
Vol. 45 No. 10 IPSJ Journal Oct. 2004

Regular Paper

An Approach for Debugging Client Dynamic Web Applications

Mohamed Sharaf Aun,† Shoji Yuen†,†† and Kiyoshi Agusa†

Beside the emergence of the Internet and the Web, an equal (or probably more important)
trend has been the propagation of scripting technology. Client scripting involves the use of
light, yet powerful languages in making the Web more interactive and dynamic. In view of
software description, however, the light-weight feature turned out to be a major drawback to
develop and maintain the scripts with a good quality. Once an unexpected behavior emerges,
sometimes it is difficult to find the cause even for a short script. This paper, in addition
to discussing the challenges facing the debugging process, presents an approach proposed
for debugging client Web applications focusing on debugging scripts as they are the dynamic
enabling components and the means by which execution of the business rules can be captured.
In addition to identifying the challenges, our aim is at facilitating the developing and the
debugging process. For this purpose, we focus on imposing syntactic constrains over a script
and on visualizing its state while under debugging. For the purpose of proving the effectiveness
of the proposed new approach, an experimental debugging tool is prototyped. As the result,
it is shown that our approach is helpful in finding implicit bugs and in inspecting the state of
the application under debugging.

1. Introduction

Beside the emergence of the Internet and the
Web, an equal (or probably more important)
trend has been the propagation of scripting 1)

technology. Client scripting involves the use of
light, yet powerful languages in making the Web
more interactive and dynamic. The script is re-
quired to be executed in a compact and light-
weight manner. In view of software description,
however, the light-weight feature turned out to
be a major drawback to develop and maintain
an application with good quality. Once an un-
expected behavior emerges, sometimes it is dif-
ficult to find the cause even for a short script.
Since a script language itself is usually as ex-
pressive as a conventional programming lan-
guage, the debugging process should be power-
ful enough as that for the general programming
language.

This work represents an on-going effort to de-
velop a computer-aided environment that can
support the construction of high quality Web
applications. In this paper, in addition to dis-
cussing the challenges facing the debugging pro-
cess of client part applications, we present an
approach proposed for debugging such applica-
tions focusing on debugging scripts.

In addition to identifying the challenges, we

† Department of Information Engineering, Graduate
School of Information Science, Nagoya University

†† JST PRESTO

aim at facilitating the debugging process by ex-
tending conventional techniques that support
mix of static and dynamic capabilities. Be-
cause of the nature of the client-side scripts,
the major differences are as follows: (1) since
the script is executed on demand, the program
validation technique such as type-checking does
not fit. (2) since the server can control the
script loosely, the current state is hard to be
determined in the present Run-Time Environ-
ments (RTEs). The present RTEs are not ca-
pable of reporting the termination of a faulty
script, even do not report the closer informa-
tion.

To check more correctness without sacrific-
ing the light-weight nature of executing the
scripts, we first separate the script analysis
from the RTE. By imposing more strict syn-
tactic checking, we identify the defects before
execution. Since such defects are not reported
by the present RTE, we categorize such defects
as “silent bugs”. Next, by inserting inspection
library codes, we identify the defects in behav-
ior. We categorize such defects as “active bugs”
since we can observe the unexpected behavior.
We provide a systematic mechanism to distin-
guish the dynamic behavior through the inspec-
tion library.

Based on this idea, we present our approach

A draft of this paper has appeared in the proceed-
ings of the 11th World Wide Web (WWW2002) In-

ternational Conference 2)

2373

2374 IPSJ Journal Oct. 2004

with an experimental prototype tool. The tool
consists of the following components: overall
checker and scripts extractor, silent bugs iden-
tifier, debugging library functions, source code
transformer, and interpreting facilitator.

Section 2 discusses the challenges facing the
debugging process. Section 3 analyzes bugs in
client applications identifying their main cate-
gories. The new proposed approach is described
in Section 4 and an overview of an experimental
prototype tool is presented in Section 5. Sec-
tion 6 discusses the characteristics of our ap-
proach and Section 7 compares it with other
related works. Finally the paper is concluded
with a conclusion and future directions.

2. Challenges in Debugging

Debugging client Web applications is a chal-
lenge process due to many factors. Some of
these factors are languages-dependent and some
others are languages-independent.

