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An Easy-Hard-Easy Cost Profile in Distributed Constraint Satisfaction

Katsutoshi Hirayama,† Makoto Yokoo†† and Katia Sycara†††

We first present an algorithm called multi-ABT as a baseline algorithm for solving dis-
tributed constraint satisfaction problems where each agent has multiple local variables. Then,
we show a cost profile of multi-ABT for various numbers of intra-agent constraints (constraints
defined over variables of one agent) and inter-agent constraints (constraints defined over vari-
ables of multiple agents) in a distributed graph-coloring problem. This cost profile enabled
us to make the following observations: (1) the satisfiability thresholds are identified in the
narrow region on the x-y plane (where the x-axis is the number of intra-agent constraints
and the y-axis is the number of inter-agent constraints) in which the sum of intra- and inter-
agent constraints is constant, and problem instances in the region (called the crossover belt)
are likely to be expensive in terms of the median cost; (2) among problem instances on the
crossover belt, those with a smaller number of intra-agent constraints and a larger number
of inter-agent constraints may be more expensive; and (3) for a fixed total number of vari-
ables, problem instances on the crossover belt may be more expensive as the number of agents
increases or the number of variables per agent decreases. Our further experiments suggest
that these observations can be generalized to cases where different algorithms are applied or
different sets of parameters of the problem are used.

1. Introduction

Many problems in artificial intelligence can
be formalized as constraint satisfaction prob-
lems (CSPs). A CSP instance consists of vari-
ables with finite and discrete domains and con-
straints over subsets of variables. A solution to
a CSP instance is a set of values for the vari-
ables that satisfies all of the constraints.

CSPs are typical NP-complete problems, and
thus it has been said that no algorithm has a
worst-case search cost that is not exponential
in relation to the size of the problem. How-
ever, recent studies have observed that for cer-
tain CSPs, such as the propositional satisfi-
ability problem, the graph-coloring problem,
and the binary CSP, an order parameter ex-
ists on which the median computational costs
of algorithms show an easy-hard-easy cost pro-
file 2),11),15). The search cost grows very rapidly
when the problem size increases in the hard
region on the parameter, but relatively slowly
in the other regions on it 3). In other words,
really computationally expensive problem in-
stances are concentrated on some specific region
of the parameter.

For example, in the graph-coloring problem,
an instance of which consists of a graph, a spec-
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ified number of available colors, and the re-
quirement to find a color for each node of the
graph such that no adjacent nodes have the
same color, such an order parameter is the ratio
of the number of links to the number of nodes.
For randomly generated instances of the graph
3-coloring problem, it has been shown that the
peak of the median computational cost is lo-
cated at 2.3, i.e., where the number of links is
2.3 times as many as the number of nodes 8).

Distributed CSPs (DisCSPs) 17),18) are CSPs
where variables and constraints are distributed
among multiple agents, each of which tries to
solve its own problem. Various application
problems in multi-agent systems that are con-
cerned with finding a consistent combination
of agent actions (e.g., the distributed resource
allocation problem 4), the distributed schedul-
ing problem 16), the distributed interpretation
task 10), and the multi-agent truth maintenance
task 9)) can be formalized as DisCSPs.

Recently, several researchers have devel-
oped distributed constraint satisfaction algo-
rithms 1),7),14),18)～20). In a distributed con-
straint satisfaction algorithm, since an agent
usually has intra-agent constraints (constraints
defined over variables of one agent) and inter-
agent constraints (constraints defined over vari-
ables of multiple agents), an agent must not
only perform local computation to satisfy its
intra- and inter-agent constraints but must also
communicate with other agents to satisfy its
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inter-agent constraints. We can therefore as-
sume that the cost of a distributed constraint
satisfaction algorithm can vary with the num-
bers of intra- and inter-agents constraints. Our
goal is to understand how the numbers of intra-
and inter-agent constraints affect the cost of a
standard distributed constraint satisfaction al-
gorithm, since such information may provide a
hint for formulating some problems as DisCSPs
and designing more efficient distributed con-
straint satisfaction algorithms.

