponentia-
tion. The running time can be evaluated by
the number of modular multiplication M and
modular squaring S required. Assume d has the
bitlength t and has the hamming weight H(d).
Then we have the following lemma 4).

Lemma 1 Assume each individual expo-
nentiation is performed by the binary method.
The parallel exponentiation Algorithm 1 has the

Vol. 45 No. 8 Timing Attacks against a Parallelized RSA Implementation 1815

computational complexity, on the best case,
(t− 1)S + (�H(d)/b�+ b− 1)M

and, on the worst case,
(t− 1)S + (H(d)− 1)M

where M and S denote modular multiplication
and modular squaring, respectively.

The computational complexity of the parallel
exponentiation can be evaluated by the individ-
ual exponentiation which has the most expen-
sive complexity. Since the most significant bit
dt−1 is 1 by assumption, one of the individual
exponentiation has to perform t − 1 modular
squarings.

On the best case, all the bits set to one in the
binary representation of d are equally scattered
among the exponent set {d(i)}, so the computa-
tional cost is perfectly balanced on all the indi-
vidual exponentiations. The worst case implies
that there exists some index i, for 0 ≤ i ≤ b−1,
such that all of bit “1” are mapped to d(i) and
then xd(i)

mod n = xd mod n. In such the
case, the computational cost is the same as the
traditional binary exponentiation.

The computational cost for computing the set
{d(0), d(1), · · · , d(b−1)} from d can be ignored,
because we can obtain the set by simple bitwise
AND operations.

Remark 1 To achieve the computationally
best case, we can implement a scattering func-
tion, rather than the simple AND operation, so
that all the bits set to one are equally scattered
among the exponent set.

3. Timing Attacks against RSA

In this section we give brief description of
timing attacks against RSA, which were pre-
sented by Dhem, et al. 2) and by Schindler 9).
Those methods are attacks against RSA with-
out CRT and with CRT, respectively.

3.1 Modular Exponentiation
Before we move on to timing attacks, let’s

have a brief description of the modular expo-
nentiation. In this paper we will consider the
binary representation for a given exponent and
the left-to-right binary (square-and-multiply)
method for the modular exponentiation. The
left-to-right binary method can be described as
Algorithm 2.

Algorithm 2 Left-to-right binary method of
the modular exponentiation

Input x, n, d, where d = (dt−1dt−2 · · · d0),
di ∈ {0, 1} for 0 ≤ i ≤ t− 2 and dt−1 = 1

Output y ≡ xd mod n

1. y ← x
2. for i from t− 2 downto 0

y ← y2 mod n
if di = 1 then y ← y · x mod n

endfor
3. return y

Timing attacks will be demonstrated on an
implementation with the following algorithms.
• The modular exponentiation is performed

by Algorithm 2.
• Modular multiplication and squaring are

performed with Montgomery’s method 8).
In the Montgomery’s method, when the inter-
mediate value during the computation becomes
larger than the modulus n, we have to perform
“extra reduction.”

The goal for an attacker is to recover the ex-
ponent d, which can be a secret parameter of
the decryption and the signature generation in
RSA-based cryptosystems. The attacker deter-
mines a secret parameter d from differences be-
tween running times needed for various input
values x.

3.2 Model of the Attacker
We assume that the attacker can be modeled

as the following.
• The attacker has access to a device which

performs the modular exponentiation with
a secret exponent.

• The attacker can measure the running time
of the modular exponentiation with various
input x.

• The attacker knows the modulus n.
• The attacker has the knowledge of the im-

plementation.
The attack algorithm will be developed with

the assumption that the running times are re-
producible, i.e., for fixed d and n the running
time of the modular exponentiation xd mod n
only depends on the base x but not on other
influences.

3.3 Timing Attack against RSA with-
out CRT

Dhem, et al. proposed a practical timing at-
tack against an implementation of the modular
exponentiation without CRT 2). In this sub-
section we briefly explain their strategy. See
Ref. 2) for details.