2.1 Language-dependent Challenges
Web languages, specially scripting, have

many new and specific features, imposing many
challenges and difficulties on the debugging pro-
cess. These features include the following:
• Embedded components : Script are usually

embedded within mark-up languages which
themselves embedded in web pages that are
processed by browsers. The browsers work
on operating systems which are running on
a certain hardware. Thus, there is a variety
of possible error sources.

• Neither Pure OOL nor Structural Lan-
guages : Scripting languages are neither
pure structural nor pure object-oriented
languages. They are not pure structural
because they have to deal with objects and
they are not OO languages since the objects
to deal with are mainly environmental or of
special nature.

• Immediate Interpretation: Consequently,
traditional debugging techniques can not
be used since they are mainly based on ei-
ther the compilers themselves or on inte-
grating such techniques to the compilers 3).
This also means that bugs are only noticed
during run-time.

• Type-less: Like other scripting lan-
guages 1), Web scripting languages are
type-less. This implies that all variables
look and behave the same so that they are
interchangeable. At time we think a vari-
able or an expression has a certain type or

data in it, when in truth, something en-
tirely different in there.

2.2 Languages-independent
Challenges

Among the languages-independent challenges
are those due to the nature of the applications
themselves, and those due to the nature of web
RTEs.

2.2.1 The Nature of Applications
Web applications differ from traditional soft-

ware applications in several critical dimensions
due to the following features:
• Coexistence of Multiple Technologies:

Client Web applications involve a variety
of embedded components such as scripting
and rendering components. These compo-
nents are realized with different categories
of languages. An important issue often
faced is how bugs are going to be identi-
fied and eliminated.

• Interactive and Dynamic: One of the main
reasons behind the popularity of web is its
capability in being more interactive and dy-
namic. As for client-side, applications may
contain scripts that define additional dy-
namic behavior and often interact with the
browser, page content and additional con-
trols such as Applets. The dynamic behav-
ior imposes many difficulties on debugging.

• Reflective: A program can change itself
during execution or generate a new pro-
gram or script on-the-fly. This feature im-
plies that the state of a program at any
time is a function not only of the global
variables but a function of the combination
of both the variables and the program it-
self.

• Event-driven Applications : Web applica-
tions, unlike structural programs, are typ-
ically event-driven programs. This makes
the portion of the program to be executed
next specified by an event.

• Manipulate Environment Objects : Most of
the objects manipulated by client scripts
are environment objects. Therefor, any
bug due to manipulating them can not be
treated far from the environment which cre-
ates such objects.

2.2.2 The Nature of Web RTEs
Unlike the RTEs of most programming lan-

guages, ones of web applications impose chal-
lenges for the debugging process because of the
following:
• High Volatility : Web RTEs are much more

Vol. 45 No. 10 An Approach for Debugging Client Dynamic Web Applications 2375

volatile as web changes tremendously over
the course of a few milliseconds. Variables,
threads, stack frames, and heap objects
rapidly come and go. More concurrent ac-
tivities are involved on the web.

• Multipurpose Environments: As for the
client-side, the RTE have no longer to be
simple HTML rendering tools, instead they
have to support Applets, embedded scripts,
stream media, 3D graphics, click-able maps
and virtual machines.

• Lack of Debugging Capabilities : Such fea-
ture is a consequence of the previous one.
An example where a browser neither tells
what is wrong nor executes the function is
when using a keyword such as the word case
as a function name.

• Difficult to Control : Facilitating the de-
bugging process requires controlling the
RTE in order for the developer to be able
to stop execution at a certain point and be
able to investigate the state of the program
under execution. However, controlling the
web RTEs like browsers is a difficult pro-
cess due to many reasons including their
specific features.

3. Analyzing Bugs

To be able to determine the main categories
of bugs, we have first to look at how scripts are
executed.

3.1 Execution of Client Applications
When code to be executed on a client, there

are two alternatives for achieving that. The
first is by executing abstract code (or byte-
code) in virtual machines. An example of such
case is the execution of applets. Byte-code gen-
eration is proceeded by lexical, syntax and se-
mantic analysis. Such analysis provides the
necessary mechanisms for checking both lexical
and syntactics faults.