In this paper, we first present an algo-
rithm called multi-ABT, which is an exten-
sion of the asynchronous backtracking algorithm
(ABT) 18), as a baseline algorithm for solving
DisCSPs where each agent has multiple local
variables. Then, we show a cost profile of
multi-ABT for various numbers of intra- and
inter-agent constraints in the distributed graph-
coloring problem. As we will show in this pa-
per, the cost profile exhibits an interesting pat-
tern on the x-y plane (where the x-axis is the
number of intra-agent constraints and the y-
axis is the number of inter-agent constraints),
and the pattern is closely related to the satis-
fiability thresholds where the ratios of solvable
problem instances rapidly change from one to
zero. Since the pattern seems independent of al-
gorithms and instance generation methods, we
expect that our results could serve as the basis
of further theoretical or experimental analyses.

This paper is organized as follows. In Sec-
tion 2, we provide a general definition of the
DisCSPs and give an instance of the distributed
graph-coloring problem. In Section 3, we
present multi-ABT as a baseline algorithm for
solving DisCSPs where each agent has multiple
local variables. In Section 4, we describe the
details of our experimental settings and results.
Finally, in Section 5, we conclude our discussion
and outline our plans for future work.

2. Distributed Constraint Satisfaction
Problem

A CSP instance consists of variables with fi-
nite and discrete domains and constraints over
subsets of the variables. A constraint can
be represented as a predicate that is defined
over some variables’ domains and becomes true
when the constraint is satisfied and false other-
wise. A solution to a CSP instance is a set of
values for the variables that satisfies all of the
constraints.

The DisCSPs is the CSP where variables

Fig. 1 Instance of the distributed graph coloring
problem.

and constraints are distributed among multi-
ple agents. A DisCSP instance consists of the
following:
• a set of agents 1, 2, . . . , k
• a set of CSP instances P1, P2, . . . , Pk such

that Pi belongs to agent i (i = 1, . . . , k)
A solution to a DisCSP instance is the state
where all of the agents find solutions to their
own CSP instances. We usually assume that
each agent has a CSP instance that includes
inter-agent constraints. An inter-agent con-
straint is a constraint that is defined over vari-
ables of multiple agents. On the other hand,
an intra-agent constraint is a constraint that
is defined over variables of one agent. Consid-
eration of inter-agent constraints complicates
the search process over DisCSPs, because com-
munication is required among agents to satisfy
those constraints.

Figure 1 illustrates an instance of the dis-
tributed graph-coloring problem. In this prob-
lem, nodes are partitioned among agents and a
link is assigned to the agent(s) having a node
that is involved in the link. It is known that
the scheduling problem in a distributed sensor
network can be formulated as the distributed
graph-coloring problem 12),21). In Fig. 1, each
of the three agents A, B, and C has nodes
in the corresponding ellipse and links that
are connected to the nodes. For example,
agent A has the nodes n1 and n2 and the
links l12, l13, and l26. In other words, agent
A has a CSP instance with the variables n1

and n2 and the constraints not equal(n1, n2),
not equal(n1, n3), and not equal(n2, n6). Note
that there are 7 links (constraints) in this figure,
of which three, l13, l34, and l26, are inter-agent
constraints, and the other four, l12, l45, l46, and
l56, are intra-agent constraints.
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3. Multi-ABT

The asynchronous backtracking algorithm
(ABT) belongs to the first generation of dis-
tributed constraint satisfaction algorithms, and
is basically designed for solving DisCSPs where
each agent has exactly one local variable 18).
Although several researchers have been trying
to extend ABT in various directions 1),14),18),
not much effort has been made to extend ABT
in such a way that it can explicitly handle DisC-
SPs where each agent has multiple local vari-
ables. Therefore, as a baseline algorithm for
such problems, we present multi-ABT in this
paper. This algorithm is basically similar to
ABT, but differs in that it can explicitly han-
dle DisCSPs where each agent has multiple lo-
cal variables. Figure 2 shows the main part
of this algorithm (the procedure to be followed
when an agent receives an ok? message). The
outline of this algorithm is as follows. Note that
we are using graph-coloring terminology.
• A priority order among agents is intro-

Fig. 2 Multi-ABT.

duced such that an agent with more links
has higher priority (ties are broken in fa-
vor of an agent with a smaller identifier).
Also, for each agent, a priority order among
(internal) nodes is introduced such that a
node with more connected links has higher
priority (ties are broken in favor of a node
with a smaller identifier).

• Each agent starts the procedure by ran-
domly assigning a color to each of its nodes
and sending these colors to lower-priority
neighbors (a set of lower-priority agents
that have nodes included in this agent’s
inter-agent constraints) via ok? messages.