Assume again that a given exponent d has bi-
nary representation d = (dt−1 · · · d1d0), where
d ∈ {0, 1}, dt−1 = 1. Their attack recovers the
exponent bit by bit from dt−2 to the least sig-

1816 IPSJ Journal Aug. 2004

nificant bit d0. Notice that the MSB dt−1 is
always 1. We start by attacking dt−2. When
dt−2 = 1, at Step 2 of Algorithm 2, modular
multiplication with Montgomery’s method has
to be performed. For some input x, intermedi-
ate value can be larger than the modulus n, and
then the extra reduction has to be performed.
For the other input x, the extra reduction is
not required. Let X be the set of inputs. We
can define two subsets of inputs X1, X2 ⊂ X as
follows.

X1 = {x ∈ X|x · x2 has to be performed
with extra reduction}

X2 = {x ∈ X|x · x2 can be performed
without extra reduction}

If the value of dt−2 is 1, then we can expect
that the running times for the inputs x ∈ X1 to
be slightly higher than the corresponding times
for x ∈ X2. On the other hand, if the actual
value of dt−2 is 0, then the modular multiplica-
tion in Step 2 will not be performed. In this
case, for any input x, there is no reason that
the extra reduction is induced. Therefore, the
separation in two subsets should look random,
and we should not observe any significant dif-
ferences in the running time.

When the attacker wants to guess the bit
dt−2, he should take the strategy below.

Algorithm 3 Guessing dt−2

1. Generating two subsets X1, X2:
For various inputs x, the attacker does the
following simulation with the knowledge of
the implementation. At modular multipli-
cation phase in Step 2 of Algorithm 2 with
i = t − 2, if the extra reduction has to be
performed, x should be classified into X1.
Else if the extra reduction is not required,
x should be classified into X2.
2. Measuring the running times:
Using the device, on which a modular ex-
ponentiation is implemented, the attacker
measures the running time of the modular
exponentiation for x ∈ X1 and x ∈ X2.
3. Guessing dt−2:
The attacker does a statistical analysis on
the difference of the running times between
x ∈ X1 and x ∈ X2. Then he guesses
dt−2 = 0 or 1.

Based on the time measurement, the attacker
has to decide that the two subsets X1 and X2

are significantly different or not. Some statis-
tical analysis can be of help. Possible use for
statistics could be the mean value and χ2 test.
The attacker first guesses the bit dt−2 based on
Algorithm 3. The same strategy can be applied
continuously bit by bit from MSB to LSB. The
attacker may recover the total secret exponent
d.

There is a more subtle way to take advantage
of our knowledge of Montgomery’s method: in-
stead of the multiplication phase, we could turn
ourselves to the square phase at Step 2 of Algo-
rithm 2 2). The same strategy as multiplication
phase described before can be applicable.

3.4 Timing Attack against RSA with
CRT

Schindler proposed an efficient timing attack
against RSA with the Chinese Remainder The-
orem (CRT) 9). Moreover Schindler, et al. pro-
posed an improved error detection/correction
strategies 10). In this subsection we give a brief
description of the attack described in Ref. 9).
The reader is referred to Ref. 9) for details.

The same model of the attack as defined in
Section 3.2 can be applicable to the CRT case.
Of course the attacker knows the modulus n,
but does not know the prime factors p and q.

Let n = pq be an RSA modulus, where p and
q are distinct two primes and have the same
bitlength. A modular exponentiation with CRT
is performed as follows.
(1) yp ← xdp mod p
(2) yq ← xdq mod q
(3) Re-combination
where, dp = d mod p− 1 and dq = d mod q− 1.

In this paper, we assume that RSA computa-
tion is performed using CRT with Montgomery
multiplication 8). The formulation of the attack
make the following assumptions concerning the
implementation.
• The modular exponentiation is carried out

with simple binary method.
• Both Montgomery multiplications mod p

and mod q use the same Montgomery con-
stant R.

• Montgomery multiplications require time c
if no extra reduction is needed and c+ cER

otherwise.
Remark 2 Schindler described a timing at-

tack against RSA with CRT using advanced
exponentiation algorithms such as the ary
method 9).