However, scripting components are immedi-
ate interpreted. They are executed by browsers,
where they are interpreted line by line as they
arrive, see the bold line in Fig. 1. In this case
no abstract code is generated, causing faults to
be identified only during run-time.

3.2 Main Categories of Bugs
While executing a script, excluding non-

scripting bugs and the cases where the RTEs
pop up error messages due to browser version
or type incompatibility, there are four possibili-
ties. These possibilities are: (1) the RTE keeps
silent (neither it runs the script nor it produces

Fig. 1 Immediate interpretation of scripts.

Fig. 2 Possible cases while a bug exists and the
broad categories of bugs.

any helpful error message), (2) the RTE runs
the scripts until some error found and it stops
there, (3) the RTE runs the script but unex-
pected or undesirable results are produced, and
(4) the RTE runs the script correctly.

By analyzing the first three possibilities
(Fig. 2), we found that there are two main cat-
egories of bugs:
• The first category causes the RTE neither

to run the application nor to produce any
helpful error message. In another word, the
RTE keeps silent. We refer to such bugs as
silent bugs. An example of this category
is when using a keyword such as the word
case as a function name, (see Fig. 7).

• The second main category occurs when ei-
ther the execution stops before completion
or when execution is completed but unex-
pected or undesirable results are produced.
We refer to this kind of bugs as active bugs.

An example of the second category is pre-
sented in Fig. 3. In this listing: execution of
the script proceeds until line 4 and stops there.
This happens because the variable “S” is not
defined before being used in the expression. An-
other example of the second category, where ex-

2376 IPSJ Journal Oct. 2004

Fig. 3 An example of active bugs.

Fig. 4 Reference model of our debugging approach.

ecution is finished with unexpected results, is
presented in Fig. 10.

4. The Debugging Approach

To address the challenges and to fulfill the
specific debugging requirements, our approach
consists of five complementary and interacting
components (Fig. 4) and will operate with the
guidance from the developer.

4.1 Components and their Functional-
ities

Each of the five components has its own pur-
pose and function as described in the next sub-
section. More descriptions related to implemen-
tation are presented in Section 5.

4.1.1 Overall Checker and Scripts Ex-
tractor

This component is responsible for dealing
with the complexity introduced by the embed-
ded nature of the scripts and the situation
where many technologies have to coexist within
one application. The source code of the whole
application is read, overall checked, and the
scripts components are extracted for further
processing. The input to this component is the
whole application and the output is the script
components in addition to overall bugs’ identifi-
cations. An example of identifying overall bugs
is presented in Fig. 7.

Compared to available checking tools such as
weblint 4), this subsystem have also to extract
the scripts found for further processing. More-
over, the checker can serve several other pur-
poses such as checking cross-browsers scripting,
code re-writing, code beautification and code
documentation.

4.1.2 Silent Bugs Identifier
This component concentrates on identifying

the first category of bugs (i.e., silent bugs) that
causes the RTE neither to run the application
nor to produce any helpful error messages. It
fills scripts analysis gap due to the lack of com-
pilation, bringing functionalities for identifying
the root cause of the failures that make a script
not to run.

The input of this component is the scripts
extracted by the first component. The output
is the silent bugs identification.

4.1.3 Library Functions
This component, together with the source

code transformer (described next), is necessary
for identifying active bugs. It is also necessary
for efficiency and re-usability purposes.

This component is devoted for developing de-
bugging techniques and methodologies realized
as functions that can be augmented within the
source code during the source expansion pro-
cess and then called as necessary. These func-
tions must include specialized code for inspect-
ing both objects and scalar variables.

4.1.4 Source Code Transformer
The purpose of this component is to perform

the source code instrumentation. Instrumenta-
tion is the process of inserting additional state-
ments into a program for the purpose of gath-
ering information about its dynamic behavior.

Unlike traditional instrumentation, instru-
mentation, here, is accomplished by expand-
ing the code under debugging automatically not

Vol. 45 No. 10 An Approach for Debugging Client Dynamic Web Applications 2377

Fig. 5 Flow of the approach and its integration with
the RTE.

only with additional monitoring statements but
also with the necessary debugging functionali-
ties required for monitoring the state of the pro-
gram or controlling its execution. While moni-
toring statements can be injected at any point
of the original source code, the debugging li-
brary functions have to be inserted prior to the
original source code.

