
An Approach to Model-Based Construction of Soft Real-Time

Embedded Java Code

Ilankaikone Senthooran†∗ Takuo Watanabe†
†Department of Computer Science, Tokyo Institute of Technology

Abstract

Developing software for embedded real-time sys-
tems has become a challenge while maintaining its
functional requirements, such as timeliness, correct-
ness, etc. Model-based formal verification method
is widely applied in the code development of real-
time systems. However, verification of such model
only ensures the correctness of the model, not the
software of that system. We propose a method for
generating Java code enabling soft real-time feature,
from a model verified by UPPAAL model checker,
which is based on Timed Automata. Thereby in-
creasing confidence in the code, based on the notion
of correct-by-construction. Finally, we evaluate our
method by applying it to non-trivial real-time sys-
tems, including a maze-solver robot.

1 Introduction

Embedded software creates both huge value and un-
precedented risks due to the complex system con-
text of embedded software applications. Real-time
software differs significantly from the conventional
software[1]

This paper presents a systematic approach to gen-
erate working software code for real-time embedded
systems, see Figure 1. We adopt timed automata
[2] as design models (modeling language) for timed
systems, and study how to transform such models
to Java code. There are several tools developed to
verify models, of which we use UPPAAL [3] Model-
Checker extends timed automata with several addi-
tional features such as urgent locations, integer and
arrays.

Figure 1: Our Approach

∗senthooran@psg.cs.titech.ac.jp

Once the model is created, it undergoes
verification[4][5] process in UPPAAL. Then
the program code is generated from the model.
However, generated code cannot be applied straight
away, because it represents the abstract model
of the system. The systems variables are added,
to make the program code deployable in a given
environment.

Our Contribution We developed a method to
convert real-time systems modeled in Timed Au-
tomata to Java[6] program code mingled with timing
checking code, enabling soft real-time features. This
code can be deployed in many general embedded de-
vices as the code is not RTS Java.

1.1 Related Work

Iftikhar et al [9] presented an approach for Java
code generation from UML statechart. However,
UML statecharts do not formally support verifica-
tion methods.

Niusha et al [10] presented as approach for
real-time specification Java from Timed Automata.
Their approach uses native real-time features.

2 Systematic Code Generation

To achieve a systematic code generation, we pro-
pose rules to convert the different features of UP-
PAAL Timed Automata into the Java Code. Then,
collating these code fragments according to the
model. Features of UPPAAL Timed Automata are:
Timed Automaton, Binary Synchronization, Broad-
cast Channel, Location (or State), Clock, Guard, In-
variants, Global Variable, Urgent Synchronization,
Urgent / Committed Location.

Every Timed Automaton is converted to a Java
thread. The behavior of the automaton is en-
coded inside the thread run method within an in-
finite while loop. Likewise, rest of the features are
converted to Java code. Mapping the features of
the UPPAAL model to the code with appropriate
rules will enable us to create program code, which

Copyright 2011 Information Processing Society of Japan.
All Rights Reserved.1-473

4L-7

情報処理学会第73回全国大会

matches modeled behavior. The notion is called
correct-by-construction.

We have not dealt translating features Urgent

Binary Synchronization, Urgent / Committed

Location to Java code, as the time is not allowed
to pass. Therefore, we have considered these fea-
tures as normal binary synchronization or normal
location and applied the normal conversion rules to
generate Java code.

2.1 Non-determinism

A state in a Timed Automaton may contain more
than one enabled outgoing edge. So, the converted
program will always perform the first state change.
This means that the translated code is determinis-
tic. Following the perception that an implementa-
tion should be more deterministic, we propose an
ordering method based on the guard clocks. To
handle ordering of other scenarios, we directly use
the ordering present in the model.

3 Case Study

We applied our rules on a Line Maze-Solver to val-
idate our approach, where a robot will run through
a lined-maze to find the shortest path to the target.
We constructed the robot using Java SunSPOT [7],
and Pololu 3pi Robot [8]. SunSPOT serves as the
controller for the 3pi robot, its functions are learn-
ing the maze, finding shortest route and directing
the 3pi robot to the destination. SunSPOT and 3pi
communicates by means of IO pins.

3.1 Results

The final model contains 2 Timed Automatons with
a total of 23 states and 38 transitions. The gen-
erated code had 2 Java Threads, around 500 lines
of code and 8 channels. The final deployable code
amounts to 800 lines.

We encountered a practical problem during test
run, where the robot did not take turns exactly at
the intersection, due to communication delay in the
hardware, and we a made small change in the model
to tackle this issue. Based on our results, the robot
behaved as per to the model. We repeated the pro-
cess from various points on the maze and on every
run eventually robot was guided to the target.

4 Conclusion

In this paper, we tried to arrive at a proper code
conversion rules for soft real-time systems that
does not violate the properties of the model of the
system. We applied our approach on a real-time

example: maze-solver. Based on our experience,
the results were promising, but we had to make
some changes in the model due to some hardware
limitations. Also, we realized that our approach
could be extended to a C programmable device.
However, our approach cannot tackle specific time
actions as it is not practically achievable in a non
real-time Java based platform.

As our future work, the manual code insertion
will be partially automated by attaching a module
as input to the code generator, which contains the
replacing code fragments, while reducing potential
human error.

References

[1] Alan C. Shaw, Real-Time Systems and Soft-
ware. John Wiley & Sons, New York, 2001.

[2] Rajeev Alurand DavidL.Dill, A theory of
timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[3] Kim G. Larsen, Paul Pettersson, and Wang Yi,
UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-
2):134-152, 1997.

[4] Farn Wang, Formal Verification of Timed Sys-
tems: A Survey and Perspective. Proceedings
of the IEEE, 2004.

[5] Jr. Edmund M. Clarke, Orna Grumberg, and
Doron A. Peled, Model Checking. MIT Press,
1999.

[6] Andy Wellings, Concurrent and Real-Time
Programming in Java. John Wiley and Sons
Ltd, 1994.

[7] Sun SPOT World. Available at http:

//sunspotworld.com/docs/index.html,
[accessed 12 July 2010].

[8] Pololu 3pi Robot User?s Guide. Available
at http://www.pololu.com/docs/0J21, [ac-
cessed 12 July 2010].

[9] lIftikhar Azim Niaz and Jiro Tanaka, Mapping
Uml Statecharts To Java Code. Proc. IASTED
International Conference on Software Engineer-
ing, 111-116, Innsbruck, Austria, 2004.

[10] Niusha Hakimipour et al, Exploring Model-
Based Development for the Verification of Real-
Time Java Code. IJCAR08-VERIFY08, Syd-
ney, Australia, 2008

Copyright 2011 Information Processing Society of Japan.
All Rights Reserved.1-474

情報処理学会第73回全国大会