We define the mapping Z → Zp by
MONT(u) := uR−1 mod p. Schindler stated the

Vol. 45 No. 8 Timing Attacks against a Parallelized RSA Implementation 1817

following lemma 9).
Lemma 2 (Schindler) Let B denote a

random variable being uniformly distributed on
Zp.

pr : = Prob
(
extra reduction in MONT(B2)

)

=
p

3R
and, unless the ratio R/gcd(R, (u mod p)) is
extremely small, also

pr(u) : = Prob (extra reduction in
MONT(uB))

=
u(mod p)

2R

for u ∈ Zn.
Remark 3 Lemma 2 is not exact in a

mathematical sense 9). The proof of Lemma 2
uses some heuristic arguments. The word “ex-
tremely” stated in Lemma 2 is an ambiguous
expression. However, results from practical ex-
periments by Schindler (thousands of pseudo-
random factors and various moduli) match per-
fectly with Lemma 2. The details can be found
in Ref. 9).

For base uR−1 mod n hundreds of Mont-
gomery multiplication have to be performed
with factors u(mod p) and u(mod q). Theo-
rem 2 says that the probability for an extra
reduction within any of these multiplication is
linear in the respective factor. Differences be-
tween running times required for two modular
exponentiations result from different numbers
of extra reductions within the respective mod-
ular multiplications and squarings. Moreover
we can see from Lemma 2 that the expected
number of extra reductions is discontinuous at
each integer multiple of p or q.

Let T (u) denote the running time of the
modular exponentiation (uR−1)d mod n. For
u1 < u2 with u2− u1 	 p, q the time difference
T (u2)− T (u1) should reveal whether the inter-
val {u1+1, · · · , u2} contains an integer multiple
of at least one prime factor p, q or not. In the
first case T (u1) should be significantly larger
than T (u2) while in the second case both run-
ning times should approximately be equal.

Let 0 < u1 < u2 < n with u2 − u1 < p, q.
The following three cases are possible. Case
A: {u1 + 1, · · · , u2} does not contain a multiple
of p or q. Case B: {u1 + 1, · · · , u2} contains a
multiple of p or q but not of both. Case C:
{u1 + 1, · · · , u2} contains a multiple of both p
or q.

The running time for the input uR−1 mod n,
denoted by T (u), is interpreted as a “realiza-
tion” of a random variable Xu

9). The expected
difference Xu2−Xu1 depends essentially on the
fact whether Case A, Case B or Case C is true:

E(Xu2−Xu1) ≈

0 in Case A
− cER

8

√
n

R in Case B

− cER

8
2
√

n
R in Case C

See Ref. 9) for the detailed derivation of the
above.

Let β :=
√

n/R2. We assume p/R ≈ β and
q/R ≈ β. The algorithm 4 below can be ap-
plicable to the RSA implementation with CRT
using Montgomery multiplication 9).

Algorithm 4 Timing attack against RSA
with CRT using Montgomery multiplication
(basic scheme)

Step 1. Choose an integer u with βR ≤
u < n and set (e.g.) ∆← 2−6R.
u2 ← u
u1 ← u2 −∆
while

(
T (u2)−T (u1)>−cER

log2(n)β

16

)
do:

u2 ← u1

u1 ← u1 −∆
end of while
Step 2. while(u2 − u1 > 1000) do:

u3 ← �(u1 + u2)/2�
if

(
T (u2)− T (u3) > −cER

log2(n)β

16

)

then u2 ← u3

else u1 ← u3

end of while
Step 3. Compute gcd(u, n) for each u ∈
{u1 + 1, · · · , u2}.

The Algorithm 4 has three steps. In Step 1
an interval set {u1 + 1, · · · , u2} has to be found
which contains an integer multiple of p or q. In
Step 2 a sequence of decreased interval subsets
have to be determined, each of which contain
an integer multiple of p or q. More precisely,
in each step of Step 2 it is checked whether
the upper subset {u3 + 1, · · · , u2} with u3 ←
�(u1+u2)/2� contains such a multiple or not. In
Step 3, when the subset {u1+1, · · · , u2} is suf-
ficiently small, the attacker computes gcd(u, n)
for all u contained in this subset. If all deci-
sions within Step 1 and 2 were correct, then
the gcd computations will deliver the factoriza-
tion of RSA modulus n.

Efficient error detection/correction strate-

1818 IPSJ Journal Aug. 2004

gies, which should be adopted to the attack al-
gorithm 4, are also discussed in Refs. 9), 10).