The input to this part is the source-code un-
der debugging, the required debugging library
functions and the developer options (or sugges-
tions). The source code is to be transformed
and the debugging functions are to be aug-
mented. Developer options are necessary for
providing more flexible debugging process. The
source code is instrumented and it is called the
transformed code.

4.1.5 Interpreting Facilitator
This part is necessary for facilitating the exe-

cution of the applications directly from the con-
text of the debugger. It works as an interface
between the transformed code, produced by the
previous component, and the interpreter.

4.2 Integrating the Approach with the
RTE

Figure 5 shows how the proposed debug-
ging model can be augmented as an interme-
diate component between the source code and
the interpreter. In the debugging mode, both
preprocessing and dynamic debugging are fa-

cilitated depending on the choice made by the
developer. If the developer chooses preprocess-
ing, the tool will examine the source code for
silent and overall bugs. If the choice is dynamic
processing, the tool will look for active bugs.

Comparing this figure with Fig. 1, we can find
that rather than only immediate interpretation,
the code can be checked for bugs statically and
dynamically. While dynamic processing, code
interpretation is performed under the control
of the debugger.

5. An Experimental Prototype Tool

To prove the effectiveness of our approach,
an experimental prototype tool has been imple-
mented. The current implementation is able to
deal with and debug a wide range of client-side
applications containing JavaScript 5) programs.
JavaScript was chosen because of its popularity
on the Web. The flow of the tool can be ex-
pressed as in the right-side of Fig. 5 presented
above. While dynamic processing involves an
interpreter, preprocessing dose not.

The current prototype system is not stan-
dalone from the viewpoint of the Web client
(browser). It was implemented as a Web sys-
tem runnable by a browser used for interpret-
ing the scripts under development. Such choice
avoids building an interpreter from scratch. It
also makes the debugger to be integrative with
the RTE. This is necessary as the debugger has
to be able to control the execution of a program
under debugging. Finally, such choice has made
the system easy to use and the user interface to
be more friendly.

5.1 Tool Subsystems
Based on the approach and to work within

its context, the tool was implemented with five
subsystems as presented above. More descrip-
tion related to implementation is presented in
this section.

5.1.1 Overall Checker and Scripts Ex-
tractor

This subsystem involves the use of scanner
that can make primary check for the application
as a whole and be able to extract the scripts
components for further processing.

Figure 6 illustrates how the main function
of this subsystem was implemented. First the
components, which may exist before any em-
bedded script are analyzed by a special sub-
routine called (look for script). This subrou-
tine also check for over-all bugs at the line
level and saves some information to be used

2378 IPSJ Journal Oct. 2004

Fig. 6 Overall checker and script extractor main
function.

Fig. 7 Example of identifying overall and silent bugs.

for identifying overall bugs. When any script
is found, it is extracted and sent for further
processing. This process is repeated until the
end of the file is found. Further overall bugs
are then checked, based on the information
collected while looking for the scripts. This
is accomplished by special sub-program called
check for HTML error().

An example for identifying overall bugs is il-
lustrated in in the lower left window of Fig. 7.
The error (missing of the closing of the head
tag) is indicated together with its line number.
The processed source code is reproduced in the

upper window with line numbers in order to
simplify the task of finding the location where
a bug has occurred.

5.1.2 Silent Bugs Identifier
By studying silent bugs more closely, we

found most of them are mainly due to syntax
errors, like the use a reserved ward as function
name or the use of undefined variable. Thus,
preprocessing is necessary for identifying such
category of bugs.

Preprocessing requires the need for imple-
menting a lexer and a parser for the language
used for developing scripts. The lexer generates
tokens and the parser checks them according to
the language grammar. Therefore the language
grammar is an important factor for achieving
this part.

Virtually every programming language (in-
cluding JavaScript) constructs can be repre-
sented by a context-free grammar. JavaScript
has LL(1) grammar as described in6). Based on
that, this part was adapted and built.

Figure 7 illustrates how this subsystem
works. In this figure, the input file shown in
the middle part has two silent bugs each can
cause the RTE to freeze while trying to execute
script directly. The first bug is due to the use of
the reserved word case as a function name. The
second bug is due to the unclosed block found
in the function in line 11. There is a block start
indicator (i.e., {) but such opening block is not
closed any where within the script. Both bugs
are identified together with their line numbers
as shown in the bottom window of the figure.