• When an agent receives an ok? message, it
updates an agent view, which records the
latest colors for nodes of higher-priority
neighbors (a set of higher-priority agents
that have nodes included in this agent’s
inter-agent constraints), and then executes
the following procedure for each of its
nodes, say n, in order of node priority.
– Select a color for n that is consistent

with the agent view and the colors of
this agent’s higher-priority nodes, and
then move to the next node. If the cur-
rent color for n is already consistent, do
not change that color.

– If there is no such consistent color
for n, generate a nogood by using the
method described in Hirayama and
Yokoo 6). A nogood is a set of colors
for some nodes under which there is
no consistent color for n, and it can
be considered a new constraint discov-
ered during algorithm execution. Since
no superset of a nogood can be a solu-
tion, an empty nogood eliminates all
possible colors for nodes. Therefore,
an agent can detect the fact that there
is no solution if it generates an empty
nogood.

– If any of this agent’s nodes are
contained in the generated nogood,
record the nogood as a new constraint,
backjump to the lowest-priority node
among those nodes, and reselect col-
ors for the node and its subsequent
nodes. On the other hand, if none
of this agent’s nodes is contained in
the generated nogood, keep the cur-
rent color for n, push the nogood into
a stack, and move to the next node.

When an agent finishes selecting colors for



2220 IPSJ Journal Sep. 2004

all of its nodes, it sends each nogood in the
stack via a nogood message to the lowest-
priority agent among those having nodes
in the nogood, and then sends the changed
colors to lower-priority neighbors via ok?
messages.

• When an agent receives a nogood mes-
sage, it records the content of that mes-
sage as a new constraint and examines all
of its nodes in the same way as described
above. Note that when a received nogood
includes an unknown node that belongs to
a non-neighboring agent, an agent requests
the non-neighboring agent to keep informed
about a color for the node.

Since agents record all nogoods discovered
in their concurrent search processes, this algo-
rithm is complete, that is, it can reach a solu-
tion if a problem instance has at least one solu-
tion, or it can establish that no solution exists.

4. Experiments

Our next question is how multi-ABT behaves
on the space constructed from the numbers of
intra- and inter-agent constraints of the dis-
tributed graph-coloring problem.

We implemented multi-ABT on a simulator
of a synchronous distributed system. A syn-
chronous distributed system is a model of a
distributed system, in which every agent syn-
chronously performs the following cycle: (1)
receive all of the messages that were sent to
the agent in the previous cycle and (2) perform
local computation to change its internal state
and determine the contents of messages and
then send those messages to other agents. Al-
though multi-ABT can work on any type of dis-
tributed system, we assumed a synchronous dis-
tributed system in this study, since it is one of
the simplest distributed systems and we wanted
to make the underlying distributed system sim-
ple in order to focus on the characteristics of
the algorithm. We would like to point out that
a similar simulator has traditionally been used
to evaluate the performance of distributed con-
straint satisfaction algorithms 17),18).

Using this simulator, we measured cycles and
maxccks as the costs of an algorithm. The value
of cycles represents the number of iterations
in which the agents concurrently perform local
computation until an algorithm is terminated.
This measure has been conventionally used to
estimate the cost of distributed constraint satis-
faction algorithms 17),18). We should, however,

notice that the number of cycles is completely
unrelated to how much computational effort an
individual agent makes in one cycle. Such com-
putational effort must be considered when an
agent has multiple local variables along with
some intra- and inter-agent constraints, since
it would impose a non-negligible cost on an al-
gorithm. Therefore, we introduce another mea-
sure, maxccks, representing the total sum of the
maximum number of consistency checks over
the agents in each cycle until the algorithm is
terminated. More specifically, the value of max-
ccks is measured as follows: in each cycle we
identify a bottleneck agent that performed the
most consistency checks among the agents and
sum up all of those maximum numbers of con-
sistency checks over the running cycles.

Several parameters are used to specify an in-
stance of the distributed graph-coloring prob-
lem, such as the number of agents, the num-
ber of nodes, and the average number of nodes
per agent. Since our goal is to clarify the re-
lation between the cost of algorithms and the
numbers of intra- and inter-agent constraints,
we varied the numbers of intra- and inter-agent
constraints while keeping the other parameters
constant. In our experiments, we randomly
generated an instance of the distributed graph-
coloring problem using the method in Fig. 3,
where the inputs are the number of nodes, the
number of available colors for a node, the num-
ber of agents, and the numbers of intra- and
inter-agent constraints.