4. Timing Attacks against RSA Using
Parallel Exponentiation

In this section we propose timing attacks
against RSA with and without CRT using the
parallel Algorithm 1 which has been described
in Section 2.

4.1 Without CRT
We first consider a timing attack against the

parallel algorithm without CRT. Two paral-
lelized exponentiations will be discussed in this
subsection. In the case of two parallelized im-
plementation without CRT, the running time
should be faster compared to traditional imple-
mentations.

4.1.1 The Difficulty
The total running time of the parallel al-

gorithm for the modular exponentiation de-
pends on the most low-speed partial exponen-
tiation among xd(0)

mod n, xd(1)
mod n, · · · ,

xd(b−1)
mod n. This property causes diffi-

culty such that the running time of a crypto-
graphic device could not constitute an informa-
tion channel on all bits of d.

Let’s consider the case of two parallelism. In
that case two partial exponents d(0) and d(1)

should be derived from the given exponent d as
below.

d(0) = d ∧ (0101 · · · 01)2
d(1) = d ∧ (1010 · · · 10)2

where ∧ denotes bitwise AND operation. The
computational complexity of the partial mod-
ular exponentiations using left-to-right method
can be evaluated as

(ti − 1)S + (H(d(i))− 1)M (1)

for i = 0, 1, where ti denotes the bitlength of
d(i). Note that d(1) always has bitlength t. The
hamming weight H(d(i)) of the partial expo-
nents d(i) has significant effect on the running
time of the total modular exponentiation.

In the next subsection we will discuss this
effect.

4.1.2 The Case that Hamming Weight
of d(0) and d(1) are Almost the
Same

We can state the following theorem.
Theorem 1 Assume that the running time

of the modular exponentiation can be evaluated
by the number of modular multiplication and

squaring required, that is, other influences can
be ignored. Let d(0) and d(1) are derived from d
by masking as before. If the following equation
holds, the running time of the two partial mod-
ular equations xd(0)

mod n and xd(1)
mod n can

be the same, except the influence of the extra
reduction.

H(d(0))− “the run-length of the
leading bit 0 in d(0)”− 1
= H(d(1))− 1 (2)

Proof. Notice that the MSB of d(1) is always 1.
The evaluation (2) can be easily derived from
(1). ��

Following is a small example.
d = 1 1 1 1 · · · 1 1 0 1

d(0) = 0 1 0 1 · · · 0 1 0 1
d(1) = 1 0 1 0 · · · 1 0 0 0

In this case, the running time of xd(0)
mod n

and xd(1)
mod n can be the same, except the

influence of the extra reduction. For randomly
chosen input x, the running time of the total
exponentiation xd mod n could be an informa-
tion on d(0) and d(1).

We experimentally confirmed that how of-
ten Eq. (2) holds for randomly chosen expo-
nent d. We randomly generated d by SHA-1
based pseudo-random number generator speci-
fied in FIPS 186-2 3). The number of d gener-
ated was 1,000,000. As the results, when d has
the bitlength of 128, 256, 512, 768 and 1024, the
probability that Eq. (2) holds are 6.4%, 4.1%,
2.0%, 1.0%, 0.5%, respectively. The probabil-
ity decrease for larger d, but does have non-
negligible percentages. With these probability
above, the secret exponent d can be perfectly
recovered by our attack. Experiments of the
attack will be shown in the later section.

We should note that computational efficiency
(in the sense of the running time of the ex-
ponentiation) can be the best case if all the
bits set to one in the binary representation of d
are equally scattered, i.e., Eq. (2) holds, among
the exponent set d(0) and d(1). Therefore, the
masking function to generate d(0) and d(1) may
be chosen so that Eq. (2) holds, rather than the
simple AND operation. In such the case our at-
tack may perfectly recover the secret exponent
d.

4.1.3 The Case that the Difference be-
tween Hamming Weight of d(0)

and d(1) is Large
When H(d(0)) is significantly larger than

Vol. 45 No. 8 Timing Attacks against a Parallelized RSA Implementation 1819

H(d(1)), the running time of the total modu-
lar exponentiation xd mod n can be regarded
as that of xd(0)

mod n. Therefore, in this case
any information on d(1) can not be leaked in
the running time of the total modular exponen-
tiation. Then the attacker has little chance to
recover d(0) from the running time.