An important issue to mention here is that
although this part may borrow some techniques
of building lexers and parsers from traditional
ones, the tokens to generate and to deal with
are of different natures. An example for that
is the necessity of regarding the dot operator
as a subcomponent of a token. As such, the
string: “document.myForm.myInput.myValue”
represents only one token.

5.1.3 Library Functions
In case of JavaScript language 5), there are

two features that make the use of debugging
libraries possible. The first is the capability of
the scripting document to include external files.
Such files are written with .js extension. The
other key feature is the statement (for . . . in
. . . object) provided by the language 7),8). Such
statement can iterate over all the properties of
an object.

A variety of debugging library functions are

Vol. 45 No. 10 An Approach for Debugging Client Dynamic Web Applications 2379

Fig. 8 An example of library debugging functions.

Fig. 9 The algorithm for extending the code.

possible for different options. These options
may include the debugging mode (e.g., tracing,
single stepping), the required DOM hierarchy,
and so on. Figure 8 shows an example of such
debugging library functions.

5.1.4 Source Code Transformer
In the implementation which we have made

(see Fig. 9), source code transformation can
take place in tow manners depending on the
developer option. In the first case, the resulted
code contain the original code proceeded by
the necessary debugging function injected as
scripts. This case is referred as full transforma-
tion and it is helpful when object hierarchy 9)

is important. In the second option, the trans-
formed code contain the original source code
proceeded only by the declaration of the loca-
tion where the library debugging functions ex-
ist. The later case is referred as short transfor-
mation.

Figure 11 shows an example of how the trans-
formed code (in the upper-widow) is produced
by expanding the source code (presented in
source code area) with the whole debugging
function plus the calling statements required.
The debugging library function was inserted as
a whole at the beginning and then called as nec-
essary. Such transformed code is now ready to
be processed by the interpreting facilitator de-
scribed next.

5.1.5 Interpreting Facilitator
As an interface between the expanded code

and the RTE, this subsystem initiates the ex-
ecution of such code from the context of the
debugger. It communicates with the RTE by
sending it the code to be interpreted. Since the
transformed code contains the necessary debug-
ging functionalities, program execution control
is accomplished from the context of the applica-

Fig. 10 A debugging example.

Fig. 11 Results sample: Debugging active bugs with
full expansion and the debugging data written
to watch out windows.

tion itself rather than by external components.
5.2 Example of Dynamic Debugging
The example shown in Fig. 10 has one script

written in JavaScript and is embedded in
HTML document. The script has one function
that opens a new window dynamically and is
supposed to write the parameter m to the cre-
ated window. However, there is a bug in the
script, when it is executed, it opens the required
dynamic new window but no output appears on
the opened window.

While debugging such example (Fig. 11), we
can notice the following: the source code is in

2380 IPSJ Journal Oct. 2004

the middle part of the figure, the extended code
is in the upper-side, and the result of the de-
bugging process is shown at the lower part of
the same figure. The value of the variable m
(shown at the bottom-left window) is null indi-
cating the bug. The variable m is null because
the assignment in line 14 takes place before the
user can enter some other value in the text area
defined in line 5.

Properties of the object d are also written to
the bottom-right window. In another word, the
values of scalar type variables and the proper-
ties of object type items, each appeared in a dif-
ferent window. The distinction between scalar
type values and object type items is an impor-
tant feature as it helps a great deal in overcom-
ing the difficulties introduced by the type-less
property of the scripting languages used and
the lack of compilation type-checking.

6. Characteristics of the Approach

The new proposed approach consists of five
components each of which has its own purpose
and function. By looking closely at these com-
ponents, we will find that they, collectively, can
overcome the challenges and fulfill the require-
ments for the debugging process.

The first component (or the overall checker)
is responsible for dealing with the difficulties
introduced by the fact that on the Web mul-
tiple technologies have to coexist. The sec-
ond component identifies the first category of
bugs. These two components, together, over-
come the challenges due to the immediate in-
terpretations, the type-less property of the lan-
guages used and the lack of the debugging ca-
pabilities of the RTE.