We first set the number of nodes to 100 and

Fig. 3 Method for generating instances.
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Fig. 4 Ratio of solvable instances (5 agents with 20
nodes each, random 3col).

the number of available colors for a node to
3. Then, we randomly generated instances for
two cases —— 2 agents with 50 nodes each and
5 agents with 20 nodes each —— while vary-
ing the numbers of intra- and inter-agent con-
straints.

Figure 4 shows the ratios of solvable in-
stances for 5 agents with 20 nodes each on the
x-y plane. Since the result we obtained for 2
agents with 50 nodes each was very similar,
the figure is omitted for reasons of space. For
each case, we generated 500 instances at ev-
ery combination of the number of intra-agent
constraints, intra ∈ {80, 90, . . . , 180}, and the
number of inter-agent constraints, inter ∈
{100, 110, . . . , 160}, and plotted the ratio of
solvable instances among 500 instances at each
data point. The figure clearly shows that
when the numbers of intra- and inter-agent con-
straints are increased, we can observe a rapid
drop from almost one to zero in the ratio of
solvable instances. For each case, the region
where such a rapid drop occurs lies around
210 ≤ intra + inter ≤ 240 on the x-y plane.
We refer to such a region as a crossover belt.

Figures 5 and 6 show the median cycles
and the median maxccks for 2 agents with 50
nodes each, respectively, and Figs. 7 and 8
show those for 5 agents with 20 nodes each, re-
spectively. We can observe the following from
these results.

Observation 1: Both the median cycles and
the median maxccks on the crossover belt are
higher than those in the other regions. For
each of these figures, we can see that there is a
“ridge” along the crossover belt and that the top
of the ridge lies around 230 ≤ intra + inter ≤
240 on the x-y plane, which corresponds to the

Fig. 5 Median cycles (2 agents with 50 nodes each,
random 3col, with multi-ABT).

Fig. 6 Median maxccks (2 agents with 50 nodes each,
random 3col, with multi-ABT).

Fig. 7 Median cycles (5 agents with 20 nodes each,
random 3col, with multi-ABT).

region where the ratios of solvable instances are
roughly between 0.3 and 0.

According to Hogg and Williams 8), for ran-
domly generated instances of the (centralized)
graph 3-coloring problem, the median compu-
tation cost of a depth-first backtracking search
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Fig. 8 Median maxccks (5 agents with 20 nodes each,
random 3col, with multi-ABT).

with the Brelaz heuristic rises to a peak when
the ratio of the number of links to the number
of nodes is 2.3, and the location of the peak
coincides with the point at which the ratio of
solvable instances is 0.5. In our experiments,
although we used a distributed constraint sat-
isfaction algorithm, we can observe a basically
similar result, where the top of the ridge of the
median cost appears when the ratio of the total
number of links (intra + inter) to the number
of nodes (100) is about 2.3 or 2.4. Its loca-
tion, however, does not coincide with the region
where the ratio of solvable instances is 0.5.

Observation 2: When the number of intra-
agent constraints decreases and the number of
inter-agent constraints increases, the top of the
ridge becomes higher.

This implies that the instances on the
crossover belt are not uniformly hard. Among
the instances on the crossover belt, those with
a small number of intra-agent constraints and a
large number of inter-agent constraints tend to
be expensive both in terms of cycles and max-
ccks.

The increase in cycles in that direction could
be explained as follows. When solving an in-
stance with a small number of intra-agent con-
straints and a large number of inter-agent con-
straints, an agent is likely to select mislead-
ing colors for its nodes, that is, colors that ap-
pear to be correct from its local point of view
but actually are incorrect from the global point
of view. Once an agent (especially a higher-
priority agent) selects such misleading colors,
other agents have to perform a considerable
amount of search to make the agent change the
misleading colors, and thus the number of cy-
cles grows in such an instance.

On the other hand, the increase in maxccks
could be explained as the result of two compet-
ing effects: a decrease in the computational cost
of a cycle and an increase in the total number
of cycles. For a problem instance with a small
number of intra-agent constraints and a large
number of inter-agent constraints, the compu-
tational cost of a cycle decreases, because an
agent tends to perform nogood sending rather
than internal backjumping. On the other hand,
as mentioned above, we see that the total num-
ber of cycles can increase in such an instance.
These two phenomena might have conflicting
effects on maxccks, but our experimental result
shows that the latter overrides the former, lead-
ing to an increase in maxccks in that direction.