We have “partial key exposure attacks” which
is a class of attacks to answer the question: how
many bits of d does an adversary require in or-
der to reconstruct all of d?. Boneh, et al. pre-
sented such the attacks 1). For instance, when
the public exponent e < 2(n/4)−3, the quarter
of the least significant bits of d suffice to re-
construct the entire d. However, unfortunately,
Boneh et al’s attacks can not be applicable to
our case, because recovered bits by the tim-
ing attack are not consecutive. Constructing
a mathematical attack such as the partial key
exposure attacks against our case should be a
future work.

4.1.4 The Attack against the Parallel
Implementation without CRT

In this subsection we state an algorithm for
timing attack against our parallel algorithm of
the modular exponentiation Algorithm 1. We
consider the two parallelized implementation.

Similar to the attack against the traditional
modular exponentiation, we define the model of
the attacker as follows.
• The attacker has access to a device which

performs the modular exponentiation with
a secret exponent.

• The attacker can measure the running time
of the total (not partial) modular exponen-
tiation with various input x.

• The attacker knows the modulus n.
• The attacker has the knowledge of the im-

plementation such that:
– The modular exponentiation is per-

formed by the two parallelized algo-
rithm (i.e., b = 2).

– The each partial modular exponenti-
ation is performed by left-to-right bi-
nary method.

– The partial exponentiations are per-
formed without CRT.

– Modular multiplication and modular
squaring are performed with Mont-
gomery’s method.

We assume again that the MSB dt−1 of the
secret exponent d is always 1. We also assume
that the MSB of d(1) is always 1 by appropriate

masking. The strategy for guessing di is quite
similar to Algorithm 3. Algorithm 5 shows the
strategy to guess the second significant bit dt−2

of the given exponent d.

Algorithm 5 Guessing dt−2 in the two par-
allelized implementation

1. Generating two subsets X1, X2:
For various inputs x, the attacker does the
following simulation with the knowledge of
the implementation. At modular multipli-
cation phase in Algorithm 1 with i = t− 2,
if the extra reduction has to be performed,
x should be classified into X1. Else if the
extra reduction is not required, x should be
classified into X2.
2. Measuring the running times:
Using the device, on which the modular ex-
ponentiation is implemented, the attacker
measures the running time of the modular
exponentiation for x ∈ X1 and x ∈ X2.
3. Guessing dt−2:
The attacker does a statistical analysis on
the difference of the running times between
x ∈ X1 and x ∈ X2. Then he guesses
dt−2 = 0 or 1.

The attacker first guesses the bit dt−2 based
on Algorithm 5. The same strategy can be ap-
plied continuously bit by bit from MSB to LSB.
The attacker may recover the total secret expo-
nent d.

4.1.5 Experiments
In this subsection we show an experiment on

the attack to recover the secret exponent d. As
in the previous section, we will consider the
two parallelized implementation of our Algo-
rithm 1 (i.e., b = 2). We made a software sim-
ulation on Pentium IV-based PC, running at
1.8 GHz. Programs were written in C-language
with VC++ 6.0 compiler.

The experiments we have carried out is a sim-
ulation. Even if the PC does not have an archi-
tecture which can execute the exponentiation
in parallel, we can simulate our attacks as the
following. We first measure the running times
of two partial exponentiations separately. We
guess that the attacker can observe the running
time of the slower one, which is the running
time observed from real parallelized implemen-
tations. Then we apply the timing attack de-
scribed before.

In this environment, when the modulus n and
the exponent d has the size of 128 bits, the mean

1820 IPSJ Journal Aug. 2004

value of clock cycles needed to perform extra
reduction was several hundreds. We used the
mean value for statistical analysis as follows.
• For guessing di, if the difference of the

mean value of the running time between in-
put x ∈ X1 and input x ∈ X2 is larger than
several hundreds clock cycles, then the at-
tacker should guess di = 1.

• If the difference is smaller than several hun-
dreds clock cycles, then the attacker should
guess di = 0.

In the case that both n and d have 128 bits
size, when we took 100,000 time measurements,
the following results were obtained by our ex-
periment.
• When the relation between two partial ex-

ponents d(0) and d(1) meets Eq. (2), we suc-
cessfully recovered the entire exponent d.