The third, the fourth and the fifth compo-
nents together deal with active bugs. They
overcome the difficulties introduced by the re-
flectiveness and dynamic properties together
with the nature of the manipulated objects.
They also fulfill the need of the debugger to
cooperate and coordinate its activity with the
RTE providing the necessary mechanisms for
controlling program execution. Moreover, the
fifth component facilitates the execution of the
applications from the context of the debugger.

Therefor, our approach combines both static
and dynamic debugging capabilities. Prepro-
cessing is necessary for eliminating silent bugs.
Dynamic debugging identifies active bugs and
enables controlling program execution from the
context of the application itself rather than by

external components. Consequently, it facili-
tates the debugging process without the need
for re-building RTE from scratch or extending
the existing ones. It also avoids the problems,
which may arise due to controlling the RTE
through external components.

7. Related Work

Web engineering 10)～12) has emerged as a
new discipline for the establishment and use
of sound scientific and engineering approaches
to the successful development, deployment and
maintenance of high quality Web-based systems
and applications. It is still a very young disci-
pline and has just started gaining attention of
researchers, developers, and academics.

To support the design phase of Web appli-
cations, several frameworks, architectures and
models, such as those described in13)～18), have
already been designed and proposed. How-
ever, new application developing models have
evolved, new languages have gain popularity;
and yet testing and debugging methodologies
have not changed to cope with such new trends.

To our knowledge, there is no previous work
in the academic literature on debugging tech-
niques targeting the dynamic behavior of the
web with the exception of the work by the
〈Bigwig〉 project team (Claus Brabrand, et
al.) 19), which addresses the static validation
of dynamic generated HTML in the context of
the 〈Bigwig〉 language. While the aim of their
work is at validating HTML components in the
context of specific language, our work aims at
debugging scripts components as they are the
main reason behind making the web more in-
teractive and dynamic.

The software engineering literature includes
some works on debugging, but it is generally
aimed for debugging traditional software sys-
tems. Web applications differ from traditional
software systems in several dimensions. More-
over, looking at the evolution of traditional de-
bugging techniques 3), we find that they are
built based on the compilers. Web applica-
tions, however, are mainly interpreted rather
than compiled.

In the Web engineering literature, to our best
knowledge, there is no paper that investigates
the testing and debugging process except from
mentioning it as an open research topic 20),21).

Recently, some browser vendors claim the
provision of tools for debugging scripts. An ex-
ample for that, is the JavaScript debugger 22).

Vol. 45 No. 10 An Approach for Debugging Client Dynamic Web Applications 2381

However, such tool works only with naviga-
tor, limited to JavaScript, causes frequent RTE
freezing and makes the RTE unavailable for
any purpose except debugging in the debugging
mode. Another tool is by Microsoft; Script de-
bugger 23). This tool, however, works only with
Internet Explorer, and it is limited to the win-
dows platform.

Our approach differs from such tools in sev-
eral aspects. As stated in the previous Section,
it combines both static and dynamic capabili-
ties. In spite of the dynamic nature of client
applications, we found that substantial part of
the conventional static debugging process is ap-
plicable. Combining both static and dynamic
capabilities has pointed out a new direction for
building new debugging tools as it has several
advantages.

Furthermore, our approach scales well to
debugging server-side scripts. Most of the
techniques provided by the approach can be
adapted and applied to the later case. An
example for that is source code instrumenta-
tion technique. It can be extended because it
is accomplished by source code transformation
rather than by binary code, for example. We
foresee to achieve more scalability and extend-
ability of our approach. While the prototype
tool implementation is specific to Javascript,
that is not necessary the case. The language
can be any other scripting language.

As for comparing our prototype implementa-
tion with the above tools, our prototype tool
can interact with the interpreter through the
interpreting facilitator. It does not interfere
with the internal structure or components of the
browser. To be more concrete, Fig. 12 provide
the necessary notation for representing the ac-
tivities performed by the tool while debugging.
As we can see, unlike other works, the tool dose
not expose the web browser’s internal event ob-
ject. This makes our approach portable rather
than to be as an added feature to some propri-
ety browser.

8. Conclusions and Future Work

In response to the lack of existing approaches
specifically designed for debugging client Web
applications, we have proposed an approach for
that purpose and described an experimental
prototype tool for proving its effectiveness. We
focused on debugging scripts, as they are the
main reason behind making the Web more in-
teractive and dynamic.

