
An alternative method for reliably managing large files

Yutaka Kawai† Adil Hasan‡ Takashi Sasaki†

1 Introduction

The volume of digital data and the size of an individual
file are increasing due to the introduction of high-resolution
images, high-definition audio-visual files etc. The reliable
storage of such large files essentially becomes problematic
with whole file replication as a failure in the integrity of the
file is difficult to localise.

In this note we describe a method of managing large
files in the integrated Rule Oriented Data management Sys-
tem (iRODS) [1, 3] by splitting them into smaller units in a
traceable manner and managing the smaller units. Each unit
contains its own metadata that describes its original loca-
tion as well as its MD5 checksum value. We also describe
the tools developed to demonstrate the method that allow
the file to be split before ingestion into iRODS and assem-
bled after extraction from iRODS. We also make use of the
Resource Namespace Service (RNS) [2] to store metadata
information and allow the large file to be discovered in Grid
systems.

In Section 2 we describe the current reliability to manage
a large file and in Sections 3 we describe the approaches
to enhance the reliability. Section 4 describes some of the
tests we performed in order to determine the impact of the
approach and Section 5 outlines future work.

2 Current Approach To Checksum

The traditional way to checksum a large file (i.e. 50GB
or so) is by preparing the checksum data for the whole file
and then re-evaluating the checksum after the data has been
moved [4]. Such an approach has several issues: recom-
puting the checksum for the whole file is time-consuming;
it is not possible to identify the exact location of the dis-
crepancy in the case of a failed checksum comparison. If
we encounter checksum errors, we need to re-do the opera-
tion, or select a copy of the file that has maintained integrity.
However, that is time-consuming.

Preserving Audio Visual data is required by TV and
other companies today. Movie files are very large and in

†Computing Research Center, High Energy Accelerator Research Or-
ganization (KEK)

‡School of English, University of Liverpool

Data Grid (iRODS)

Piece 0 Checksum+

Data Grid (iRODS)

Source File

Piece 0

Piece 1

Checksum+
Checksum+

split

Piece n Checksum+
split

January 11, 2011 iRODS HA 1

Figure 1. Splitting a file with checksum

some cases compressed. Using the above traditional ap-
proach to checksum a file, it is not easy to figure out where
the problem is or how to fix it if the downloaded data has
some loss or wrong data.

3 Split & Checksum Approach

Our approach is to split a large file into smaller pieces,
checksum each piece and assemble the file again on access.
This approach can reduce the risk of loss or wrong data.
Figure 1 shows how to split a file and Figure 2 shows how
to combine the pieces. If we encounter checksum discrep-
ancies, we can identify the problematic piece and retry to
download the piece to resolve the discrepancy. This ap-
proach is much faster than the traditional way that is de-
stroying and downloading the whole data.

In order to realize that, we developed a command, called
’isplit’, which is able to split a large file into smaller pieces
and store the pieces into iRODS with metadata. The meta-
data information can be also stored into RNS with xml ex-
pressions.

4 Performance Evaluation

In this section we describe the tests carried out to deter-
mine the performance impact of the overhead of checking
MD5 checksum of the divided pieces. We used a 1GB file
and divided it to several different numbers of pieces: 100 to

Copyright 2011 Information Processing Society of Japan.
All Rights Reserved.1-223

5A-4

情報処理学会第73回全国大会

Data Grid (iRODS)

Piece 0 Checksum+ Checksum OK Piece 0

combine

Piece 1

+
Checksum+ Checksum NG

Piece 0
Retry to

downloadX

Piece n Checksum+ Checksum OK Piece n

Source File

January 11, 2011 iRODS HA 2

Figure 2. Combining pieces with comparing
checksum

1000 pieces. We evaluated each elapsed time to download
the pieces.

4.1 Test Environment

The test environment consists of the iRODS server and
the iRODS client. These machines are same and run
on CentOS 5.5 as a VMware guest on the same physi-
cal machine. The physical machine has an Intel CPU i7-
920@2.67GHz and 12GB RAM. The guest OS runs with
1GB RAM and one core assigned. This can have a non-
trivial and noticeable effect on the results of the test.

4.2 Test Execution

We evaluated the impact of our implementations on the
transfer of several different numbers of pieces: 100 to
1000. Before this demonstration, we placed all pieces on
the iRODS Data Grid. Then, we download the pieces and
compared each checksum data. For example, in the case
of the 200 pieces, we divide the 1GB source file into 5MB
pieces and placed them in the iRODS. In the demonstration,
we download the all 5MB pieces and compare the checksum
of each piece. We measured the elapsed time to download
the pieces with comparing the checksum data. In order to
get the average values, the program is executed three times
for each test.

4.3 Test Results

The figure 3 shows the results of the tests. The over-
head to compare the checksum data grows linearly. The
case of 100 pieces is about 1.1% average slower than the
non-divided case. Those cases are not so different. On the
other hand, the case of 1000 pieces is about 78.6% average
slower than the non-divided case which would be practi-
cally unacceptable.

The latency depends on accessing each piece to com-
pare the checksum. As the number of pieces increases, the

Elapsed Time to download pieces

120

140

sec

p p
(shorter is better)

80

100

120

20

40

60

0

20

1 10 100 200 300 400 500 600 700 800 900 1000

of pieces **Size of Source File is 1GB

January 12, 2011 iRODS HA 3

Figure 3. Speed Performance Test Results

elapsed time increases. However, in the cases of 10, 100,
and 200 pieces, the elapsed times are almost same as the
non-divided case. In these cases the checksum data can be
compared efficiently. Therefore, we can use this approach
without a concern of speed loss when dividing a large file
to less than 200 pieces.

5 Conclusion and Future work

We have shown a method for reliably managing large
files. The example demonstrated that an application can
split a large file and contain its MD5 checksum data as its
metadata in iRODS. Also we demonstrated that the other
application can compare all checksum data and then com-
bine the pieces. We believe this approach results in more
reliability with fewer replicas than in the case of large-file
replication as different sub-file units can be stored on differ-
ent storage systems reducing the risk due to hardware fail-
ures. We are looking at applying the approach to manage
distributed files among different kinds of Data Grids.

References

[1] iRODS – the Integrated Rule-Oriented Data System. Online.
http://www.irods.org.

[2] M. Pereira, O. Tatebe, et al. Resource namespace ser-
vice specification (GFD-R-P.101). Technical report, GFS-
WG, 2007. http://www.ggf.org/documents/GFD.
101.pdf.

[3] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder. A
Prototype Rule-based Distributed Data Management System.
In Proc. HPDC workshop on ”Next Generation Distributed
Data Management”, Paris, France, May 2006.

[4] Z. Yong-Xia and Z. Ge. MD5 Research. 2:271 – 273, Apr.
2010.

Copyright 2011 Information Processing Society of Japan.
All Rights Reserved.1-224

情報処理学会第73回全国大会