• When the relation between two partial ex-
ponents d(0) and d(1) does not meet Eq. (2),
one of the partial exponents d(0) or d(1) can
be recovered.

4.1.6 More Parallelism
When we have more processors which per-

form the modular exponentiation, more speed-
up can be achieved by the parallel implemen-
tation. Assume we have four processors, given
exponent d should be scattered into four partial
exponents d(0), d(1), d(2) and d(3). In such the
case, our timing attack may be still applicable,
but the probability analogous Eq. (2) holds will
be much lower. Therefore higher parallelism
can achieve not only speed-up but also security
against our timing attack.

4.2 With CRT
Next we will move on to the case that RSA is

implemented with the parallel exponentiation
with CRT.

Assume again that we have two proces-
sors which perform the modular exponentia-
tion in parallel. In such the case we can com-
pute the modular exponentiation with CRT
in parallel. Both x(d mod p−1) mod p and
x(d mod q−1) mod q can be computed in paral-
lel using two processors, respectively ☆. We will
☆ With two processors, we can also perform

x(d mod p−1) mod p and x(d mod q−1) mod q in
parallel. This computation may be faster than the
computation described in this subsection. However,
whether an analogy to Shindler’s chosen input at-
tack can be constructed is an open problem and
remains as a future work. The discussion in this
subsection could lead to attacks against four paral-
lelism, which is an efficient setting for parallelized
CRT implementation.

make same assumptions, stated in the previous
section, on the attacker. A different situation
from the traditional non-parallel implementa-
tion is that four modular exponentiations are
performed with two processors in parallel.

Let dp = d mod p−1 and dq = d mod q−1. In
our parallel algorithm dp and dq are scattered
into:

d
(0)
p = dp ∧ (0101 · · · 01)2

d
(1)
p = dp ∧ (1010 · · · 10)2

d
(0)
q = dq ∧ (0101 · · · 01)2

d
(1)
q = dq ∧ (1010 · · · 10)2

(3)

We have four cases of the running time of the
modular exponentiation:
• T (u) =

T iming(ud
(0)
p mod p) + T iming(ud

(0)
q mod q)

if H(d
(0)
p) > H(d

(1)
p) and H(d

(0)
q) > H(d

(1)
q)

• T (u) =

T iming(ud
(1)
p mod p) + T iming(ud

(0)
q mod q)

if H(d
(1)
p) > H(d

(0)
p) and H(d

(0)
q) > H(d

(1)
q)

• T (u) =

T iming(ud
(0)
p mod p) + T iming(ud

(1)
q mod q)

if H(d
(0)
p) > H(d

(1)
p) and H(d

(1)
q) > H(d

(0)
q)

• T (u) =

T iming(ud
(1)
p mod p) + T iming(ud

(1)
q mod q)

if H(d
(1)
p) > H(d

(0)
p) and H(d

(1)
q) > H(d

(0)
q)

where H(u) denotes the hamming weight of
u.

The attacker can observe the running timing
T (u). However he does not know which case has
occurred. In the computationally best case, all
the bits set to one in the binary representation
of dp and dq are equally scattered among the ex-
ponent set d

(i)
p and d

(i)
q for i = 0, 1, so the com-

putational cost is perfectly balanced on two in-
dividual exponentiations. In such the case, for
the timing attack, we should make slight mod-
ification to Schindler’s attack (Algorithm 4).

The expected hamming weight of the expo-
nents d

(0)
p (or d

(1)
p) and d

(0)
q (or d

(1)
q) should be

0.25 log2p and 0.25 log2q, respectively on aver-
age. Then we can modify the Algorithm 4 for
attacking against the parallel implementation.

We have estimated the probability such that
Eq. (2) holds in the case of without CRT. An
analogous theorem to theorem 1 can be stated,
but probability such that the evaluation (an
analog of Eq. (2) in Theorem 1) holds may be
lower. However, as we said previously, a bal-
anced scattering function could be implemented
on real devices for efficient implementation.