Fig. 12 UML activity diagram representing the
prototype implementation.

We have also identified the issues that make
debugging client applications different from de-
bugging traditional software systems, explain-
ing why new approaches are required.

It was found that, the major differences are as
follows: (1) since the script is executed on de-
mand, the program validation technique such as
type-checking does not fit. (2) since the server
can control the script loosely, the current state
is hard to be determined in the present run-
time environment. Thus, making a pure trans-
position of debugging techniques (like other
techniques 24)) from software engineering to the
Web is both difficult and inadequate.

To check more correctness without sacrificing
the light-weight nature of executing the scripts,
we first imposed more strict syntactic checking
identifying one category of defects before ex-
ecution. Since such defects are not reported
by the present runtime environment, we cate-
gorized such defects as “silent bugs”. Next, by
inserting inspection library codes, we were able
to identify the defects in behavior. We catego-
rized such defects as “active bugs” since we can
observe the unexpected behavior.

Our approach is effective in the sense that fa-
cilitating the debugging process on the Web is
not trivial due to the nature of the applications
themselves, the nature of the RTEs and the na-
ture of the languages used. Debugging requires

2382 IPSJ Journal Oct. 2004

either to rebuild web RTE from scratch incor-
porating debugging functionalities or adapting
the existing ones, or at least control them re-
motely by external components. Each of this
approaches has its own problems in addition
to their in-feasibility. Our approach, however,
can facilitate the debugging process avoiding all
such problems. The approach requires no mod-
ification for the RTE making its inherit advan-
tages to be platform and RTE independent. It
also combines the advantages of both prepro-
cessing and dynamic debugging.

Several interesting research issues have been
highlighted by this work. We plan to ex-
tend it in several different ways. Currently
the approach can handle only client applica-
tions focusing on scripts components. We plan
to enhance it for other components and for
handling components generated dynamically at
the server-side and presented on-the-fly to the
client. In this direction, we have proposed an
approach through separating features 25).

Acknowledgments The authors would
like to express their thanks to S. Yamamoto
(associate professor in Aichi Prefectural Uni-
versity), T. Hamaguchi (research associate in
Agusa Lab.) and all members of our Lab. for
their useful comments. We also would like to
thank Dr. A. Mustafa for providing valuable
feedback on various drafts of this paper.

This research is partially supported by
the Japanese Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific
Research (C) (2)#16500027. It is also partially
supported by the 21st century COE program
of Intelligent Multimedia Integration at Nagoya
University.

References

1) Ousterbout, J.K.: Scripting: Higher-Level
Programming for the 21st Century, IEEE Com-
puter, Vol.31, No.3, pp.23–30 (1998).

2) Aun, M. Sh., Yuen, S. and Agusa, K.: A
Framework for Debugging Client-side Reflec-
tive and Dynamic Web Applications, Proc.
11th World Wide Web (WWW2002) Inter-
national Conference, Hawaii, USA (2002).
available at: http://www2002.org/CDROM/
alternate/690/index.html

3) Kolawa, A.: The Evolution of Software De-
bugging, ParaSoft, available at: http://www.
parasoft.com/papers/vision.htm.

4) Weblint — HTML Syntax Checker, available
at: http://filewatcher.org/sec/weblint.html.

5) Netscape: JavaScript 1.1 Language Specifica-

tion. http://wp.netscape.com/eng/javascript/
index.html.

6) Rossi, M.: NGS JavaScript Interpreter,
(1998), available at: http://people.ssh.fi/mtr/
js/manual/js toc.html.

7) Goodman, D.: Dynamic HTML: the Definitive
Reference, O’Reilly (2002).

8) Ayke, A.W., Gilliam, J.D. and Ting, C.: Pure
JavaScript, Samas Publishing (1999).

9) Clinger, P.: JavaScript Beans., available at:
http://www.netpedia.com/features/javascript/
beans/

10) Murugesan, S., Deshpande, Y., Hansen, S. and
Ginige, A.: Web engineering: A New Discipline
for Web-based System Development, Proc. 1st
Int’l Conf. Software Eng., Workshop on Eng.,
On-line http://fistserv.macarthur.uws.edu.au/
san/icse99-WebE/ICSE99-WebE-Proc/San.doc

11) Ginige, A. and Murugesan, S.: The Essence
of Web Engineering, IEEE Multimedia, Vol.8,
No.1, pp.22–25 (2001).