This result might offer some insight into how
to describe a problem as a DisCSP instance.
If possible, we should make local problems
tight (by increasing intra-agent constraints)
and global problems loose (by decreasing inter-
agent constraints) in order to reduce the costs
of algorithms.

Observation 3: The top of the ridge has a
steeper slope for 5 agents with 20 nodes each
than for 2 agents with 50 nodes each. As a
result, the former case has a higher peak.

For example, for 5 agents with 20 nodes each,
the maximum and minimum cycles of the top
of the ridge are 680 (at intra = 80 and inter =
160) and 232 (at intra = 130 and inter = 100),
respectively, and for 2 agents with 50 nodes
each they are 200 (at intra = 80 and inter =
150) and 170 (at intra = 130 and inter = 100),
respectively. This result implies that the mis-
leading colors mentioned above can have a great
impact on the entire performance if the number
of agents increases or the number of nodes per
agent decreases.

This result might also offer some insight into
how to describe a problem as a DisCSP in-
stance. If possible, we should make local prob-
lems large (or equivalently reduce the number
of agents) in order to reduce the costs of algo-
rithms.

In order to test the generality of our find-
ings, we conducted more experiments using
other combinations of problem settings and al-
gorithms. First, we conducted experiments for
solvable instances of the distributed 3-coloring
problem when using multi-ABT and multi-
AWC 20). The results of these experiments are
shown in Figs. 9 and 10 (median cycles of 500
instances for 5 agents with 20 nodes each). A
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Fig. 9 Median cycles (5 agents with 20 nodes each,
solvable 3col, with multi-ABT).

Fig. 10 Median cycles (5 agents with 20 nodes each,
solvable 3col, with multi-AWC).

solvable instance was generated using a method
similar to that in Fig. 3, but modified to be
able to specify a solution in advance and avoid
any link that would eliminate the solution. For
each case we can observe a ridge in almost the
same region as in Figs. 5–8, and the qualitative
characteristics of the cost profile were consistent
with our findings. Next, we conducted another
experiment for random instances of the dis-
tributed 4-coloring problem when using multi-
ABT. The method used to generate an in-
stance was the same as the one in Fig. 3, except
that we set the number of available colors for
a node to 4. A cost profile (median cycles of
500 instances for 5 agents with 10 nodes each)
is shown in Fig. 11. We again found a qual-
itatively similar pattern, where the top of the
ridge was around 200 ≤ intra + inter ≤ 210
and became higher when the number of intra-
agent constraints decreased and the number of
inter-agent constraints increased.

Fig. 11 Median cycles (5 agents with 10 nodes each,
random 4col, with multi-ABT).

5. Conclusions and Future Work

In this paper, we have presented multi-ABT
as a baseline algorithm for solving distributed
constraint satisfaction problems where each
agent has multiple local variables, and shown
a cost profile of multi-ABT for various num-
bers of intra- and inter-agent constraints in
the distributed graph-coloring problem. From
our experimental results, we can conclude that
a really hard DisCSP instance is the one on
the crossover belt where each agent has a lim-
ited amount of knowledge of the instance, that
is, a small number of intra-agent constraints
and a small number of variables per agent.
This view may be helpful not only in formulat-
ing some application problems as DisCSP in-
stances, but also in developing effective strate-
gies, especially for distributed constraint satis-
faction algorithms where agents are allowed to
enlarge (or join) their local problems during al-
gorithm execution 5),13).

Obviously, much still remains to be done to
obtain a more accurate picture of the cost pro-
files of distributed constraint satisfaction algo-
rithms.

As with most of the work on the cost pro-
files of centralized constraint satisfaction algo-
rithms, this work has concentrated on specific
cases where multi-ABT and multi-AWC, which
we believe are standard distributed constraint
satisfaction algorithms, are applied to the dis-
tributed graph-coloring problem. However, in
order to strongly confirm the findings, we may
need to conduct more experiments using other
combinations of algorithms and problems.

Also, as with most of the previous work, the
terms “easy” and “hard” are intuitively used in
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this work. Recently, a detailed investigation of
a phase transition in computational complex-
ity, namely, the complexity shifts from polyno-
mial (easy) to exponential (hard) in the order,
has been reported for the random 3-SAT prob-
lem 3). It may be interesting to explore where
such complexity shifts occur on the x-y plane
for multi-ABT and multi-AWC.
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