When the computational cost is not balanced,

Vol. 45 No. 8 Timing Attacks against a Parallelized RSA Implementation 1821

i.e., H(d(0)
p) and H(d(1)

p) are significantly dif-
ferent or H(d(0)

q) and H(d(1)
q) are significantly

different, any information on d
(1)
p and d

(1)
q can

not be leaked (assume that H(d(0)
p) >> H(d(1)

p)
and H(d(0)

q) >> H(d(1)
q)) in the running time

of the total modular exponentiation. Then the
attacker has little chance to recover the entire
d from the running time as we said previously.
Some mathematical attacks such as partial key
exposure attacks could be a further work. Note
that the revealed exponent by our attack can
be d mod p−1 or d mod q−1. Therefore, there
will be a different situation than the setting of
without CRT.

4.2.1 The Scenario for Timing Attack
At the Step 1 and 2 of Algorithm 4, the

attacker has to decide that an integer multi-
ple of p or q is contained in the interval set
{u1 + 1, · · · , u2} or not. The criterion of the
decision was that whether the timing differ-
ence between T (u2) and T (u1) is greater than

−cER
log2(n)β

16
or not.

Remark 4 We should notice that the value

−cER
log2(n)β

16
is approximately equal to

0.5 [E (Xu2 −Xu1 | Case A is true)
+E (Xu2 −Xu1 | Case B is true)]

The above criterion can be obtained from
Lemma 2 and the assumption that the ham-
ming weight of the secret exponents dp and dq

have 0.5 log2 p and 0.5 log2 q, respectively.
In our case, the parallel exponentiation, the

expected hamming weight of the four secret ex-
ponents d

(0)
p , d

(1)
p , d

(0)
q and d

(1)
q strongly depend

on the masking function. If we apply the simple
bitwise AND operation as Eq. (3), the four ham-
ming weights can be expected to 0.25 log2 p for
d
(i)
p and 0.25 log2 q for d

(i)
q , respectively. Thus

a timing attack against that implementation is
described by a very slight modification of Algo-
rithm 4.

Algorithm 6 Timing attack against RSA
with CRT using Montgomery multiplication
and the parallel exponentiation

Step 1. Choose an integer u with βR ≤
u < n and set (e.g.) ∆← 2−6R.
u2 ← u
u1 ← u2 −∆
while

(
T (u2)−T (u1)>−cER

log2(n)β

32

)
do:

u2 ← u1

u1 ← u1 −∆
end of while
Step 2. while(u2 − u1 > 1000) do:

u3 ← �(u1 + u2)/2�
if

(
T (u2)− T (u3) > −cER

log2(n)β

32

)

then u2 ← u3

else u1 ← u3

end of while
Step 3. Compute gcd(u, n) for each u ∈
{u1 + 1, · · · , u2}.

We performed experiments of the timing at-
tack based on the Algorithm 6 above. In the
case that modulus n has 1,024-bit, our experi-
ments showed that the attacker can reveal the
secret prime factors p and q by about 1,000 tim-
ing measurements on average.

4.2.2 More Parallelism
When we have more processors which per-

form the modular exponentiation, we can have
the same arguments stated in Subsection 4.1.6.
In this case, d is scattered into d

(0)
p , d

(1)
p ,

d
(0)
q and d

(1)
q . Then four partial exponentia-

tions xd(0)
p mod p, xd(1)

p mod p, xd(0)
q mod q and

xd(1)
q mod q can be computed in parallel. In such

the case, our timing attack may be still applica-
ble, but the probability analogous Eq. (2) holds
will be much lower. Therefore higher paral-
lelism can achieve not only speed-up but also
security against our timing attack.

4.2.3 Error Correction and Detection
Strategies

In Refs. 9), 10) error detection and correction
strategies are described. At any instant within
Step 2 of Algorithm 4 the attacker can verify
whether his decisions were correct so far, i.e.,
whether the actual interval {u1 + 1, · · · , u2} re-
ally contains an integer multiple of p or q. He
just applies the decision rule to a time differ-
ence for neighboring values of u1 and u2. The
attacker should examine the difference T (u2 −
1)−T (u1 + 1). If this examination leads to the
same decision, it is confirmed with high prob-
ability that the interval {u1 + 1, · · · , u2} truly
contains a multiple of p or q.

The same strategy will be reasonable to the
attack against implementations with the paral-
lel exponentiation. However, as mentioned in
Ref. 10), this strategy will lead the additional
time measurements to be carried out.