12) Deshpande, Y. and Hansen, S.: Web Engi-
neering: Creating a Discipline among Disci-
plines, IEEE Multimedia, Vol.8, No.1, pp.82–87
(2001).

13) Isakowwitz, T., Stohr, E.A. and Balasubrama-
nian, P.: RMM: A Methodology for Structured
Hypermedia Design, Comm. ACM, Vol.38,
No.8, pp.34–44 (1995).

14) Garzotto, F., Paolini, P. and Schwabe, D.:
HDM: A Model Based Approach to Hyperme-
dia Application Design, ACM Trans.Info.Syst.,
Vol.11, No.1, pp.1–26 (1993).

15) W3C: Document Object Management,
http://www.w3.org/DOM (1999).

16) Nam, C., Jang, G. and Bae, J.: An XML-based
Active Document for Intelligent Web Applica-
tions, Expert Systems with Applications (2003).

17) Conallen, J.: Building Web Applications with
UML, Addison-Wesley, Canada (2000).

18) Ando, L., Santos, J., Caeiro, M., Rodrigues,
J., Fernandez, M. and Liamas, M.: Mov-
ing the Business Logic Tier to the Client:
Cost Effective Distributed Computing for the
WWW, Software Practice and Experience,
Vol.31, No.14, pp.1331–1350 (2001).

19) Brabrand, C., Moller, A. and Schwartzbach,
M.I.: Static Validation of Dynamically Gen-
erated HTML, Proc. PASTE 2001, Utah,
USA (2001). http://domino.research.ibm.com/
confrnc/paste/paste01.nsf.

20) Ginige, A. and Murugesan, S.: Web Engineer-
ing: An Introduction, IEEE Multimedia, Vol.8,
No.1, pp.15–18 (2001).

21) Ginige, A. and Murugesan, S.: The Essence
of Web Engineering, IEEE Multimedia, Vol.8,
No.1, pp.22–25 (2001).

Vol. 45 No. 10 An Approach for Debugging Client Dynamic Web Applications 2383

22) Netscape: Netscape JavaScript Debugger 1.1,
http://developer.netscape.com/docs/manuals/
jsdebug/index.htm.

23) Microsoft: Microsoft Script Debugger,
http://msdn.micrsoft.com/library/en-us/
sdbug/Html/sdbug 1.asp.

24) Nanard, J. and Nanard, M.: Hypertext De-
sign Environments and the Hypertext Design
Process, Comm. ACM, Vol.38, No.8, pp.49–56
(1995).

25) Aun, M. Sh., Yuen, S. and Agusa, K.: To-
wards Assuring Quality Attributes of Web Ap-
plications: An Approach for Separating Fea-
tures, Proc. IADIS WWW/Internet2003 Inter-
national Conference, Algarve, Portugal, Vol.2,
pp.1253–1254 (2003).

(Received January 6, 2004)
(Accepted September 3, 2004)

Mohamed Sharaf Aun re-
ceived M.E. degree in informa-
tion engineering from Nagoya
University in 2001. Currently,
he is a Ph.D. candidate of the
Graduate School of Information
Engineering at Nagoya Univer-

sity. His research interests include Web engi-
neering, quality assurance methodologies and
document-computation.

Shoji Yuen received a DrEng
degree from Nagoya University
(1997). He is currently an asso-
ciate professor of the Graduate
School of Information Science at
Nagoya University. He is inter-
ested in the formal model of con-

currency, and the formal verification of concur-
rent and network software based on the formal
concurrent models.

Kiyoshi Agusa is a profes-
sor of Department of Informa-
tion Systems, Graduate School
of Information Science, Nagoya
University. He received Ph.D.
degree in computer science from
Kyoto University in 1982. His

research area covers software engineering, pro-
gram repository, software reuse. He joins e-
Society project which is a part of e-Japan
project, and researches on a high reliable Web-
based Applications. He is a member of IPSJ,
ISSST, IEICE, ACM and IEEE.