5. Countermeasures

The timing attack described in this paper

1822 IPSJ Journal Aug. 2004

is against implementations with Montgomery
multiplication. Thus the obvious countermea-
sures, such as a dummy operation within each
Montgomery multiplication, will be applicable.
A blinding the secret exponent d could also be
a countermeasure.

References

1) Boneh, B., Durfee, G. and Frankel, Y.: An at-
tack on RSA given a small fraction of the pri-
vate key bits, Advances in Cryptology — ASI-
ACRYPT’98, LNCS 1514, pp.25–34, Springer-
Verlag (1998).

2) Dhem, J.F., Koeune, F., Leroux, P.A., Mestré,
P. and Quisquater, J.J.: A practical imple-
mentation of the timing attack, CARDIS
1998, LNCS 1820, pp.175–190, Springer-Verlag
(1998).

3) FIPS PUB 186-2: Digital Signature Standard
(DSS), available at http://csrc.nist.gov/

CryptoToolkit/tkrng.html

4) Garcia, J.M.G. and Garcia, R.M.: Parallel al-
gorithm for multiplication on elliptic curves,
Cryptology ePrint Archive, Report 2002/179,
http://eprint.iacr.org (2002).

5) Hachez, G. and Quisquater, J.J.: Montgomery
exponentiation with no final subtractions: Im-
proved Results, Cryptographic Hardware and
Embedded Systems — CHES 2000, LNCS 1965,
pp.293–301, Springer-Verlag (2000).

6) Kocher, P.C., Jaffe, J. and Job, B.: Differ-
ential power analysis, Advances in Cryptol-
ogy — CRYPTO’99, LNCS 1666, pp.388–397,
Springer-Verlag (1999).

7) Kocher, P.C.: Timing attacks on imple-
mentations of Diffie-Hellman, RSA, DSS,
and other systems, Advances in Cryptology
— CRYPTO’96, LNCS 1109, pp.104–113,
Springer-Verlag (1996).

8) Montgomery, P.L.: Modular multiplication
without trial division, Math. Comp., Vol.44,
No.170, pp.519–521 (1885).

9) Schindler, W.: A timing attack against RSA
with the Chinese Remainder Theorem, Cryp-
tographic Hardware and Embedded Systems —
CHES 2000, LNCS 1965, pp.109–124, Springer-
Verlag (2000).

10) Schindler, W., Koeune, F. and Quisquater,
J.J.: Improving divide and conquer attacks
against cryptosystems by better error detection

correction strategies, Proc. 8th IMA Interna-
tional Conference on Cryptography and Coding,
pp.245–267 (2001).

11) Walter, C.D.: Montgomery exponentiation
needs no final subtractions, Electric Letters,
Vol.35, No.21, pp.1831–1832 (1999).

12) Walter, C.D. and Thompson, S.: Distinguish-
ing exponent digits by observing modular sub-
tractions, RSA Conference 2001, LNCS 2020,
pp.192–207, Springer-Verlag (2001).

(Received November 28, 2003)
(Accepted June 8, 2004)

Yasuyuki Sakai received the
B.S. and M.S. degree from
Waseda University in 1990 and
1992, respectively. He is a re-
searcher of Information Technol-
ogy R&D Center at Mitsubishi
Electric Corporation. His cur-

rent research interests are in cryptography and
information security. He is a member of the
Institute of Electronics, Information and Com-
munication Engineers.

Kouichi Sakurai received
the B.S. degree in mathematics
from Faculty of Science, Kyushu
University and the M.S. degree
in applied science from Faculty
of Engineering, Kyushu Univer-
sity in 1986 and 1988, respec-

tively. He had been engaged in the research and
development on cryptography and information
security at Computer & Information Systems
Laboratory at Mitsubishi Electric Corporation
from 1988 to 1994. He received the Dr. de-
gree in engineering from Faculty of Engineer-
ing, Kyushu University in 1993. Since 1994 he
has been working for Department of Computer
Science of Kyushu University as an associate
professor, and now he is a full professor. His
current research interests are in cryptography
and information security. Dr. Sakurai is a mem-
ber of the Institute of Electronics, Information
and Communication Engineers, the Mathemat-
ical Society of Japan, ACM and the Interna-
tional Association for Cryptologic Research.

